首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Familial neurohypophyseal diabetes insipidus in humans is a rare disease transmitted as an autosomal dominant trait. Affected individuals have very low or undetectable levels of circulating vasopressin and suffer from polydipsia and polyuria. An obvious candidate gene for the disease is the vasopressin-neurophysin (AVP-NP) precursor gene on human chromosome 20. The 2 kb gene with three exons encodes a composite precursor protein consisting of the neuropeptide vasopressin and two associated proteins, neurophysin and a glycopeptide. Cloning and nucleotide sequence analysis of both alleles of the AVP-NP gene present in a Dutch ADNDI family reveals a point mutation in one allele of the affected family members. Comparison of the nucleotide sequences shows a G----T transversion within the neurophysin-encoding exon B. This missense mutation converts a highly conserved glycine (Gly17 of neurophysin) to a valine residue. RFLP analysis of six related family members indicates cosegregation of the mutant allele with the DI phenotype. The mutation is not present in 96 chromosomes of an unrelated control group. These data suggest that a single amino acid exchange within a highly conserved domain of the human vasopressin-associated neurophysin is the primary cause of one form of ADNDI.  相似文献   

2.
To determine the genetic basis of autosomal dominant neurohypophyseal diabetes insipidus (ADNDI) in a Cypriot family, we ascertained and studied a large, four-generation kindred in which all participating family members had arginine vasopressin-neurophysin II (AVP-NP-II) gene analyses done. A G to A transition was found by DNA sequence analysis at position 1773 (G1773A) of the AVP-NPII gene which is predicted to encode a substitution of tyrosine for cysteine in codon 59 (CYS59TYR). The mutation was confirmed by restriction endonuclease analysis of PCR amplification products that contain the corresponding segment of the AVP-NPII gene. To clarify the morphologic status of the pituitaries of family members, 12 affected and 3 nonaffected members had magnetic resonance imaging (MRI) studies. The bright spot of the posterior pituitary lobe was completely absent in 75% and faintly identified in 25% of the affected members who were examined with MRI. We conclude that (1) a novel G1773A transition in exon 2 of the AVP-NPII gene causes ADNDI in the large Cypriot kindred studied, (2) this mutation is predicted to encode a CYS59TYR substitution in NPII, and (3) MRI studies of the posterior pituitary lobes of affected family members show either a decreased intensity or a complete absence of the bright spot in all cases studied.  相似文献   

3.
OBJECTIVE: Autosomal dominant familial neurohypophyseal diabetes insipidus is a rare disorder characterized by polydipsia and polyuria. We present the results of the molecular analysis of the AVP-NPII gene of a German kindred. METHODS: All three exons of the gene were amplified by polymerase chain reaction and sequenced. RESULTS: In 7 affected individuals a new missense mutation (1770G > T) in exon 2 was found predicting a cysteine to phenylalanine substitution at codon 58 in the neurophysin II domain (NPII). CONCLUSION: As a result of this mutation a cysteine residue is exchanged, which is involved in a disulfide bond with cysteine 44 of the NPII moiety, hypothesizing that the resulting misfolded protein may lead to chronic neurotoxicity by accumulation of these products in the endoplasmatic reticulum.  相似文献   

4.
The vasopressin-regulated water channel aquaporin-2 (AQP2) is known to tetramerize in the apical membrane of the renal tubular cells and contributes to urine concentration. We identified three novel mutations, each in a single allele of exon 4 of the AQP2 gene, in three families showing autosomal dominant nephrogenic diabetes insipidus (NDI). These mutations were found in the C-terminus of AQP2: a deletion of G at nucleotide 721 (721 delG), a deletion of 10 nucleotides starting at nucleotide 763 (763-772del), and a deletion of 7 nucleotides starting at nucleotide 812 (812-818del). The wild-type AQP2 is predicted to be a 271-amino acid protein, whereas these mutant genes are predicted to encode proteins that are 330-333 amino acids in length, because of the frameshift mutations. Interestingly, these three mutant AQP2s shared the same C-terminal tail of 61 amino acids. In Xenopus oocytes injected with mutant AQP2 cRNAs, the osmotic water permeability (Pf) was much smaller than that of oocytes with the AQP2 wild-type (14%-17%). Immunoblot analysis of the lysates of the oocytes expressing the mutant AQP2s detected a band at 34 kD, whereas the immunoblot of the plasma-membrane fractions of the oocytes and immunocytochemistry failed to show a significant surface expression, suggesting a defect in trafficking of these mutant proteins. Furthermore, coinjection of wild-type cRNAs with mutant cRNAs markedly decreased the oocyte Pf in parallel with the surface expression of the wild-type AQP2. Immunoprecipitation with antibodies against wild-type and mutant AQP2 indicated the formation of mixed oligomers composed of wild-type and mutant AQP2 monomers. Our results suggest that the trafficking of mutant AQP2 is impaired because of elongation of the C-terminal tail, and the dominant-negative effect is attributed to oligomerization of the wild-type and mutant AQP2s. Segregation of the mutations in the C-terminus of AQP2 with dominant-type NDI underlies the importance of this domain in the intracellular trafficking of AQP2.  相似文献   

5.
Mutations in the X-chromosomal V2 receptor gene are known to cause nephrogenic diabetes insipidus (NDI). Besides the X-linked form, an autosomal mode of inheritance has been described. Recently, mutations in the autosomal gene coding for water-channel aquaporin 2 (AQP2) of the renal collecting duct were reported in an NDI patient. In the present study, missense mutations and a single nucleotide deletion in the aquaporin 2 gene of three NDI patients from consanguineous matings are described. Expression studies in Xenopus oocytes showed that the missense AQP2 proteins are nonfunctional. These results prove that mutations in the AQP2 gene cause autosomal recessive NDI.  相似文献   

6.
Autosomal dominant familial neurohypophyseal diabetes insipidus is caused by mutations in the arginine vasopressin (AVP) gene. We demonstrated recently that mutant AVP precursors accumulate within the endoplasmic reticulum of neuronal cells, leading to cellular toxicity. In this study, the possibility that mutant AVP precursors interact with wild-type (WT) proteins to alter their processing and function was explored. WT and mutant precursors were epitope-tagged to allow them to be distinguished in transfected cells. An in vivo cross-linking reaction revealed homo- and heterodimer formation between WT and mutant precursors. Mutant precursors were also shown to impair intracellular trafficking of WT precursors from the endoplasmic reticulum to the Golgi apparatus. In addition to the cytotoxicity caused by mutant AVP precursors, the interaction between the WT and mutant precursors suggests that a dominant-negative mechanism may also contribute to the pathogenesis of familial neurohypophyseal diabetes insipidus.  相似文献   

7.
8.
We report the clinical phenotype in three kindreds with familial heterozygous hypobetalipoproteinemia (FHBL) carrying novel truncated apolipoprotein Bs (apoBs) of different sizes (apoB-8.15, apoB-33.4 and apoB-75.7). In D.A. kindred, we found three carriers of a C-deletion in exon 10 leading to the synthesis of apoB-8.15 not detectable in plasma. They showed steatorrhea and fatty liver. In N.L. kindred, the proband is heterozygous for a nonsense mutation in exon 26, leading to the formation of apoB-33.4. He had premature cerebrovascular disease and fatty liver; two apoB-33.4 carriers in this kindred showed only fatty liver. In B.E. kindred, the proband is heterozygous for a T-deletion in exon 26, which converts tyrosine at codon 3435 into a stop codon, resulting in apoB-75.7. The proband, a heavy alcohol drinker, had steatohepatitis, whereas his teetotaller daughter, an apoB-75.7 carrier, had no detectable fatty liver. This study suggests that: i) fatty liver invariably develops in FHBL carriers of short and medium-size truncated apoBs (< apoB-48), but its occurrence needs additional environmental factors in carriers of longer apoB forms; ii) intestinal lipid malabsorption develops only in carriers of short truncated apoBs, which are not secreted into the plasma; and iii) cerebrovascular disease due to premature atherosclerosis may occur even in FHBL subjects.  相似文献   

9.
Mutations in the AVPR2 gene encoding the receptor for arginine vasopressin in the kidney (V2 ADHR) have been reported in patients with congenital nephrogenic diabetes insipidus, a predominantly X-linked disorder of water homeostasis. We have used restriction-enzyme analysis and direct DNA sequencing of genomic PCR product to evaluate the AVPR2 gene in 11 unrelated affected males. Each patient has a different DNA sequence variation, and only one matches a previously reported mutation. Cosegregation of the variations with nephrogenic diabetes insipidus was demonstrated for two families, and a de novo mutation was documented in two additional cases. Carrier detection was accomplished in one family. All the variations predict frameshifts, truncations, or nonconservative amino acid substitutions in evolutionarily conserved positions in the V2 ADHR and related receptors. Of interest, a 28-bp deletion is found in one patient, while another, unrelated patient has a tandem duplication of the same 28-bp segment, suggesting that both resulted from the same unusual unequal crossing-over mechanism facilitated by 9-mer direct sequence repeats. Since the V2 ADHR is a member of the seven-transmembrane-domain, G-protein-coupled receptor superfamily, the loss-of-function mutations from this study and others provide important clues to the structure-function relationship of this and related receptors.  相似文献   

10.
Emery-Dreifuss muscular dystrophy (EMD) is a condition characterized by the clinical triad of early-onset contractures, progressive weakness in humeroperoneal muscles, and cardiomyopathy with conduction block. The disease was described for the first time as an X-linked muscular dystrophy, but autosomal dominant and autosomal recessive forms were reported. The genes for X-linked EMD and autosomal dominant EMD (AD-EMD) were identified. We report here that heterozygote mutations in LMNA, the gene for AD-EMD, may cause diverse phenotypes ranging from typical EMD to no phenotypic effect. Our results show that LMNA mutations are also responsible for the recessive form of the disease. Our results give further support to the notion that different genetic forms of EMD have a common pathophysiological background. The distribution of the mutations in AD-EMD patients (in the tail and in the 2A rod domain) suggests that unique interactions between lamin A/C and other nuclear components exist that have an important role in cardiac and skeletal muscle function.  相似文献   

11.
Sclerosteosis and Van Buchem disease are related recessive sclerosing bone dysplasias caused by alterations in the SOST gene. We tested the hypothesis that craniodiaphyseal dysplasia (CDD) (MIM 122860), an extremely rare sclerosing bone dysplasia resulting facial distortion referred to as "leontiasis ossea", could also be caused by SOST mutations. We discovered mutations c.61G>A (Val21Met) and c.61G>T (Val21Leu) two children with CDD. As these mutations are located in the secretion signal of the SOST gene, we tested their effect on secretion by transfecting the mutant constructs into 293E cells. Intriguingly, these mutations greatly reduced the secretion of SOST. We conclude that CDD, the most severe form of sclerotic bone disease, is part of a spectrum of disease caused by mutations in SOST. Unlike the other SOST-related conditions, sclerosteosis and Van Buchem disease that are inherited as recessive traits seem to be caused by a dominant negative mechanism.  相似文献   

12.
Autosomal dominant non‐syndromic hearing loss is genetically heterogeneous with 47 genes identified to date, including POU4F3. In this study, by using a next‐generation sequencing panel targeting 127 deafness genes, we identified a pathogenic frameshift mutation c.704_705del and a missense mutation c.593G>A in two three‐generation Chinese families with late‐onset progressive ADNSHL, respectively. The novel mutations of POU4F3 co‐segregated with the deafness phenotype in these two families. c.704_705del caused a frameshift p.T235fs and c.593G>A caused an amino acid substitution of p.R198H. Both mutations led to an abnormal and incomplete protein structure. POU4F3 with either of the two mutations was transiently transfected into HEI‐OC1 and HEK 293 cell lines and immunofluorescence assay was performed to investigate the subcellular localization of mutated protein. The results indicated that both c.704_705del (p.T235fs) and c.593G>A (p.R198H) could impair the nuclear localization function of POU4F3. The p.R198H POU4F3 protein was detected as a weak band of the correct molecular weight, indicating that the stability of p.R198H POU4F3 differed from that of the wild‐type protein. While, the p.T235fs POU4F3 protein was expressed with a smaller molecular weight, implying this mutation result in a frameshift and premature termination of the POU4F3 protein. In summary, we report two novel mutations of POU4F3 associated with progressive ADNSHL and explored their effects on POU4F3 nuclear localization. These findings expanded the mutation spectrum of POU4F3 and provided new knowledge for the pathogenesis of POU4F3 in hearing loss.  相似文献   

13.
Among 23 germline mutations identified in the APC screening of 45 familial adenomatous polyposis (FAP) patients, we have found 10 different novel frameshift mutations in 11 apparently unrelated patients. In two cases, an additional missense mutation was detected. One previously described as a causative germline mutation (S2621C), associated with a 1-bp insertion (4684insA) on the opposite allele, did not segregate with the FAP phenotype in the family and was therefore considered as being non-pathogenic. The other (Z1625H) was located 2 codons before a 1-bp deletion (4897delC). Both mutations were transmitted together from an FAP father to his affected son. The FAP phenotype of these 10 novel truncating mutations was clinically documented within their kindreds. Important variability was observed in the phenotype. Interestingly, we noted that a mutation (487insT) localized at the boundary of the 5’ attenuated APC phenotype region in two unrelated families resulted in classical polyposis. A clear-cut genotype-phenotype correlation could be drawn in only two instances. In one family, a 4684insA mutation led to a mild polyposis associated with early inherited osteomas and, in the family bearing the double mutation (Z1625H+4897delC), the phenotype was obviously a 3′ attenuated type. Our data illustrate the wide genetic and phenotypic heterogeneity of this condition between and within the families, making the establishment of correlations complex and any prediction in this disease difficult, although targeting the mutation site may be helpful in some specific cases. Received: 11 February 1997 / Accepted: 11 April 1997  相似文献   

14.
The gene for the most common form of autosomal dominant polycystic kidney disease (ADPKD), PKD1, has recently been characterized and shown to encode an integral membrane protein, polycystin-1, which is involved in cell-cell and cell-matrix interactions. Until now, approximately 30 mutations of the 3' single copy region of the PKD1 gene have been reported in European and American populations. However, there is no report of mutations in Asian populations. Using the polymerase chain reaction and single-strand conformation polymorphism (SSCP) analysis, 91 Korean patients with ADPKD were screened for mutation in the 3' single copy region of the PKD1 gene. As a result, we have identified and characterized six mutations: three frameshift mutations (11548del8bp, 11674insG and 12722delT), a nonsense mutation (Q4010X), and two missense mutations (R3752W and D3814N). Five mutations except for Q4010X are reported here for the first time. Our findings also indicate that many different mutations are likely to be responsible for ADPKD in the Korean population. The detection of additional disease-causing PKD1 mutations will help in identifying the location of the important functional regions of polycystin-1 and help us to better understand the pathophysiology of ADPKD.  相似文献   

15.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder affecting motor neurons. Although most cases of ALS are sporadic, approximately 10% are inherited as an autosomal dominant trait. Mutations in the Cu/Zn superoxide dismutase gene (SOD 1) are responsible for a fraction of familial ALS (FALS). Screening our FALS kindreds by SSCP, we have identified mutations in 15 families, of which 9 have not been previously reported. Two of the new mutations alter amino acids that have never been implicated in FALS. One of them affects a highly conserved amino acid involved in dimer contact, and the other one affects the active-site loop of the enzyme. These two mutations reduce significantly SOD 1 enzyme activity in lymphoblasts. Our results suggest that SOD 1 mutations are responsible for > or = 13% of FALS cases.  相似文献   

16.
Autosomal dominant keratitis (ADK) is an eye disorder chiefly characterized by corneal opacification and vascularization and by foveal hypoplasia. Aniridia (shown recently to result from mutations in the PAX6 gene) has overlapping clinical findings and a similar pattern of inheritance with ADK. On the basis of these similarities, we used a candidate-gene approach to investigate whether mutations in the PAX6 gene also result in ADK. Significant linkage was found between two polymorphic loci in the PAX6 region and ADK in a family with 15 affected members in four generations (peak LOD score = 4.45; theta = .00 with D11S914), consistent with PAX6 mutations being responsible for ADK. SSCP analysis and direct sequencing revealed a mutation in the PAX6 exon 11 splice-acceptor site. The predicted consequent incorrect splicing results in truncation of the PAX6 proline-serine-threonine activation domain. The SeyNeu mouse results from a mutation in the Pax-6 exon 10 splice-donor site that produces a PAX6 protein truncated from the same point as occurs in our family with ADK. Therefore, the SeyNeu mouse is an excellent animal model of ADK. The finding that mutations in PAX6 underlie ADK, along with a recent report that mutations in PAX6 also underlie Peters anomaly, implicates PAX6 broadly in human anterior segment malformations.  相似文献   

17.
We report the identification of a new locus for autosomal dominant limb-girdle muscular dystrophy (LGMD1) on 7q. Two of five families (1047 and 1701) demonstrate evidence in favor of linkage to this region. The maximum two-point LOD score for family 1047 was 3.76 for D7S427, and that for family 1701 was 2.63 for D7S3058. Flanking markers place the LGMD1 locus between D7S2423 and D7S427, with multipoint analysis slightly favoring the 9-cM interval spanned by D7S2546 and D7S2423. Three of five families appear to be unlinked to this new locus on chromosome 7, thus establishing further heterogeneity within the LGMD1 diagnostic classification.  相似文献   

18.
We have used long-range PCR to identify mutations in the duplicated part of the PKD1 gene. By means of a PKD1-specific primer in intron 1, an approximately 13.6-kb PCR product that includes exons 2-15 of the PKD1 gene has been used to search for mutations, by direct sequence analysis. This region contains the majority of the predicted extracellular domains of the PKD1-gene product, polycystin, including the 16 novel PKD domains that have similarity to immunoglobulin-like domains found in many cell-adhesion molecules and cell-surface receptors. Direct sequence analysis of exons encoding all the 16 PKD domains was performed on PCR products from a group of 24 unrelated patients with autosomal dominant polycystic kidney disease (ADPKD [MIM 173900]). Seven novel mutations were found in a screening of 42% of the PKD1-coding region in each patient, representing a 29% detection rate; these mutations included two deletions (one of 3 kb and the other of 28 bp), one single-base insertion, and four nucleotide substitutions (one splice site, one nonsense, and two missense). Five of these mutations would be predicted to cause a prematurely truncated protein. Two coding and 18 silent polymorphisms were also found. When, for the PKD1 gene, this method is coupled with existing mutation-detection methods, virtually the whole of this large, complex gene can now be screened for mutations.  相似文献   

19.
Recently, haploinsufficiency mutations in the melanocortin-4 receptor gene (MC4-R) were detected which were assumed to lead to the phenotype of extreme obesity. Previously, we detected three obese carriers among 306 index patients. Here we describe the detection of one haploinsufficiency carrier in an additional study group of 186 obese individuals. We subsequently genotyped and phenotyped 43 family members of these four index patients, two of whom were second-degree cousins. A total of 19 carriers were identified. Extreme obesity was the predominating phenotype. However, moderate obesity occurred in three of the carriers. No other specific phenotypic abnormalities were detected. Female haploinsufficiency carriers were heavier than male carriers in the respective families, a finding similar to findings in MC4-R-knockout mice. In conclusion, our data fully support the etiologic role of MC4-R haploinsufficiency mutations in obesity.  相似文献   

20.
Autosomal recessive and dominant inheritance of proximal spinal muscular atrophy (SMA) are well documented. Several genetic studies found a significant deviation from the assumption of recessive inheritance in SMA, with affected children in one generation. The existence of new autosomal dominant mutations has been assumed as the most suitable explantation, which is supported by three observations of this study: (1) The segregation ratio calculated in 333 families showed a significant deviation from autosomal recessive inheritance in the milder forms of SMA (P = .09 +/- .06 for onset at 10-36 mo and .13 +/- .07 for onset at > 36 mo; and P = .09 +/- .07 for SMA IIIa and .12 +/- .07 for SMA IIIb). (2) Three families with affected subjects in two generations are reported, in whom the disease could have started as an autosomal dominant mutation. (3) Linkage studies with chromosome 5q markers showed that in 5 (5.4%) of 93 informative families the patient shared identical haplotypes with at least one healthy sib. Other mechanisms, such as the existence of phenocopies, pseudodominance, or a second autosomal recessive gene locus, cannot be excluded in single families. The postulation of spontaneous mutations, however, is a suitable explanation for all three observations. Estimated risk figures for genetic counseling are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号