首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Melanosomes observed in dermal melanophores of adult leaf frogs contain a unique wine red pigment identified as pterorhodin, a pteridine dimer never before found in any vertebrate. This type of melanosome, almost twice as large as the typical eumelanin melanosome, contains a small electron dense core of eumelanin surrounded by a concentric fibrous mass of pterorhodin. Dermal melanophores of larval leaf frogs contain small eumelanin melanosomes that transform at metamorphosis through the gradual accumulation of pterorhodin on the eumelanin surface to form the compound melanosomes of adults. This process may be mediated by thyroxine. No explanation for the unique presence of pterorhodin in leaf frogs has yet surfaced. A variety of tree frog species from Australia and Papua New Guinea also possess pterorhodin and the large melanosome suggesting that tree frogs from the New World and those from Australia are closely related and may have been separated during continental drift. Several of the unsolved problems posed by the emergence of pterorhodin in a unique melanosome are discussed.  相似文献   

2.
In melanosomes of Pachymedusa (Agalychnis) dacnicolor and other leaf frogs, the pteridine dimer, pterorhodin, is found in fibers concentric to a kernel of eumelanin. The kernel is a remnant mature larval melanosome that is renovated at metamorphic climax and on which pterorhodin is deposited at the completion of metamorphosis. When pterorhodin is initially detected by chemical means in the skin of stage 25 individuals, flocculations of fibers are first seen in melanosomes. At stage 25+ a more intense chemical demonstration is accompanied by larger flocculations. These larval melanosomes are smaller than those of other vertebrates, but are formed from classical premelanosomes. At metamorphosis, the melanosome's limiting membrane is elevated from the surface of the eumelanin, and small spheroids are seen in the space and on the pigment surface. The Golgi complex is extremely active, numerous small vesicles are seen in the cytoplasm, and blebbing of the outer membrane of the nuclear envelope occurs. At stage 25 small thick-walled vesicles appear in the cytoplasm in contact with or within the melanosome; they may represent the transport of pterorhodin or elements necessary for its formation.  相似文献   

3.
The integumental melanophores of Latimeria chalumnae were studied by light and electron microscopy. The epidermal melanophore located in the mid-epidermis consists of a round perikaryon with long slender dendrites extending into epidermal cells and intercellular spaces. The dermal melanophores occur in the loose dermal matrix underlying a relatively thick layer of collagen fibers. The dermal melanophores are usually flattened and their dendrites lie parallel to the collagen layer. Both epidermal and dermal melanophores contain oval, electron-opaque melanosomes, large mitochondria, agranular vacuoles of endoplasmic reticulum and microtubules. Microfilaments and RNP particles are less conspicuous. While the peripheral cytoplasm of both dermal and epidermal melanophores is filled with a large number of melanosomes, the perinuclear cytoplasm of many dermal melanophores is occupied by premelanosomes in various stages of differentiation, and that of the epidermal melanophore contains numerous large vacuoles. Despite the scarcity of epidermal melanophores, the epidermal melanin unit is present in the form of melanosome complexes. In addition, the melanophores of Latimeria possess the basic characteristics common to other vertebrates, but they more closely resemble those of lungfish and other aquatic vertebrates.  相似文献   

4.
We have studied the structural alteration of melanosomes in the melanocytes of agouti mice whose genetic characteristic is to produce eumelanin and phaeomelanin alternately in a single hair bulb. Melanocytes of hair bulbs from 1 to 2 day old mice of the black phase were observed to contain rod-shaped melanosomes of the eumelanin type (eumelanosome). In the melanocytes of the hair bulbs from 4 to 6-day old skin, which exclusively contain phaeomelanin, spherical melanosomes (phaeomelanosomes) were seen. On the other hand, the mice of the transitional phase from black to yellow possessed melanocytes that contained both eumelanosomes and phaeomelanosomes within a single cell. This result indicates that the shift from the eumelanin formation to the phaeomelanin formation or vice versa in agouti hair occurs within a single melanocyte.We observed multivesicular bodies in both the agouti melanocytes of the yellow phase and the genotypically yellow melanocytes. These bodies are considered to be the precursor of the phaeomelanin-containing melanosome. They are sometimes observed to have continuity with E. R. suggesting that the melanosomes are derived from E. R. in the phaeomelanin-forming melanocytes.  相似文献   

5.
Black pigment cells, melanophores, e.g. located in the epidermis and dermis of frogs, are large flat cells having intracellular black pigment granules, called melanosomes. Due to a large size, high optical contrast, and quick response to drugs, melanophores are attractive as biosensors as well as for model studies of intracellular processes; e.g. organelle transport and G-protein coupled receptors. The geometry of melanosomes from African clawed toad, Xenopus laevis, has been measured using scanning force microscopy (SFM). Three-dimensional images from SFM were used to measure height, width, and length of the melanosomes (100 from aggregated cells and 100 from dispersed cells). The volumes of melanosomes isolated from aggregated and dispersed melanophores were significantly different (P < 0.05, n=200). The average ellipsoidal volume was 0.14+/-0.01 (aggregated) and 0.17+/-0.01 microm3 (dispersed), a difference of 18%. The average major diameter was 810+/-20 and 880+/-20 nm for aggregated and dispersed melanosomes, respectively. To our knowledge, this is the first time SFM has been used to study melanosomes. This may provide an alternative non-destructive technique that may be particularly suitable for studying morphological aspects of various melanin granules.  相似文献   

6.
The physical properties of melanosomes have been shown to depend on water content. Herein, the ultraviolet absorption coefficient at λ = 244 nm for intact bovine choroidal melanosomes is determined from photoemission electron microscopy images recorded as a function of vacuum exposure. The dehydration of the melanosome under ultra-high vacuum manifests itself by a decrease in the absorption coefficient to about 60% of its initial value, and a concomitant increase in its image brightness. This change in the absorption of the melanosome is consistent with the influence of solvent polarity on the UV absorption coefficient of model systems for the pigment eumelanin, the predominant UV absorber contained in the choroid melanosomes.  相似文献   

7.
Black pigment cells, melanophores, e.g. located in the epidermis and dermis of frogs, are large flat cells having intracellular black pigment granules, called melanosomes. Due to a large size, high optical contrast, and quick response to drugs, melanophores are attractive as biosensors as well as for model studies of intracellular processes; e.g. organelle transport and G‐protein coupled receptors. The geometry of melanosomes from African clawed toad, Xenopus laevis, has been measured using scanning force microscopy (SFM). Three‐dimensional images from SFM were used to measure height, width, and length of the melanosomes (100 from aggregated cells and 100 from dispersed cells). The volumes of melanosomes isolated from aggregated and dispersed melanophores were significantly different (P<0.05, n=200). The average ellipsoidal volume was 0.14±0.01 (aggregated) and 0.17±0.01 μm3 (dispersed), a difference of 18%. The average major diameter was 810±20 and 880±20 nm for aggregated and dispersed melanosomes, respectively. To our knowledge, this is the first time SFM has been used to study melanosomes. This may provide an alternative non‐destructive technique that may be particularly suitable for studying morphological aspects of various melanin granules.  相似文献   

8.
A continuous observation apparatus was used to study the responses of Phoxinus phoxinus melanophores to illuminated black/white backgrounds and their reversal. The fish. Although confined, showed maximum melanosome dispersion (MI 5) and maximum melanosome aggregation (MI 1) when exposed to illuminated black and white backgrounds respectively. Melanophores affected by spinal nerve section showed full melanosome dispersion and the affected area appeared as a black band. The affected melanophores marginally and gradually aggregated their melanosomes if the fish was exposed to an illuminated white background for about a week. The responses of these melanophores to illuminated black and white backgrounds and their reversal indicates that the dispersal of their melanosomes in response to a black background is much faster than their aggregation in response to a white background. It is concluded that an active mechanism is involved and possible factors controlling it are discussed.  相似文献   

9.
10.
The bi-directional movement of pigment granules in frog melanophores involves the microtubule-based motors cytoplasmic dynein, which is responsible for aggregation, and kinesin II and myosin V, which are required for dispersion of pigment. It was recently shown that dynactin acts as a link between dynein and kinesin II and melanosomes, but it is not fully understood how this is regulated and if more proteins are involved. Here, we suggest that spectrin, which is known to be associated with Golgi vesicles as well as synaptic vesicles in a number of cells, is of importance for melanosome movements in Xenopus laevis melanophores. Large amounts of spectrin were found on melanosomes isolated from both aggregated and dispersed melanophores. Spectrin and two components of the oligomeric dynactin complex, p150(glued) and Arp1/centractin, co-localized with melanosomes during aggregation and dispersion, and the proteins were found to interact as determined by co-immunoprecipitation. Spectrin has been suggested as an important link between cargoes and motor proteins in other cell types, and our new data indicate that spectrin has a role in the specialized melanosome transport processes in frog melanophores, in addition to a more general vesicle transport.  相似文献   

11.
In melanophores of a cyprinid fish, Zacco temmincki, receptor mechanisms of melanosome dispersion induced by catecholamines were examined. While possessing a melanosome-aggregating action in higher concentrations, isoproterenol and epinephrine in lower concentrations acted to disperse melanosomes. Norepinephrine, epinine and dopamine altered their action from melanosome aggregation to melanosome dispersion after alpha adrenergic blockade. The catecholamine-induced melanosome dispersion was inhibited by beta adrenergic blocking agents. Mediation of dispersion is regulated through beta adrenergic receptors. The beta adrenergic responses were unaffected by mersalyl, a sulfhydryl inhibitor. A prospective substance acting in dispersing melanosomes appears to be adrenaline, but not noradrenaline.  相似文献   

12.
A perfusion technique is described for the study of melanosome response in ventral tailfin melanophores of Xenopus laevis tadpoles. The melanosomes remain aggregated (punctate melanophores) in Ringer's. Theophylline (15 mM) and caffeine (30 mM) cause a reversible dispersion (stellate melanophores) of melanosomes which is partly blocked by cytochalasin B (10 μg/ml). When added with theophylline or caffeine to stellate cells, cytochalasin B causes a disrupted distribution of pigment granules, characterized by a melanosome free central region. C-AMP (20 mM) and dibutyryl c-AMP (1 mM) cause a reversible dispersion of melanosomes which is partly inhibited by cytochalasin. When cytochalasin plus a nucleotide are added to stellate cells, some show the disrupted distribution of melanosomes. Colchicine (5 mM) causes irreversible, while griseofulvin (0.2 mM) causes a slight, but reversible dispersion of melanosomes, and cytochalasin has little effect on these reactions. Perfused tailfin melanophores remain capable of responding to reversible reagents for at least 12 hours and are unresponsive to changes in illumination.  相似文献   

13.
Melanophores move pigment organelles (melanosomes) from the cell center to the periphery and vice-versa. These bidirectional movements require cytoplasmic microtubules and microfilaments and depend on the function of microtubule motors and a myosin. Earlier we found that melanosomes purified from Xenopus melanophores contain the plus end microtubule motor kinesin II, indicating that it may be involved in dispersion (Rogers, S.L., I.S. Tint, P.C. Fanapour, and V.I. Gelfand. 1997. Proc. Natl. Acad. Sci. USA. 94: 3720–3725). Here, we generated a dominant-negative construct encoding green fluorescent protein fused to the stalk-tail region of Xenopus kinesin-like protein 3 (Xklp3), the 95-kD motor subunit of Xenopus kinesin II, and introduced it into melanophores. Overexpression of the fusion protein inhibited pigment dispersion but had no effect on aggregation. To control for the specificity of this effect, we studied the kinesin-dependent movement of lysosomes. Neither dispersion of lysosomes in acidic conditions nor their clustering under alkaline conditions was affected by the mutant Xklp3. Furthermore, microinjection of melanophores with SUK4, a function-blocking kinesin antibody, inhibited dispersion of lysosomes but had no effect on melanosome transport. We conclude that melanosome dispersion is powered by kinesin II and not by conventional kinesin. This paper demonstrates that kinesin II moves membrane-bound organelles.  相似文献   

14.
Intracellular transport is essential for cytoplasm organization, but mechanisms regulating transport are mostly unknown. In Xenopus melanophores, melanosome transport is regulated by cAMP-dependent protein kinase A (PKA). Melanosome aggregation is triggered by melatonin, whereas dispersion is induced by melanocyte-stimulating hormone (MSH). The action of hormones is mediated by cAMP: High cAMP in MSH-treated cells stimulates PKA, whereas low cAMP in melatonin-treated cells inhibits it. PKA activity is typically restricted to specific cell compartments by A-kinase anchoring proteins (AKAPs). Recently, Rab32 has been implicated in protein trafficking to melanosomes and shown to function as an AKAP on mitochondria. Here, we tested the hypothesis that Rab32 is involved in regulation of melanosome transport by PKA. We demonstrated that Rab32 is localized to the surface of melanosomes in a GTP-dependent manner and binds to the regulatory subunit RIIalpha of PKA. Both RIIalpha and Cbeta subunits of PKA are required for transport regulation and are recruited to melanosomes by Rab32. Overexpression of wild-type Rab32, but not mutants unable to bind PKA or melanosomes, inhibits melanosome aggregation by melatonin. Therefore, in melanophores, Rab32 is a melanosome-specific AKAP that is essential for regulation of melanosome transport.  相似文献   

15.
In fish melanophores, melanosomes can either aggregate around the cell centre or disperse uniformly throughout the cell. This organelle transport involves microtubule- and actin-dependent motors and is regulated by extracellular stimuli that modulate levels of intracellular cyclic adenosine 3-phosphate (cAMP). We analysed melanosome dynamics in Atlantic cod melanophores under different experimental conditions in order to increase the understanding of the regulation and relative contribution of the transport systems involved. By inhibiting dynein function via injection of inhibitory antidynein IgGs, and modulating cAMP levels using forskolin, we present cellular evidence that dynein is inactivated by increased cAMP during dispersion and that the kinesin-related motor is inactivated by low cAMP levels during aggregation. Inhibition of dynein further resulted in hyperdispersed melanosomes, which subsequently reversed movement towards a more normal dispersed state, pointing towards a peripheral feedback regulation in maintaining the evenly dispersed state. This reversal was blocked by noradrenaline. Analysis of actin-mediated melanosome movements shows that actin suppresses aggregation and dispersion, and indicates the possibility of down-regulating actin-dependent melanosome movement by noradrenaline. Data from immuno-electron microscopy indicate that myosinV is associated with fish melanosomes. Taken together, our study presents evidence that points towards a model where both microtubule- and actin-mediated melanosome transport are synchronously regulated during aggregation and dispersion, and this provides a cell physiological explanation behind the exceptionally fast rate of background adaptation in fish.  相似文献   

16.
The bi‐directional movement of pigment granules in frog melanophores involves the microtubule‐based motors cytoplasmic dynein, which is responsible for aggregation, and kinesin  II and myosin  V, which are required for dispersion of pigment. It was recently shown that dynactin acts as a link between dynein and kinesin  II and melanosomes, but it is not fully understood how this is regulated and if more proteins are involved. Here, we suggest that spectrin, which is known to be associated with Golgi vesicles as well as synaptic vesicles in a number of cells, is of importance for melanosome movements in Xenopus laevis melanophores. Large amounts of spectrin were found on melanosomes isolated from both aggregated and dispersed melanophores. Spectrin and two components of the oligomeric dynactin complex, p150glued and Arp1/centractin, co‐localized with melanosomes during aggregation and dispersion, and the proteins were found to interact as determined by co‐immunoprecipitation. Spectrin has been suggested as an important link between cargoes and motor proteins in other cell types, and our new data indicate that spectrin has a role in the specialized melanosome transport processes in frog melanophores, in addition to a more general vesicle transport.  相似文献   

17.
Pigmentary function and evolution of tyrp1 gene duplicates in fish   总被引:1,自引:0,他引:1  
The function of the tyrosinase‐related protein 1 (Tyrp1) has not yet been investigated in vertebrates basal to tetrapods. Teleost fishes have two duplicates of the tyrp1 gene. Here, we show that the teleost tyrp1 duplicates have distributed the ancestral gene expression in the retinal pigment epithelium (RPE) and melanophores in a species‐specific manner. In medaka embryos, tyrp1a expression is found in the RPE and in melanophores while tyrp1b is only expressed in melanophores. In zebrafish embryos, expression of tyrp1 paralogs overlaps in the RPE and in melanophores. Knockdown of each zebrafish tyrp1 duplicate alone does not show pigmentary defects, but simultaneous knockdown of both tyrp1 genes results in the formation of brown instead of black eumelanin accompanied by severe melanosome defects. Our study suggests that the brown melanosome color in Tyrp1‐deficient vertebrates is an effect of altered eumelanin synthesis. Black eumelanin formation essentially relies on the presence of Tyrp1 and some of its function is most likely conserved from the common ancestor of bony vertebrates.  相似文献   

18.
In fish melanophores, melanosomes can either aggregate around the cell centre or disperse uniformly throughout the cell. This organelle transport involves microtubule‐ and actin‐dependent motors and is regulated by extracellular stimuli that modulate levels of intracellular cyclic adenosine 3‐phosphate (cAMP). We analysed melanosome dynamics in Atlantic cod melanophores under different experimental conditions in order to increase the understanding of the regulation and relative contribution of the transport systems involved. By inhibiting dynein function via injection of inhibitory antidynein IgGs, and modulating cAMP levels using forskolin, we present cellular evidence that dynein is inactivated by increased cAMP during dispersion and that the kinesin‐related motor is inactivated by low cAMP levels during aggregation. Inhibition of dynein further resulted in hyperdispersed melanosomes, which subsequently reversed movement towards a more normal dispersed state, pointing towards a peripheral feedback regulation in maintaining the evenly dispersed state. This reversal was blocked by noradrenaline. Analysis of actin‐mediated melanosome movements shows that actin suppresses aggregation and dispersion, and indicates the possibility of down‐regulating actin‐dependent melanosome movement by noradrenaline. Data from immuno‐electron microscopy indicate that myosinV is associated with fish melanosomes. Taken together, our study presents evidence that points towards a model where both microtubule‐ and actin‐mediated melanosome transport are synchronously regulated during aggregation and dispersion, and this provides a cell physiological explanation behind the exceptionally fast rate of background adaptation in fish.  相似文献   

19.
20.
The dispersion of melanosomes in the dermal melanophores of the Xenopus laevis larvae has been studied by time--lapse cinematography. The process began with the appearance of distally directed melanosome flows in the cell cytoplasm. During the subsequent migration of pigment granules, the flows branched forming branches of the 2nd and higher orders. The whole cytoplasm became filled with a layer of melanosomes. During the dispersion, the movement of melanosomes in a flow is replaced by their dispersion all over the cytoplasm; these processes alternated. In the peripheral part of the cell devoid of melanosomes, membrane vesicles appeared and the cytoplasm was distinctly divided into ecto- and endoplasm. The ectoplasm contained numerous microfilaments and single microtubules, the endoplasm did not contain any cell organelles, except single electron-dense melanosomes. The active role of plasma membrane in the intracellular movement of melanin granules is suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号