首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The seeds of Theobroma cacao (cacao) are the source of cocoa, the raw material for the multi-billion dollar chocolate industry. Cacao’s two most important traits are its unique seed storage triglyceride (cocoa butter) and the flavor of its fermented beans (chocolate). The genome of T. cacao is being sequenced, and to expand the utility of the genome sequence to the improvement of cacao, we are evaluating Theobroma grandiflorum, the closest economically important species of Theobroma for its potential use in a comparative genomic study. T. grandiflorum differs from cacao in important agronomic traits such as flavor of the fermented beans, disease resistance to witches’ broom and abscission of mature fruits. By comparing genomic sequences and analyzing viable inter-specific hybrids, we hope to identify the key genes that regulate cacao’s most important traits. We have investigated the utility in T. grandiflorum of three types of markers (microsatellite markers, single-strand conformational polymorphism markers and single nucleotide polymorphism (SNP) markers) developed in cacao. Through sequencing of amplicons of 12 diverse individuals of both cacao and T. grandiflorum, we have identified new intra- and inter-specific SNPs. Two markers which had no overlap of alleles between the species were used to genotype putative inter-specific hybrid seedlings. Sequence conservation was significant and species-specific differences numerous enough to suggest that comparative genomics of T. grandiflorum and T. cacao will be useful in elucidating the genetic differences that lead to a variety of important agronomic trait differences.  相似文献   

2.
3.
The mechanisms that reduce the viability of plant somatic embryos following cryopreservation are not known. The objective of the present study was to evaluate the sensitivity of cocoa (Theobroma cacao L.) somatic embryos at different stages of an encapsulation–dehydration protocol using stress-related volatile hydrocarbons as markers of injury and recovery. The plant stress hormone ethylene and volatile hydrocarbons derived from hydroxyl radicals (methane) and lipid peroxidation (ethane) were determined using gas chromatography headspace analysis. Ethylene and methane were the only volatiles detected, with both being produced after each step of the cryogenic protocol. Ethylene production was significantly reduced following exposure to liquid nitrogen, but then increased in parallel with embryo recovery. In contrast, the production of methane was cyclic during recovery, with the first cycle occurring earlier for embryos recovered from liquid nitrogen and desiccation than those recovered from earlier steps in the protocol. These results suggest that loss of somatic embryo viability during cryopreservation may be related to the oxidative status of the tissue, and its capacity to produce ethylene. This study has demonstrated that headspace volatile analysis provides a robust non-destructive analytical approach for assessing the survival and recovery of plant somatic embryos following cryopreservation.  相似文献   

4.
Sexual compatibility limits the production of cacao plantations, being an important selection criterion in breeding programs. However, the current method for characterizing compatibility, based on the frequency of flower setting after controlled pollination, is time consuming, requiring a long time to identify self-compatible individuals. The identification of molecular markers in genomic regions can be an alternative to allow early selection of self-compatible plants. The present study aimed to identify SNP markers associated with sexual compatibility in cacao, by utilizing genome-wide association (GWAS) mapping. A population of 295 individuals mostly from third-generation breeding populations, but also founder clones, was used. This population was phenotypically characterized by hand pollinating 8199 flowers and evaluating the flower retention 15 days after pollination. In addition, leaf samples of each individual were collected and DNA extracted for genotyping by sequencing, generating 5301 SNP markers after cleaning. Genome-wide association mapping analysis was performed using Synbreed, GCTA, and TASSEL softwares. Significant markers associated to incompatibility, likely in strong linkage disequilibrium, were found within a region of 196 kb, in the proximal end of chromosome 4, suggesting the existence of a major gene in that region. However, this result should be validated in a larger population, considering that only 295 trees were used here. When the SNP effects were treated as random in the estimation process, many other regions in the genome appears to be involved with sexual incompatibility in cacao. Candidate genes were found not only in the proximal end of chromosome 4 but also spread in several other regions of the genome.  相似文献   

5.
DNA extraction is a time-consuming and expensive component of molecular marker analysis, constituting about 30–60% of the total time required for sample processing. Furthermore, the procedure for extracting high-quality DNA from tree species such as cocoa differs from extraction protocols suitable for other crop plants. This is accompanied by problems in collecting leaf tissues from field-grown cocoa trees, where storage facilities are not available and where transporting samples to laboratory for immediate refrigeration is usually impossible. We preserved cocoa leaf tissues in the field in an NaCl-CTAB-azide solution (as described in Rogstad, 1992), which did not require immediate refrigeration. This method also allowed preservation of leaf tissues for a few days during transportation and protected leaf tissues from bacterial and fungal attacks. Once transported to the laboratory, the samples were stored at 4°C for almost 1 y. To isolate good-quality DNA from stored leaf tissues, a rapid semiautomated and relatively high-throughput protocol was established. The procedure followed a modified CTAB/β-mercaptoethanol method of DNA extraction in a 96-well plate, and an automated system (i.e., GenoGrinder 2000) was used to grind the leaf tissues. The quality of DNA was not affected by long storage, and the quantity obtained per sample was adequate for about 1000 PCR reactions. Thus, this method allowed isolation of about 200 samples per day at a cost of $0.60 per sample and is a relatively high-throughput, low-cost extraction compared with conventional methods that use manual grinding and/or expensive kits.  相似文献   

6.
Summary A micropropagation protocol was developed using cacao somatic embryo-derived plant as a source for nodal and apical stem explants, and apical microcuttings. Microcuttings were efficiently rooted and developed into plantlets. Axillary meristems within the remaining decapitated plantlets subsequently developed and were used for production of additional microcuttings, with an average 2.4 growing shoots per decapitated stem. The remaining plantelts were maintained as microcutting stock plants. When nodal stem explants were cultured on thidiazuron medium, axillary buds proliferated and developed into shoots, which were excised and rooted. However, the efficiency of this method is lower than rooting of apical microcuttings harvested directly from stock plants. During root induction, short treatment with indole-3-butyric acid (IBA) increased the total percentage of rooted microcuttings up to 89%. Longer exposures to IBA increased the average number of roots per microcutting (from 1.7 to 5.2). Plant acclimatization after rooting was achieved with an average success of 87%. During several months of growth in the greenhouse, the micropropagated plants developed functional taproots. Currently, cocoa plants produced by this micropropagation method have been successfully acclimated to field conditions in Ivory Coast, Ghana, and Saint Lucia.  相似文献   

7.
8.
Somatic embryogenesis is an in vitro clonal propagation method with potential to contribute to the improvement of cacao varieties. Before using this technology for commercial production, it is essential that somatic embryogenesis-derived plants be tested in field conditions. Therefore, we established a field test at Union Vale Estate, Saint Lucia. Thirty- to 50-yr-old trees were selected for clonal propagation as potentially high yielding based on local farmers observations. Clonal plants were propagated in vitro from immature flowers by embryogenesis and micropropagation. Multiple plants from nine genotypes were acclimated to greenhouse conditions then returned to Saint Lucia and planted in a field. Orthotropic rooted cuttings and locally propagated open pollinated seedlings were also planted for a total of 214 trees. Growth data were collected every 4–6 mo. including: stem diameter, stem height, length of the longest jorquette branch, number of jorquette branches, and dates of first flowering and fruiting. At 4.5 yr after planting in the field there were no major differences in all growth parameters among the propagation methods evaluated with exception of the orthotropic rooted cuttings. Trees grown from seeds were slightly taller then trees propagated by the other methods. Trees propagated as orthotropic rooted cuttings exhibited smaller average stem diameters, shorter stem heights to the jorquette, and shorter jorquette branches. We concluded that somatic embryo-derived plants demonstrated normal phenotypes in field conditions and have growth parameters similar to plants propagated by traditional methods.  相似文献   

9.
A collaborative international program was initiated to identify and describe the genetic diversity of living germplasm collections of Theobroma cacao genotypes that are maintained in several international collections scattered throughout tropical cacao growing countries of the world. Simple sequence repeat (SSR) DNA analysis was identified as the most appropriate molecular tool for DNA fingerprinting these collections during an international forum representing academic, government and industry scientists in the cacao community. Twenty-five SSR primers, which had been previously described, were evaluated as potential candidates to define an efficient, standardized, molecular fingerprinting protocol for T. cacao accessions. These primers have been evaluated for reliability, widespread distribution across the cacao genome, number of alleles produced by the SSR primers in cacao and their ability to discriminate between cacao accessions. Approximately 690 cacao accessions were used to evaluate the utility of these SSR primers as international molecular standards, and a small number of test samples of T. cacao were sent to two other independent laboratories for verification. DNA fragments were selectively amplified by PCR, using the SSR primers labeled with fluorescent dyes, and separated by capillary electrophoresis. Based on this study, the 15 SSR primers that had the highest reproducibility and consistency within a common genotype, while allowing the differentiation of separate divergent genotypes, were selected as international molecular standards for DNA fingerprinting of T. cacao.  相似文献   

10.
The large size of the Triticum aestivum genome makes it unlikely that a complete genome sequence for wheat will be available in the near future. Exploiting the conserved genome organization between wheat and rice and existing genomic resources, we have constructed in silico physical mapping software for wheat, assigning a gross physical location(s) into chromosome bins to 22,626 representative wheat gene sequences. To validate the predictions from the software we compared the predicted locations of ten ESTs to their positions experimentally determined by SNP marker analysis. Six of the sequences were correctly positioned on the map including four that demonstrated a high level of colinearity with their orthologous rice genomic region. This tool will facilitate the development of molecular markers for regions of interest and the creation of map-based cloning strategies in areas demonstrating high levels of sequence conservation and organization between wheat and rice.  相似文献   

11.
Two repeated DNA sequences isolated from a partial genomic DNA library of Helianthus annuus, p HaS13 and p HaS211, were shown to represent portions of the int gene of a Ty3 /gypsy retroelement and of the RNase-Hgene of a Ty1 /copia retroelement, respectively. Southern blotting patterns obtained by hybridizing the two probes to BglII- or DraI-digested genomic DNA from different Helianthus species showed p HaS13 and p HaS211 were parts of dispersed repeats at least 8 and 7 kb in length, respectively, that were conserved in all species studied. Comparable hybridization patterns were obtained in all species with p HaS13. By contrast, the patterns obtained by hybridizing p HaS211 clearly differentiated annual species from perennials. The frequencies of p HaS13- and p HaS211-related sequences in different species were 4.3x10(4)-1.3x10(5) copies and 9.9x10(2)-8.1x10(3) copies per picogram of DNA, respectively. The frequency of p HaS13-related sequences varied widely within annual species, while no significant difference was observed among perennial species. Conversely, the frequency variation of p HaS211-related sequences was as large within annual species as within perennials. Sequences of both families were found to be dispersed along the length of all chromosomes in all species studied. However, Ty3 /gypsy-like sequences were localized preferentially at the centromeric regions, whereas Ty1/ copia-like sequences were less represented or absent around the centromeres and plentiful at the chromosome ends. These findings suggest that the two sequence families played a role in Helianthusgenome evolution and species divergence, evolved independently in the same genomic backgrounds and in annual or perennial species, and acquired different possible functions in the host genomes.  相似文献   

12.
Cabbage (Brassica oleracea var. capitata L.) is one of the most popular cultivated vegetables worldwide. Cabbage has rich phenotypic diversity, including plant height, head shape, head color, leaf shape and leaf color. Leaf color plays an important role in cabbage growth and development. At present, there are few reports on fine mapping of leaf color mutants in B. oleracea. In this study, a naturally occurring yellow-green leaf cabbage mutant (YL-1), derived from the self-pollinated progenies of the hybrid ‘Hosom’, was used for inheritance analysis and gene mapping. Segregation populations including F2 and BC1 were generated from the cross of two inbred lines, YL-1 and 01–20. Genetic analysis with the F2 and BC1 populations demonstrated that the yellow-green leaf color was controlled by a single recessive nuclear gene, ygl-1. Insertion–deletion (InDel) markers, designed based on the parental re-sequencing data, were used for the preliminary mapping with BSA (bulked segregant analysis) method. A genetic map constructed with 15 InDels indicated that ygl-1 was located on chromosome C01. The ygl-1 gene is flanked by InDel markers ID2 and M8, with genetic distances of 0.4 cM and 0.35 cM, respectively. The interval distance between two markers is 167 kb. Thus, it enables us to locate the ygl-1 gene for the first time in B. oleracea. This study lays the foundation for candidate gene prediction and ygl-1gene cloning.  相似文献   

13.
Auxin receptors TIR1/AFBs play an essential role in a series of signaling network cascades. These F-box proteins have also been identified to participate in different stress responses via the auxin signaling pathway in Arabidopsis. Cucumber (Cucumis sativus L.) is one of the most important crops worldwide, which is also a model plant for research. In the study herein, two cucumber homologous auxin receptor F-box genes CsTIR and CsAFB were cloned and studied for the first time. The deduced amino acid sequences showed a 78% identity between CsTIR and AtTIR1 and 76% between CsAFB and AtAFB2. All these proteins share similar characteristics of an F-box domain near the N-terminus, and several Leucine-rich repeat regions in the middle. Arabidopsis plants ectopically overexpressing CsTIR or CsAFB were obtained and verified. Shorter primary roots and more lateral roots were found in these transgenic lines with auxin signaling amplified. Results showed that expression of CsTIR/AFB genes in Arabidopsis could lead to higher seeds germination rates and plant survival rates than wild-type under salt stress. The enhanced salt tolerance in transgenic plants is probably caused by maintaining root growth and controlling water loss in seedlings, and by stabilizing life-sustaining substances as well as accumulating endogenous osmoregulation substances. We proposed that CsTIR/AFB-involved auxin signal regulation might trigger auxin mediated stress adaptation response and enhance the plant salt stress resistance by osmoregulation.  相似文献   

14.
Spotted leaf 5 (spl5), a lesion mimic mutant, was first identified in rice (Oryza sativa L.) japonica cv. Norin8 in 1978. This mutant exhibits spontaneous disease-like lesions in the absence of any pathogens and resistance to rice blast and bacterial blight; however, the target gene has not yet been isolated. In the present study, we employed a map-based cloning strategy to finely map the spl5 gene. In an initial mapping with 100 F2 individuals (spl5/spl5) derived from a cross between the spl5 mutant and indica cv. 93-11, the spl5 gene was located in a 3.3-cM region on chromosome 7 using six simple sequence repeat (SSR) markers. In a high-resolution genetic mapping, two F2 populations with 3,149 individuals (spl5/spl5) were derived from two crosses between spl5 mutant and two indica cvs. 93-11 and Zhefu802 and six sequence-tagged site (STS) markers were newly developed. Finally, the spl5 gene was mapped to a region of 0.048 cM between two markers SSR7 and RM7121. One BAC/PAC contig map covering these markers’ loci and the spl5 gene was constructed through Pairwise BLAST analysis. Our bioinformatics analysis shows that the spl5 gene is located in the 80-kb region between two markers SSR7 and RM7121 with a high average ratio of physical to genetic distance (1.67 Mb/cM) and eighteen candidate genes. The analysis of these candidate genes indicates that the spl5 gene represents a novel class of regulators controlling cell death and resistance response in plants.  相似文献   

15.

Key message

Using a combination of phenotypic screening, genetic and statistical analyses, and high-throughput genome-wide sequencing, we have finely mapped a dominant Phytophthora resistance gene in soybean cultivar Wayao.

Abstract

Phytophthora root rot (PRR) caused by Phytophthora sojae is one of the most important soil-borne diseases in many soybean-production regions in the world. Identification of resistant gene(s) and incorporating them into elite varieties are an effective way for breeding to prevent soybean from being harmed by this disease. Two soybean populations of 191 F2 individuals and 196 F7:8 recombinant inbred lines (RILs) were developed to map Rps gene by crossing a susceptible cultivar Huachun 2 with the resistant cultivar Wayao. Genetic analysis of the F2 population indicated that PRR resistance in Wayao was controlled by a single dominant gene, temporarily named RpsWY, which was mapped on chromosome 3. A high-density genetic linkage bin map was constructed using 3469 recombination bins of the RILs to explore the candidate genes by the high-throughput genome-wide sequencing. The results of genotypic analysis showed that the RpsWY gene was located in bin 401 between 4466230 and 4502773 bp on chromosome 3 through line 71 and 100 of the RILs. Four predicted genes (Glyma03g04350, Glyma03g04360, Glyma03g04370, and Glyma03g04380) were found at the narrowed region of 36.5 kb in bin 401. These results suggest that the high-throughput genome-wide resequencing is an effective method to fine map PRR candidate genes.
  相似文献   

16.
Pathogenic diseases represent a major constraint to the growth and yield of cacao (Theobroma cacao L.). Ongoing research on model plant systems has revealed that defense responses are activated via signaling pathways mediated by endogenous signaling molecules such as salicylic acid, jasmonic acid and ethylene. Activation of plant defenses is associated with changes in the expression of large numbers of genes. To gain a better understanding of defense responses in cacao, we have employed suppressive subtractive hybridization (SSH) cDNA libraries, macroarray hybridization analysis, high throughput DNA sequencing and bioinformatics to identify cacao genes induced by these signaling molecules. Additionally, we investigated gene activation by a phytotoxic elicitor-like protein, Nep1. We have identified a unigene set of 1,256 members, including 330 members representing genes induced during the defense response.Electronic Supplementary Material Electronic supplementary material is available in the online version of this article at Sequences presented here are deposited with GenBank under accession numbers CF972636–CF974749  相似文献   

17.
A revision of Penstemon sect. Saccanthera subsect. Serrulati includes a new species (P. salmonensis), a new variety (P. triphyllus var. infernalis), and the elevation of a subspecies to species (P. curtiflorus), bringing the total number of species to eight, which are keyed and described, complete with nomenclature and type citations.  相似文献   

18.
Studying Pneumocystis has proven to be a challenge from the perspective of propagating a significant amount of the pathogen in a facile manner. The study of several fungal pathogens has been aided by the use of invertebrate model hosts. Our efforts to infect the invertebrate larvae Galleria mellonella with Pneumocystis proved futile since P. murina neither caused disease nor was able to proliferate within G. mellonella. It did, however, show that the pathogen could be rapidly cleared from the host.  相似文献   

19.
20.
A genetic transformation system has been developed for callus cells of Crataegus aronia using Agrobacterium tumefaciens. Callus culture was established from internodal stem segments incubated on Murashige and Skoog (MS) medium supplemented with 5 mg l−1 Indole-3-butyric acid (IBA) and 0.5 mg l−1 6-benzyladenine (BA). In order to optimize the callus culture system with respect to callus growth and coloration, different types and concentrations of plant growth regulators were tested. Results indicated that the best average fresh weight of red colored callus was obtained on MS medium supplemented with 2 mg l−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.5 mg l−1 kinetin (Kin) (callus maintenance medium). Callus cells were co-cultivated with Agrobacterium harboring the binary plasmid pCAMBIA1302 carrying the mgfp5 and hygromycin phosphotransferase (hptII) genes conferring green fluorescent protein (GFP) activity and hygromycin resistance, respectively. Putative transgenic calli were obtained 4 weeks after incubation of the co-cultivated explants onto maintenance medium supplemented with 50 mg l−1 hygromycin. Molecular analysis confirmed the integration of the transgenes in transformed callus. To our knowledge, this is the first time to report an Agrobacterium-mediated transformation system in Crataegus aronia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号