首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Immortal cells require a mechanism of telomere length control in order to divide infinitely. One mechanism is telomerase, an enzyme that compensates the loss of telomeric DNA. The second mechanism is the alternative lengthening of telomeres (ALT) pathway. In ALT pathway cells, homologous recombination between telomeric DNA is the mechanism by which telomere homeostasis is achieved. We developed a novel homologous recombination reporter system that is able to measure inter-telomeric recombination in a sensitive manner. We asked the fundamental question if homologous recombination between different telomeres is present in telomerase-positive cells. In this in vitro study, we showed that homologous recombination between telomeres is detectable in ALT cells with the same frequency as in cells that utilize the telomerase pathway. We further described an ALT cell clone that showed peaks of recombination which were not detected in telomerase-positive clones. In telomerase-positive cells the frequency of inter-telomeric recombination was not increased by shortened telomeres or by a fragile telomere phenotype induced with aphidicolin. ALT cells, in contrast, responded to aphidicolin with an increase in the frequency of recombination. Our results indicate that inter-telomeric recombination is present in both pathways of telomere length control, but the factors that increase recombination are different in ALT and telomerase-positive cells.  相似文献   

2.
Dumont BL  Payseur BA 《Genetics》2011,187(3):643-657
Although very closely related species can differ in their fine-scale patterns of recombination hotspots, variation in the average genomic recombination rate among recently diverged taxa has rarely been surveyed. We measured recombination rates in eight species that collectively represent several temporal scales of divergence within a single rodent family, Muridae. We used a cytological approach that enables in situ visualization of crossovers at meiosis to quantify recombination rates in multiple males from each rodent group. We uncovered large differences in genomic recombination rate between rodent species, which were independent of karyotypic variation. The divergence in genomic recombination rate that we document is not proportional to DNA sequence divergence, suggesting that recombination has evolved at variable rates along the murid phylogeny. Additionally, we document significant variation in genomic recombination rate both within and between subspecies of house mice. Recombination rates estimated in F(1) hybrids reveal evidence for sex-linked loci contributing to the evolution of recombination in house mice. Our results provide one of the first detailed portraits of genomic-scale recombination rate variation within a single mammalian family and demonstrate that the low recombination rates in laboratory mice and rats reflect a more general reduction in recombination rate across murid rodents.  相似文献   

3.
We investigate the probabilities of identity-by-descent at three loci in order to find a signature which differentiates between the two types of crossing over events: recombination and gene conversion. We use a Markov chain to model coalescence, recombination, gene conversion and mutation in a sample of size two. Using numerical analysis, we calculate the total probability of identity-by-descent at the three loci, and partition these probabilities based on a partial ordering of coalescent events at the three loci. We use these results to compute the probabilities of four different patterns of conditional identity and non-identity at the three loci under recombination and gene conversion. Although recombination and gene conversion do make different predictions, the differences are not likely to be useful in distinguishing between them using three locus patterns between pairs of DNA sequences. This implies that measures of genetic identity in larger samples will be needed to distinguish between gene conversion and recombination.  相似文献   

4.
Recombination is thought to have various evolutionary effects on genome evolution. In this study, we investigated the relationship between the base composition and recombination rate in the Drosophila melanogaster genome. Because of a current debate about the accuracy of the estimates of recombination rate in Drosophila, we used eight different measures of recombination rate from recent work. We confirmed that the G + C content of large introns and flanking regions is positively correlated with recombination rate, suggesting that recombination has a neutral effect on base composition in Drosophila. We also confirmed that this neutral effect of recombination is the main determinant of the correlation between synonymous codon usage bias and recombination rate in Drosophila.  相似文献   

5.
As a consequence of being diploid, retroviruses have a high recombination rate. Naturally occurring retroviruses contain two repeat sequences (R regions) flanking either end of their RNA genomes, and recombination between these two R regions occurs at a high rate. We deduced that recombination may occur between two sequences within the same RNA molecule (intramolecular) as well as between sequences present within two separate RNA molecules (intermolecular). Intramolecular recombination would usually result in a deletion within the progeny provirus. In this report, we demonstrate that intramolecular recombination between two identical sequences occurred within a chimeric RNA vector. In addition, high rates of recombination between two identical sequences within the same RNA molecule resulted mostly from intramolecular recombination.  相似文献   

6.
Mell JC  Wienholz BL  Salem A  Burgess SM 《Genetics》2008,179(2):773-784
Trans-acting factors involved in the early meiotic recombination pathway play a major role in promoting homolog pairing during meiosis in many plants, fungi, and mammals. Here we address whether or not allelic sites have higher levels of interaction when in cis to meiotic recombination events in the budding yeast Saccharomyces cerevisiae. We used Cre/loxP site-specific recombination to genetically measure the magnitude of physical interaction between loxP sites located at allelic positions on homologous chromosomes during meiosis. We observed nonrandom coincidence of Cre-mediated loxP recombination events and meiotic recombination events when the two occurred at linked positions. Further experiments showed that a subset of recombination events destined to become crossover products increased the frequency of nearby Cre-mediated loxP recombination. Our results support a simple physical model of homolog pairing in budding yeast, where recombination at numerous genomic positions generally serves to loosely coalign homologous chromosomes, while crossover-bound recombination intermediates locally stabilize interactions between allelic sites.  相似文献   

7.
Crossovers (COs) generated through meiotic recombination are important for the correct segregation of homologous chromosomes during meiosis. Several models describing the molecular mechanism of meiotic recombination have been proposed. These models differ in the arrangement of heteroduplex DNA (hDNA) in recombination intermediates. Heterologies in hDNA are usually repaired prior to the recovery of recombination products, thereby obscuring information about the arrangement of hDNA. To examine hDNA in meiotic recombination in Drosophila melanogaster, we sought to block hDNA repair by conducting recombination assays in a mutant defective in mismatch repair (MMR). We generated mutations in the MMR gene Msh6 and analyzed recombination between highly polymorphic homologous chromosomes. We found that hDNA often goes unrepaired during meiotic recombination in an Msh6 mutant, leading to high levels of postmeiotic segregation; however, hDNA and gene conversion tracts are frequently discontinuous, with multiple transitions between gene conversion, restoration, and unrepaired hDNA. We suggest that these discontinuities reflect the activity of a short-patch repair system that operates when canonical MMR is defective.  相似文献   

8.
Recombination varies greatly among species, as illustrated by the poor conservation of the recombination landscape between humans and chimpanzees. Thus, shorter evolutionary time frames are needed to understand the evolution of recombination. Here, we analyze its recent evolution in humans. We calculated the recombination rates between adjacent pairs of 636,933 common single-nucleotide polymorphism loci in 28 worldwide human populations and analyzed them in relation to genetic distances between populations. We found a strong and highly significant correlation between similarity in the recombination rates corrected for effective population size and genetic differentiation between populations. This correlation is observed at the genome-wide level, but also for each chromosome and when genetic distances and recombination similarities are calculated independently from different parts of the genome. Moreover, and more relevant, this relationship is robustly maintained when considering presence/absence of recombination hotspots. Simulations show that this correlation cannot be explained by biases in the inference of recombination rates caused by haplotype sharing among similar populations. This result indicates a rapid pace of evolution of recombination, within the time span of differentiation of modern humans.  相似文献   

9.
One of the most striking findings to emerge from the study of genomic patterns of variation is that regions with lower recombination rates tend to have lower levels of intraspecific diversity but not of interspecies divergence. This uncoupling of variation within and between species has been widely interpreted as evidence that natural selection shapes patterns of genetic variability genomewide. We revisited the relationship between diversity, divergence, and recombination in humans, using data from closely related species and better estimates of recombination rates than previously available. We show that regions that experience less recombination have reduced divergence to chimpanzee and to baboon, as well as lower levels of diversity. This observation suggests that mutation and recombination are associated processes in humans, so that the positive correlation between diversity and recombination may have a purely neutral explanation. Consistent with this hypothesis, diversity levels no longer increase significantly with recombination rates after correction for divergence to chimpanzee.  相似文献   

10.
Goldfarb T  Lichten M 《PLoS biology》2010,8(10):e1000520
Recombination between homologous chromosomes of different parental origin (homologs) is necessary for their accurate segregation during meiosis. It has been suggested that meiotic inter-homolog recombination is promoted by a barrier to inter-sister-chromatid recombination, imposed by meiosis-specific components of the chromosome axis. Consistent with this, measures of Holliday junction-containing recombination intermediates (joint molecules [JMs]) show a strong bias towards inter-homolog and against inter-sister JMs. However, recombination between sister chromatids also has an important role in meiosis. The genomes of diploid organisms in natural populations are highly polymorphic for insertions and deletions, and meiotic double-strand breaks (DSBs) that form within such polymorphic regions must be repaired by inter-sister recombination. Efforts to study inter-sister recombination during meiosis, in particular to determine recombination frequencies and mechanisms, have been constrained by the inability to monitor the products of inter-sister recombination. We present here molecular-level studies of inter-sister recombination during budding yeast meiosis. We examined events initiated by DSBs in regions that lack corresponding sequences on the homolog, and show that these DSBs are efficiently repaired by inter-sister recombination. This occurs with the same timing as inter-homolog recombination, but with reduced (2- to 3-fold) yields of JMs. Loss of the meiotic-chromosome-axis-associated kinase Mek1 accelerates inter-sister DSB repair and markedly increases inter-sister JM frequencies. Furthermore, inter-sister JMs formed in mek1Δ mutants are preferentially lost, while inter-homolog JMs are maintained. These findings indicate that inter-sister recombination occurs frequently during budding yeast meiosis, with the possibility that up to one-third of all recombination events occur between sister chromatids. We suggest that a Mek1-dependent reduction in the rate of inter-sister repair, combined with the destabilization of inter-sister JMs, promotes inter-homolog recombination while retaining the capacity for inter-sister recombination when inter-homolog recombination is not possible.  相似文献   

11.
Recombination is fundamental to meiosis in many species and generates variation on which natural selection can act, yet fine-scale linkage maps are cumbersome to construct. We generated a fine-scale map of recombination rates across two major chromosomes in Drosophila persimilis using 181 SNP markers spanning two of five major chromosome arms. Using this map, we report significant fine-scale heterogeneity of local recombination rates. However, we also observed “recombinational neighborhoods,” where adjacent intervals had similar recombination rates after excluding regions near the centromere and telomere. We further found significant positive associations of fine-scale recombination rate with repetitive element abundance and a 13-bp sequence motif known to associate with human recombination rates. We noted strong crossover interference extending 5–7 Mb from the initial crossover event. Further, we observed that fine-scale recombination rates in D. persimilis are strongly correlated with those obtained from a comparable study of its sister species, D. pseudoobscura. We documented a significant relationship between recombination rates and intron nucleotide sequence diversity within species, but no relationship between recombination rate and intron divergence between species. These results are consistent with selection models (hitchhiking and background selection) rather than mutagenic recombination models for explaining the relationship of recombination with nucleotide diversity within species. Finally, we found significant correlations between recombination rate and GC content, supporting both GC-biased gene conversion (BGC) models and selection-driven codon bias models. Overall, this genome-enabled map of fine-scale recombination rates allowed us to confirm findings of broader-scale studies and identify multiple novel features that merit further investigation.  相似文献   

12.
Reciprocality of Recombination Events That Rearrange the Chromosome   总被引:6,自引:2,他引:4  
M. J. Mahan  J. R. Roth 《Genetics》1988,120(1):23-35
We describe a genetic system for studying the reciprocality of chromosomal recombination; all substrates and recombination functions involved are provided exclusively by the bacterial chromosome. The genetic system allows the recovery of both recombinant products from a single recombination event. The system was used to demonstrate the full reciprocality of three different types of recombination events: (1) intrachromosomal recombination between direct repeats, causing deletions; (2) intrachromosomal recombination between inverse homologies, causing inversion of a segment of the bacterial chromosome; and (3) circle to circle recombination (in the absence of any plasmid or phage functions). Results suggest that intrachromosomal recombination in bacteria is frequently fully reciprocal.  相似文献   

13.
We have previously shown that recombination between 400-bp substrates containing only 4-bp differences, when present in an inverted repeat orientation, is suppressed by >20-fold in wild-type strains of S. cerevisiae. Among the genes involved in this suppression were three genes involved in mismatch repair--MSH2, MSH3, and MSH6--and one in nucleotide excision repair, RAD1. We now report the involvement of these genes in interchromosomal recombination occurring via crossovers using these same short substrates. In these experiments, recombination was stimulated by a double-strand break generated by the HO endonuclease and can occur between completely identical (homologous) substrates or between nonidentical (homeologous) substrates. In addition, a unique feature of this system is that recombining DNA strands can be given a choice of either type of substrate. We find that interchromosomal crossover recombination with these short substrates is severely inhibited in the absence of MSH2, MSH3, or RAD1 and is relatively insensitive to the presence of mismatches. We propose that crossover recombination with these short substrates requires the products of MSH2, MSH3, and RAD1 and that these proteins have functions in recombination in addition to the removal of terminal nonhomology. We further propose that the observed insensitivity to homeology is a result of the difference in recombinational mechanism and/or the timing of the observed recombination events. These results are in contrast with those obtained using longer substrates and may be particularly relevant to recombination events between the abundant short repeated sequences that characterize the genomes of higher eukaryotes.  相似文献   

14.
We have recently reported that a GC-rich palindromic repeat sequence presumably adopts a stable fold-back tetraplex DNA structure under supercoiling. To establish the biological significance of this structure, we inserted this sequence between two direct repeat sequences, separated by 200 bp, in a plasmid. We then investigated the effect of this sequence on homologous recombination events. Here we report that the putative fold-back DNA tetraplex structure induces homologous recombination between direct repeat sequences. Interestingly, this recombination event is independent of recA, a major driving force for homologous recombination. We think that the fold-back structure forces the repeat sequences to come into close proximity and therefore leads to strand exchange. Although triplex-induced recombination has been well documented, our results for the first time directly establish the potential of a tetraplex structure to induce recA-independent homologous recombination in vivo. This finding might have a significant implication for site-directed gene deletion in the context of the correction of genetic defects.  相似文献   

15.
Retroviral recombination is thought to play an important role in the generation of immune escape and multiple drug resistance by shuffling pre-existing mutations in the viral population. Current estimates of HIV-1 recombination rates are derived from measurements within reporter gene sequences or genetically divergent HIV sequences. These measurements do not mimic the recombination occurring in vivo, between closely related genomes. Additionally, the methods used to measure recombination make a variety of assumptions about the underlying process, and often fail to account adequately for issues such as co-infection of cells or the possibility of multiple template switches between recombination sites. We have developed a HIV-1 marker system by making a small number of codon modifications in gag which allow recombination to be measured over various lengths between closely related viral genomes. We have developed statistical tools to measure recombination rates that can compensate for the possibility of multiple template switches. Our results show that when multiple template switches are ignored the error is substantial, particularly when recombination rates are high, or the genomic distance is large. We demonstrate that this system is applicable to other studies to accurately measure the recombination rate and show that recombination does not occur randomly within the HIV genome.  相似文献   

16.
X Cui  J Gerwin  W Navidi  H Li  M Kuehn  N Arnheim 《Genomics》1992,13(3):713-717
We describe a general method of determining the recombination fraction between a polymorphic locus and the centromere in any species where single oocytes can be obtained. After removal of the first polar body, each oocyte is analyzed by PCR. The frequency of oocytes heterozygous at the polymorphic locus is used to estimate the recombination fraction. We estimate a recombination fraction of 0.15 between the mouse major histocompatibility complex (H-2) and the centromere of chromosome 17.  相似文献   

17.
Mitotic recombination is increased when cells are treated with a variety of physical and chemical agents that cause damage to their DNA. We show here, using Saccharomyces cerevisiae strains that carry marked Ty elements, that recombination between members of this family of retrotransposons is not increased by UV irradiation or by treatment with the radiomimetic drug methyl methanesulfonate. Both ectopic recombination and mutation events were elevated by these agents for non-Ty sequences in the same strain. We discuss possible mechanisms that can prevent the induction of recombination between Ty elements.  相似文献   

18.
Bacteriophage P1 contains a site-specific recombination system consisting of a site, loxP, and a recombinase protein Cre. We have shown that with purified Cre protein we can carry out recombination between two loxP sites in vitro. When that recombination occurs between two sites in direct orientation on the same DNA molecule, we observed the production of free and catenated circular molecules. In this paper we show that recombination between sites in opposite orientation leads to both knotted and unknotted circular products. We also demonstrate that the production of catenanes and knots is influenced by two factors: (1) supercoiling in the DNA substrate, supercoiled DNA substrates yield significantly more catenated and knotted products than nicked circular substrates; and (2) mutations in the loxP site, a class of mutations have been isolated that carry out recombination but result in a distribution of products in which the ratio of catenanes to free circles is increased over that observed with a wild-type site. A more detailed analysis of the products from recombination between wild-type sites indicates: (1) that the catenanes or knots produced by recombination are both simple and complex; (2) that the ratio of free products to catenanes is independent of the distance between the two directly repeated loxP sites; and (3) that for DNA substrates with four loxP sites significant recombination between non-adjacent sites occurs to give free circular products. These observations provide insights into how two loxP sites are brought together during recombination.  相似文献   

19.
M. J. Mahan  J. R. Roth 《Genetics》1989,121(3):433-443
The role of recBC functions has been tested for three types of chromosomal recombination events: (1) recombination between direct repeats to generate a deletion, (2) recombination between a small circular fragment and the chromosome, and (3) recombination between inversely oriented repeats to form an inversion. Deletion formation by recombination between direct repeats, which does not require a fully reciprocal exchange, is independent of recBC function. Circle integration and inversion formation are both stimulated by the recBC function; these events require full reciprocality. The results suggest that half-reciprocal exchanges can occur without recBC, but recBC functions greatly stimulate completion of a fully reciprocal exchange. We propose that chromosomal recombination is a two-step process, and recBC functions are primarily required for the second step.  相似文献   

20.
We have previously shown that purified T4 DNA topoisomerase promotes illegitimate recombination between two lambda DNA molecules, or between lambda and plasmid DNA in vitro (Ikeda, H. (1986) Proc. Natl. Acad. Sci. U. S. A. 83, 922-926). Since the recombinant DNA contains a duplication or deletion, it is inferred that the cross-overs take place between nonhomologous sequences of lambda DNA. In this paper, we have examined the sequences of the recombination junctions produced by the recombination between two lambda DNA molecules mediated by T4 DNA topoisomerase. We have shown that there is either no homology or there are 1-5-base pair homologies between the parental DNAs in seven combinations of lambda recombination sites, indicating that homology is not essential for the recombination. Next, we have shown an association of the recombination sites with the topoisomerase cleavage sites, indicating that a capacity of the topoisomerase to make a transient double-stranded break in DNA plays a role in the illegitimate recombination. A consensus sequence for T4 topoisomerase cleavage sites, RNAY decreases NNNNRTNY, was deduced. The cleavage experiment showed that T4 topoisomerase-mediated cleavage takes place in a 4-base pair staggered fashion and produces 5'-protruding ends.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号