首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Differences in cell morphology, concanavalin A-induced receptor redistributions, and the cooperativity of the inhibition of 5'-nucleotidase (AMPase) by concanavalin A (Con A) have been investigated in ascites sublines of the 13762 rat mammary adenocarcinoma cells treated with microfilament- and microtubule-perturbing drugs. By scanning electron microscopy MAT-C1 cells exhibit a highly irregular surface, covered with microvilli extending as branched structures from the cell body. MAT-A, MAT-B, and MAT-B1 cells have a more normal appearance, with unbranched microvilli, ruffles, ridges, and blebs associated closely with the cell body. MAT-C cells have an intermediate morphology. Treatment of MAT-A, MAT-B, or MAT-B1 cells with Con A causes rapid redistribution of Con A receptors. Both cytochalasins and colchicine cause alternations in the receptor redistributions. Receptors on MAT-C1 cells are highly resistant to redistribution, even in the presence of cytoskeletal perturbant drugs. The cooperativity of the inhibition of AMPase by Con A was investigated in MAT-A and MAT-C1 cells. Untreated cells exhibit no cooperativity. If either subline is treated with colchicine, cytochalasin B or D, or dibucaine, cooperativity is observed. Lumicolchicine has no effect. Theophylline or dibutyryl cyclic AMP prevents the effects of either colchicine or cytochalasin. The concentration required for half-maximal induction of cooperativity is 0.3--0.4 microM for both colchicine and cytochalasin D, which is in the appropriate range for specific microtubule and microfilament disruptions. The effectiveness of the cytochalasins (E greater than D greater than B) is consistent with their known effects on microfilaments. No direct correlation was observed between the induction of cooperativity and drug-induced changes in Con A receptor redistribution or cell morphology. The morphology of MAT-A cells is grossly altered by cytochalasins or dibucaine and somewhat less by colchicine. MAT-C1 cells exhibit more minor alterations in morphology as a result of these drug treatments. The results of this study indicate that the inhibition of AMPase, which is a Con A receptor, is a different process from the redistribution of the bulk of the Con A receptors, possibly short range membrane interactions rather than global effects on the cell.  相似文献   

2.
Both purified and membrane-bound 5'-nucleotidases (EC 3.1,3.5) from guinea pig skeletal muscle and bull seminal plasma are inhibited by Concanavalin A (Con A). 5'-Nucleotidase purified from skeletal muscle is inhibited by Con A by an apparent uncompetitive process (K'i = 160 nM), while the lectin inhibits the particulate enzyme by an apparent non-competitive process (Ki = K'i = 50 nM). 5'-Nucleotidase purified from bull seminal plasma is inhibited by Con A by an apparent non-competitive process (K'i = Ki = 270 nM), while the membrane-bound enzyme is subjected to a mixed type inhibition by the lectin (K'i greater than Ki; 30 and 14 nM, respectively). The enzyme purified from skeletal muscle exhibits a significant cooperativity in the interaction with Con A. The inhibition of bull seminal plasma particulate 5'-nucleotidase brought about by Con A is not completely reversed by addition of alpha-methyl-D-mannoside.  相似文献   

3.
J Dornand  C Réminiac  J C Mani 《Biochimie》1977,59(4):425-432
The 5'-nucleotidase properties of isolated lymphocyte plasma membranes from young pig mesenteric nodes are described; nucleosides-5'-monophosphates are the substrates of this specific enzyme. Concanavalin A inhibits this enzyme; on the same membranes this mitogen does not affect alkaline phosphatase and activates the membrane bound (Ca2+) ATPase. The 5'-nucleotidase inhibition is due to a specific interaction of Con A with carbohydrate groups of the membrane; its high positive cooperativity suggests that the lectin promotes reorganization of the membrane bound 5'-nucleotidase. Solubilization of the 5'-nucleotidase does not prevent the effect of Con A and the solubilized enzyme is firmly bound by Con A-Sepharose 4B; these results suggest that Con A inhibits the enzyme by a direct interaction and that 5'-nucleotidase can be considered as an eventual receptor for the lectin.  相似文献   

4.
Preincubation of guinea pig peritoneal macrophages with concanavalin A (Con A) markedly enhanced the accumulation of 3′,5′-cyclic-adenosine monophosphate (cAMP) in response to the adenylate cyclase (AC) stimulators prostaglandin E1 (PGE1) and isoproterenol (IP). Basal cAMP levels were not altered. Maximal enhancement of cAMP accumulation was induced by preincubation with 50–100 μg/ml Con A for 10 min at 37 °C. Con A-induced facilitation of macrophage responsiveness was prevented by α-methyl-d-mannoside (αMM). No facilitation was induced by the divalent derivative, succinyl-Con A or by Con A immobilized on Sepharose beads. Con A-induced facilitation developed normally in macrophages treated with the microfilament blocking agent, cytochalasin B. The responsiveness of macrophages to PGE1 and IP was also augmented by phytohemagglutinin (PHA) but wheat germ agglutinin (WGA), soy bean agglutinin (SBA), pokeweed mitogen (PWM), and Lotus tetragonolobus lectin (LL) showed no enhancing effect. The effect of Con A on cAMP levels was the result of augmented cAMP synthesis and not of reduced degradation or a block in cAMP egress from the cells. Lectin-induced facilitation of AC stimulation could be mediated via one of the following mechanisms: (i) induction of receptor clustering; (ii) causing a conformational change in the receptors; (iii) inhibition of negative cooperativity; (iv) causing an increase in membrane fluidity; (v) disruption of microtubules by acting as a Ca2+ ionophore; or (vi) inactivation of a sugar-containing inhibitor of AC.  相似文献   

5.
M Lüscher-Mattli 《Biopolymers》1987,26(9):1509-1526
The nonspecific interaction of the mitogenic lectin Concanavalin A (Con A) with glycosyl-free liposomes of various composition has been investigated by microcalorimetric titration measurements. The results obtained show the following features of main interest: (1) the affinity constants (Ka) of the interaction of Con A with liposomal bilayers are in the order of magnitude 105–106M?1. The reaction enthalpies (ΔH) are positive, and small (approximately 0.1 KJ mol?1 lipid), compared to the free energy terms (?ΔG = 30–40 KJ mol?1 lipid). All lectin–lipid interactions are strongly entropy-controlled (ΔH/TΔS < 1.0). These thermodynamic features are characteristic for hydrophobic interaction processes. (2) The liposomal head-group charge does not significantly affect the lipid-affinity of Con A. Electrostatic forces thus appear to play a minor role in lectin–lipid interactions. (3) The lipid affinity of Con A is sensitive to the fluidity of the liposomal bilayers, increasing with increasing fluidity. Below the gel to liquid-crystal phase transition temperature, the lectin binding to liposomal bilayers is inhibited. (4) The binding isotherms, corresponding to the interaction of Con A with liposomes, composed of tightly packed, saturated phospholipids, exhibit pronounced positive cooperativity. This phenomenon is absent in the binding curves, corresponding to the interaction of Con A with more fluid liposomal bilayers. (5) The Con A specific inhibitor α-D -methylmannopyranoside (50 mM) drastically increases the molar reaction enthalpy. The Ka term is significantly reduced in presence of the inhibitor sugar. Urea induces analogous changes in the thermodynamic parameters of the lectin–lipid interaction. The effects of α-D -methylmannopyranoside are thus not Con A specific, but are attributable to solvent effects. (6) It was shown that the binding of one Con A molecule affects a large number (approximately 1000) of phospholipid molecules in the liposomal bilayer. (7) The affinity constants (Ka) of the interaction of Con A with glycosyl-free lipids are smaller by a factor of approximately 10, compared to the Ka terms, reported for Con A binding to biological membranes. The presence of glycosidic receptor groups thus controls the specificity of lectin–membrane interactions, whereas the nonspecific lectin–lipid interactions appear to represent the main driving force for the strong attachment of the lectin to membrane surfaces.  相似文献   

6.
Inhibition of purified or membrane-bound 5′nucleotidase by various lectins was studied in lymphocytes from pig mesenteric lymph nodes. Con A or Lens culinaris lectin LcH inhibited (75 %) purified 5′nucleotidase by a non-competitive process without cooperativity. Inhibition by these lectins of 5′ nucleotidase activity in whole lymphocytes, plasma membranes (untreated or solubilized) and LcH-receptor fraction displayed high positive cooperativity, reached higher level (90 %) and was of mixed type. An interaction between lectin receptors and 5′nucleotidase accounted for these differences. Wheat germ agglutinin (WGA) and divalent Con A which are not mitogenic for T lymphocytes had no effect on 5′nucleotidase; pokeweed mitogen (PWM), mitogen of T and B cells, was not inhibitor. When membrane proteins were cross-linked by glutaraldehyde, Con A inhibition of whole lymphocyte 5′nucleotidase presented the same properties as the purified enzyme. Possible correlation between 5′nucleotidase inhibition and lymphocyte stimulation is discussed.  相似文献   

7.
The effects of the jackbean globulin Concanaalin A (Con A) on the distribution of radioactive 51Cr-labeled lymph node cells was studied in CBA mice. Lymph node cells treated in vitro with Con A in subagglutinating noncytotoxic doses were unable to “home” to the lymph nodes of syngeneic recipients after intraenous injection. The effect was almost immediate and seemed unrelated to mitogenesis. The inhibitory effect of Con A on lymphocyte migration could be partially reersed by alpha-methyl mannoside; the degree of migratory impairment was related to the amount of Con A bound to the lymphocyte surface at the time of transfer. The membrane site at which Con A binds to the lymphocytes is similar to that which is bound by heterologous antilymphocyte serum but is probably distinct from the theta antigenic site. These data lend support to the hypothesis that surface lymphocyte carbohydrate determinants are involved in the specific lymphocyte “homing” receptor.  相似文献   

8.
The Concanavalin A (Con A) binding capacity of plasma membranes isolated from meristematic and mature regions of four-day-old soybean (Glycine max L. Merr. cv. Wells) roots was compared. Con A binding was studied using a radiochemical assay with tritiated (3H)-Con A and by an electron microscope technique using Con A-ferritin (Con A-F). In both cases, plasma membranes isolated from meristematic tissue bound significantly more Con A than did corresponding membranes from mature tissue. The relative difference in reactivity, as determined by the two procedures, was approximately 49% (3H-Con A) and 46% (Con A-F). In contrast, Km values, determined from 3H-Con A binding curves, were approximately the same, indicating that receptor sites on plasma membranes from both sources were qualitatively similar.  相似文献   

9.
The autoradiographic analysis of the localization of [3H]adenosine-labeled cells exposed to concanavalin A (Con A) in vitro has confirmed that the altered migration of Con A-treated lymphocytes is a consequence of their slower rate of migration and delay in normal areas of traffic (5, 6). The mechanisms through which Con A alters cell migration were further investigated by studying the effects of several derivatives of Con A on the distribution of 51Cr-labeled lymph node cells. The results obtained show that the monomeric and dimeric forms of Con A were unable to modify cell traffic, a condition that was partially reversed when succinyl Con A-treated cells were exposed to divalent antibodies to Con A. This suggests that Con A may alter lymphocyte recirculation by actively modifying the membrane fluidity or the surface lateral transport of the lymphocyte. Whatever the exact mechanisms responsible for the altered migration are, they probably involve complex active processes that can be related to the heterogeneity of Con A receptors, the existence of subsets of cells with different reactivities to the lectin, or simply the result of a passive phenomenon dependent on the presence of Con A on the cell surface.  相似文献   

10.
Lines of Chinese hamster ovary cells resistant to the lectins concanavalin A (Con A) and phytohemagglutinin-P (PHA-P) have been isolated and characterized. Lines were isolated by a stepwise, a single-step, or a cycling single-step procedure, from both mutagen-treated and untreated cultures. The resistant lines showed a higher efficiency of colony formation in the presence of the appropriate lectin than did the wild-type parental line. The cell lines resistant to Con A did not exhibit any detectable cross resistance to PHA-P, nor did the PHA-resistant cells exhibit cross resistance to Con A. The toxicity of Con A from the wild-type and Con A-resistant lines was reduced in the presence of methyl α-D-glucopyranoside; this effect was not seen with the PHA-resistant line. Using 125I-labeled Con A, it was found that Con A was bound preferentially to the surface of intact cells, and that the amount of labeled Con A bound to intact cells was similar for the wild-type and lectin-resistant lines. The Con A-resistant lines were found to be more susceptible to the toxic effects of a number of different compounds, including cyclic AMP and its dibutyryl derivative, sodium butyrate, high concentrations of glucose, phenethyl alcohol, phenol, ouabain, and testosterone. It appears that, in these lines, acquisition of resistance to Con A gave rise to pleiotropic effects which were detected by changes in the sensitivity of the cells to a variety of agents.  相似文献   

11.
The in vitro effects of 2-mercaptoethanol (2-ME), macrophages (MØ), and concanavalin A (Con A) on the proliferation of normal spleen cells (NSC), MØ-depleted spleen cells (DSC), T cells, T-cell subpopulations, and B cells were assessed by [3H]thymidine incorporation. 2-ME alone was consistently shown not to be mitogenic for purified T cells; however, 2-ME enhanced the early (Days 1 and 2) Con A (2 μg/ml)-induced response of NSC, DSC, and T-cell preparations, but depressed the late response (Days 4 and 5). 2-ME alone was mitogenic for purified B-cells, as reported previously; and the 2-ME-induced B-cell response was inhibited by Con A. Preincubation of T cells with 2-ME was sufficient for enhanced Con A responsiveness; however, if 2-ME was added 24 hr after the initiation of culture, no alteration of the Con A-induced response was observed. Ly-2,3+ T cells were unresponsive to Con A (0.3–20 μg/ml), but the addition of 2-ME or peritoneal cells enhanced the Con A responsiveness of Ly-2,3+ T cells over 200-fold. Ly-1+ T cells responded with a similar doseresponse and kinetic profile as unselected T cells. Although Ly-1+ T cells responded to Con A, unlike Ly-2, 3+ T cells, extensive removal of MØ significantly reduced the Con A-induced responsiveness of the Ly-1+ T cells. The reactivities of Ly-1+ and Ly-2,3+ DSC could be reconstituted by the addition of MØ or 2-ME; however, the kinetic response of Ly-1+ T cells peaked on Day 2–3, and Ly-2,3+ T cells had a delayed response which peaked on Day 4–5. The results indicated that (i) 2-ME and/or MØ accelerate the response kinetics of T-cells to Con A; (ii) T-cell subpopulations have differential requirements for MØ and/or 2-ME in the response to Con A; (iii) T-cell subpopulations exhibit differential dose responsiveness to Con A; and (iiii) 2-ME alters Con A responsiveness by a direct effect on T cells.  相似文献   

12.
Tertiary amine local anesthetics (dibucaine, Tetracaine, procaine, etc.) modify cell morphology, concanavalin A (Con A)-mediated agglutinability and redistribution of Con A receptors. Con A agglutination of untransformed mouse 3T3 cells was enhanced at low concentrations of local anesthetics, and the dynamics of fluorescent-Con A indicated that ligand-induced clustering was increased in the presence of the drugs. In contast, these drugs inhibited Con A-induced receptor capping on mouse spleen cells. These effects can be duplicated by combinations of vinblastine (or colchicine) and cytochalasin B suggesting that local anesthetics act on microtubule cell surface receptor mobility and distribution. It is proposed that tertiary amine local anesthetics displace plasma membrane-bond Ca2+, resulting in disengagement of microfilament systems from the plasma membrane and increased cellular Ca2+ concentration to levels which disrupt microtubular organization. The possible involvement of cellular Ca2+ in cytoskeletal destruction by local anesthetics was investigated utilizing Ca2+-specific ionophores A23187 and X537A. In media containing Ca2+ and cytochalasin B these ionophores caused effects similar to tertiary amine local anesthetics.  相似文献   

13.
Culturing of chick embryo fibroblasts in the presence of colchicine or cytochalasin B with and without concanavalin A (Con A) demonstrated that colchicine induces greater neosynthesis of endocellular type I collagen, whereas cytochalasin B boosts secretion. The effects are modified by the addition of Con A, which increases α2more than a1 chain production.3H-thymidine incorporation is unaffected by cytochalasin B, but stimulated by colchicine. Con A neutralizes the stimulatory action of colchicine. It would therefore seem that Con A exerts transmembrane control of effects induced by colchicine and cytochalasin B by binding to cell surface receptors and so triggering rearrangement of the cytoskeleton.  相似文献   

14.
Con A induced dorsal differentiation in the ventral mesoderm of Cynops gastrula embryo. This process apparently requires a certain amount of Con A to be internalized as supported by the following evidence: 1) Oligomannose-type oligosaccharide, a potent inhibitor of Con A, considerably inhibited dorsalization of ventral mesoderm by Con A. The incorporation of 125I-Con A into the ventral mesoderm was greatly inhibited by this sugar. 2) Sepharose-immobilized Con A did not dorsalize the ventral mesoderm. Con A-induced dorsalization was found to be concentration-dependent. Microautoradiograms of 125I-Con A-treated ventral mesoderm suggest that the target site (some receptor molecules) of Con A exists inside the cell. Con A is the first pure substance reported to mimic the two properties of the organizer—neural induction of the competent ectoderm and dorsalization of the ventral mesoderm. In neural induction, Con A acts on the cell surface, while Con A apparently needs to be internalized to trigger dorsal differentiation. Interestingly, Con A-dorsalized ventral mesoderm acquired the neural inducing function of the organizer within the early phase of dorsalization.  相似文献   

15.
Effects of concanavalin A (Con A) were tested in chick embryos explanted at stages 4–7 and cultured for 24 hr. Con A (12–24 μg/ml) blocked neural tube formation by inhibiting interkinetic nuclear migration, irrespective of the stage at explanation. Somites, although less numerous than controls, were almost normal in appearance. Blastodermal expansion, heart development, and blood island formation usually were unaffected. Light microscopic and autoradiographic studies showed that the application of Con A (16 μg/ml or lower) caused no obvious variations in cell morphology, mitotic activity, and uptake of [3H]thymidine and [3H]uridine. The grafting experiments showed that Con A (16 μg/ml) strongly inhibited the differentiation of Hensen's node grafts, but not their neural inducing capacity. Furthermore, the inhibitory effect of Con A was reversible, i.e., embryos retained the ability to recover from sublethal effects of Con A when, after 4–5 hr of treatment, subcultured on plain nutrient medium.  相似文献   

16.
Concanavalin A (Con A) affected sperm-egg interactions of Arbacia punctulata and Strongylocentrotus purpuratus by inhibiting insemination at minimally saturating sperm concentrations. However, this inhibition was overcome by increasing the sperm density. Sperm concentrations (106/ml) yielding 100% fertilization of control preparations resulted in only 72% insemination of Con A-treated ova (104/ml). Although a cortical granule reaction occurred in fertilized, Con A-treated eggs, the distance the fertilization membrane separated from the zygote's surface was not as great as observed in controls. These results may be the basis for previous reports of Con A inhibiting fertilization in sea urchins.  相似文献   

17.
We have described in the first paper the coupling betweencytosolic Giα and cytosolic PLC activity in a cell free preparation. In order to establish the functional significance of the cytosolic Giα coupled soluble PLC, we examined the effects of Dex, NaF, and trifluopeerizine (TEP) on concanavalin A(Con A)-induced PI-turnover in intact slenocytes and, in parallel, on soluble PLC activity in cytosol preparations. Vytosolic PLC activity was measured with [3H]PIP and [3H]PIP2 as substrates. (1) The con A-induced increase (2–4 fold) in Pl-turnover in intact splenocytes was paralleled by an 1.2–5-fold increase in soluble PLC activity in vitro. Con A administration also increased cytosolic Giα immunoreactivity 3–6-fold as expected if cytosolic Giα was coupled to soluble PLC activation. (2) DEX (10?7 M), administered 6 h prior to Con A administration inbited the Con A-induced increase in Pl-turnover in intact splenocytes. This was paralleled by DEX inhibition of the Con A-induced increase in soluble PLC activity measured in vitro and cytosolic Giα imunoreactivity. (3) We have demonstrated in the first paper that NaF and TEP inhibited soluble PLC activity. Here we show that NaF and TFP inhibited the Con A-induced increase in PI-turnover extending the similarities between soluble PLC activity and Con A- Stimulated PLC Activity in intact splenocytes. (4) In order to examine Whether or not the Con A-induced PLC activity and Con A-stimulated PLC activity in intact splenocytes. (4) In order to examine Whether or not the Con A-induced PLC was similar to PLCγ, we measured PI-turnover induced by Con A or BaVO3 in combination with DEX and PMA. Whereas the Con A-induced PI-turnover was significantly inhibited (40–60%) by DEX, the NaVO3 -induced PI-turnover was not affected by DEX. The Con A-induced PI-turnover was not affected by PMA (50nM), But the NaVO3-induced Pi-turnover was increased over 2-fold PMA (50nM), suggesting that the Con A-induced PLC in intact splenocytes is different from NaVO3-induced PLC. Based on these results a model for the sequential activation of substrate-specific PLCs in splenocyte by mitogen is presented.  相似文献   

18.
A significant lag phase was observed in the accumulation of product for the reaction catalyzed by pyruvate decarboxylase (PDC) purified from mature maize kernels. The effects of pH, pyruvate, potassium chloride, PDC concentration, and Mg2+-thiamine pyrophosphate upon this lag and upon the observed cooperativity were investigated. PDC preincubated with Mg2+-thiamine pyrophosphate for six days had Michaelis-Menten kinetics, a Hill number of 1, and no apparent lag phase. The degree of saturation of PDC with Mg2+-thiamine pyrophosphate appears to have a central role in controlling the lag phase and the degree of cooperativity.  相似文献   

19.
The plant lectin concanavalin A (Con A) specifically inactivates the 5′ -nucleotidase of a plasma membrane-enriched fraction from lactating mammary gland. The lectin also causes an activation of the membrane Mg++ -ATPase, but does not affect galactosyltransferase or alkaline phosphatase. The enzyme perturbations are prevented by α-methylmannoside, an inhibitor of Con A binding, indicating that specific binding to carbohydrate structures rather than nonspecific protein-protein interaction is involved. Solubilization of the 5′ -nucleotidase in detergents (0.2% Triton X-100 or 1% deoxycholate) does not prevent Con A inactivation, indicating that incorporation into the membrane structure is not a requirement for the Con A effect. The results suggest that Con A inactivates the 5′ -nucleotidase by a direct interaction with the enzyme and that this enzyme is a Con A receptor site on the surface of mammary cells.  相似文献   

20.
Concanavalin A (Con A), wheat germ agglutinin (WGA), and Ricinus communis agglutinin (RCA) bound with either 125I, fluorescent dyes, or fluorescent polymeric microspheres were used to quantitate and visualize the distribution of lectin binding sites on mouse neuroblastoma cells. As viewed by fluorescent light and scanning electron microscopy, over 107 binding sites for Con A, WGA, and RCA appeared to be distributed randomly over the surface of differentiated and undifferentiated cells. An energy-dependent redistribution of labeled sites into a central spot occurred when the cells were labeled with a saturating dose of fluorescent lectin and maintained at 37°C for 60 min. Reversible labeling using appropriate saccharide inhibitors indicated that the labeled sites had undergone endocytosis by the cell. A difference in the mode of redistribution of WGA or RCA and Con A binding sites was observed in double labeling experiments. When less than 10% of the WGA or RCA lectin binding sites were labeled, only these labeled sites appeared to be removed from the cell surface. In contrast, when less than 10% of the Con A sites were labeled, both labeled and unlabeled Con A binding sites were removed from the cell surface. Cytochalasin B uncoupled the coordinate redistribution of labeled and unlabeled Con A sites, suggesting the involvement of microfilaments. Finally, double labeling experiments employing fluorescein-tagged Con A and rhodamine-tagged WGA indicate that most Con A and WGA binding sites reside on different membrane components and redistribute independenty of each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号