首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
In vitro dynamic pressure measurements in the healthy and pathologically altered knee joint help to improve our understanding of the loading pattern on femorotibial surfaces. The aim of the study was to evaluate a piezoresistive pressure measuring system. A human cadaveric knee was mounted in a material-testing machine (Bionix 858) using a specially designed knee-holding device. Axial loading of the knee, flexed at 20o, at 500 N, 1000N and 1500 N was then carried out. For the static investigations, the piezoresistive measuring system (Tekscan), was compared with the FUJI measuring system. In addition, dynamic measurements were also performed with the Tekscan System. With the exception of the lateral compartment at a load of 1500 N, no differences in maximum pressures were observed between the two systems. Nor were there any differences with regard to contact surfaces, either in the medial or lateral compartment (p > 0.05). However, the reproducibility of the data was significantly higher with the Tekscan System (p < 0.01). Dynamic pressure measurements obtained with the knee flexed 20 to 90o showed that the lateral contact area shifted from anterior to posterior, while the medial contact area remained virtually unchanged. The Tekscan System proved to be more reliable than the FUJI System, and permits simultaneous measurements in both compartments. The Tekscan System is suitable for dynamic measurement of the femorotibial joint, and permits measurements to be made under more physiological conditions.  相似文献   

2.
Tomographic measurement techniques offer the opportunity to quantify the degree of homogeneity of particulate suspensions and other multiphase mixtures. Electrical resistance tomography is a relatively simple and inexpensive technique for measuring the distribution of electrical conductivity within multiphase systems. This can provide pertinent information about the physical form, the chemical composition, or the general status of manufacturing. In this contribution, we present recent applications of this technology to processes in pharmaceutical and related application areas. Examples include on-line measurement of solids distribution in stirred tanks and crystallizers, monitoring the performance of an industrial pressure filter, and flow profile and velocity measurements in a physical model of a catalytic reactor. Published: September 30, 2005  相似文献   

3.
There is a growing appreciation for the role of sniffing inthe formation of the olfactory percept. With this in mind, monitoringand measurement of sniffing is an important aspect of olfactoryexperiments. There are several methods for measuring human sniffsconcurrent with odor delivery in olfactory experiments. Here,we set out to compare the temporal sensitivity and power ofthese different methods by applying them all simultaneouslywith an olfactory task. We discuss the advantages and disadvantagesof each method and conclude in recommending the use of a nasalcannula linked to a pressure sensor whenever possible.  相似文献   

4.
Accurate measurements of whole tree water use are needed in many scientific disciplines such as hydrology, ecophysiology, ecology, forestry, agronomy and climatology. Several techniques based on heat dissipation have been developed for this purpose. One of the latest developed techniques is the heat field deformation (HFD) method, which relies on continuous heating and the combination of a symmetrical and an asymmetrical temperature measurement. However, thus far the development of this method has not been fully described in the scientific literature. An understanding of its underlying principles is nevertheless essential to fully exploit the potential of this method as well as to better understand the results. This paper therefore structures the existing, but dispersed, data on the HFD method and explains its evolution from an initial ratio of temperature differences proportional to vapor pressure deficit to a fully operational and practically applicable sap flux density measurement system. It stresses the importance of HFD as a method that is capable of measuring low, high and reverse flows without necessitating zero flow conditions and on several sapwood depths to establish a radial profile. The combination of these features has not been included yet in other heat-based sap flow measurement systems, making the HFD method unique of its kind.  相似文献   

5.
A spherically folded capacitive pressure sensor array is introduced and characterized. By placing the sensor array between the ball and the cavity of artificial joints, the pressure distribution within the joint was recorded with spatial resolution for different size matching between the ball and the cavity, for different directions of loading and for joints with incomplete cavities. The performance of the sensor array is analyzed, possible fields of application as well as its limitations are discussed.  相似文献   

6.
Obesity is associated with increased morbidity and mortality as well as reduced metrics in quality of life. Both environmental and genetic factors are associated with obesity, though the precise underlying mechanisms that contribute to the disease are currently being delineated. Several small animal models of obesity have been developed and are employed in a variety of studies. A critical component to these experiments involves the collection of regional and/or total animal fat content data under varied conditions. Traditional experimental methods available for measuring fat content in small animal models of obesity include invasive (e.g. ex vivo measurement of fat deposits) and non-invasive (e.g. Dual Energy X-ray Absorptiometry (DEXA), or Magnetic Resonance (MR)) protocols, each of which presents relative trade-offs. Current invasive methods for measuring fat content may provide details for organ and region specific fat distribution, but sacrificing the subjects will preclude longitudinal assessments. Conversely, current non-invasive strategies provide limited details for organ and region specific fat distribution, but enable valuable longitudinal assessment. With the advent of dedicated small animal X-ray computed tomography (CT) systems and customized analytical procedures, both organ and region specific analysis of fat distribution and longitudinal profiling may be possible. Recent reports have validated the use of CT for in vivo longitudinal imaging of adiposity in living mice. Here we provide a modified method that allows for fat/total volume measurement, analysis and visualization utilizing the Carestream Molecular Imaging Albira CT system in conjunction with PMOD and Volview software packages.  相似文献   

7.
Measurement of foot pressure distribution for clinical purposes should ideally be made inside the shoe with a shaped insole and raised heel. Pressure measuring platforms cannot do this and transducers inserted inside the shoe can be obtrusive and inaccurate. The main clinical benefit of foot pressure measurement is the assistance it gives to shoe insole design. A shapeable foot pressure measuring device is being developed. The device can be accurately shaped to the contours of the foot and can indicate the pressure distribution over the entire surface of the foot. By adjusting the shape locally, high pressure areas can be relieved and the resulting shape can be used to vacuum-form a shoe insole. The device also has potential for the manufacture of special seating.  相似文献   

8.
Three-dimensional strain fields in a uniform osteotomy gap   总被引:1,自引:0,他引:1  
Stable internal fixation usually results in a unique histological healing pattern which involves direct cortical reconstruction and an absence of periosteal bridging callus. While it has been suggested that longitudinal interfragmentary strain levels control this healing pattern, the complex, multiaxial strain fields in the interfragmentary region are not well understood. Based on an in-vivo study of gap healing in the sheep tibia by Mansmann et al., we used several finite element models of simplified geometry to: explore modeling assumptions on material linearity and deformation kinematics, and examine the strain distribution in a healing fracture gap subjected to known levels of interfragmentary strain. We found that a general nonlinear material, nonlinear geometric analysis is necessary to model an osteotomy gap subjected to a maximum longitudinal strain of 100 percent. The large displacement, large strain conditions which were used in the in-vivo study result in complex, multiaxial strain fields in the gap. Restricting the maximum longitudinal strain to 10 percent allows use of a linear geometric formulation without compromising the numerical results. At this reduced strain level a linear material model can be used to examine the extent of material yielding within a homogeneous osteotomy gap. Severe local strain variations occurred both through the thickness of the gap and radially from the endosteal to periosteal gap surfaces. The bone/gap interface represented a critical plane of high distortional and volumetric change and principal strain magnitudes exceeded the maximum longitudinal strains.  相似文献   

9.
Respiration measurement is applied as a universal tool to determine the activity of biological systems. The measurement techniques are difficult to compare, due to the vast variety of devices and analytical procedures commonly in use. They are used in fields as different as microbiology, gene engineering, toxicology, and industrial process monitoring to observe the physiological activity of living systems in environments as diverse as fermenters, shake flasks, lakes and sewage plants. A method is introduced to determine accuracy, quantitation limit, range and precision of different respiration measurement devices. Corynebacterium glutamicum cultures were used to compare an exhaust gas analyzer (EGA), a RAMOS device (respiration measurement in shake flasks) and a respirometer. With all measuring devices it was possible to determine the general culture characteristics. The EGA and the RAMOS device produced almost identical results. The scatter of the respirometer was noticeably higher. The EGA is the technique of choice, if the reaction volume is high or a short reaction time is required. The possibility to monitor cultures simultaneously makes the RAMOS device an indispensable tool for media and strain development. If online monitoring is not compulsive, the respiration of the investigated microbial system extremely low, or the sample size small, a respirometer is recommended.  相似文献   

10.
Equipment was developed for bedside lung function testing in the newborn using the simultaneous measurement of air flow rate, tidal volume, and esophageal pressure changes as a measure of transpulmonary pressure. The equipment has a number of advantages for the investigation of very low birthweight infants. A flow-through technique was used to eliminate the dead space of the face mask and a very thin micro-tipped catheter permits ready measurement of esophageal pressure. With this equipment, long-term measurements are also possible in oxygen-dependent newborns and the air-tightness of the mask can be monitored continuously. Long-time measurements in neonates are a prerequisite for standardizing the measuring conditions and adapting the duration of the measurement to the variability of the signals, especially in newborn with an irregular pattern of breathing.  相似文献   

11.
Breast compression during X-ray mammography results in improved image quality at a lower radiation dose to the patient, and, as a consequence, the Department of Health recommends that automatic breast compression devices are fitted to mammographic X-ray units. However, the degree of breast compression is not standardized and can vary depending on the size of the patient, the particular mammography X-ray unit and the conditions of its use. A pressure measuring system was used to determine accurately the pressure on the breast. This system takes the form of a fluid-filled neonatal cuff connected to a pressure transducer by a fluid line. The pressure measuring system was calibrated and tested, first without and then with the patients, to assess its pratical feasibility. The elements of the pressure measuring system, the techniques involved in its calibration and its use on patients in the clinical environment are described here. The system has proved to be a quick and simple method of relating the pressure on the breast to the pressure reading of the mammography X-ray unit.  相似文献   

12.
The diagnosis of mild hypertension and the treatment of hypertension require accurate measurement of blood pressure. Blood pressure readings are altered by various factors that influence the patient, the techniques used and the accuracy of the sphygmomanometer. The variability of readings can be reduced if informed patients prepare in advance by emptying their bladder and bowel, by avoiding over-the-counter vasoactive drugs the day of measurement and by avoiding exposure to cold, caffeine consumption, smoking and physical exertion within half an hour before measurement. The use of standardized techniques to measure blood pressure will help to avoid large systematic errors. Poor technique can account for differences in readings of more than 15 mm Hg and ultimately misdiagnosis. Most of the recommended procedures are simple and, when routinely incorporated into clinical practice, require little additional time. The equipment must be appropriate and in good condition. Physicians should have a suitable selection of cuff sizes readily available; the use of the correct cuff size is essential to minimize systematic errors in blood pressure measurement. Semiannual calibration of aneroid sphygmomanometers and annual inspection of mercury sphygmomanometers and blood pressure cuffs are recommended. We review the methods recommended for measuring blood pressure and discuss the factors known to produce large differences in blood pressure readings.  相似文献   

13.
Over the past few years, ultrasonic techniques are increasingly used to determine bubble size distribution in gas–liquid two‐phase systems. However, the development of a precise and efficient measuring system is very challenging because bubbles are dynamic and unstable relative to time and space in a moving fluid, thus hindering an accurate validation of the measuring system. Therefore, this study examined the possibility of using artificial bubbles to establish an ultrasonic measuring system. The main concept for this study involved developing an ultrasound‐based measuring system with the aid of a certain type of artificial bubbles. The developed system was subsequently adapted to the bypass pipeline of a propagator to demonstrate the reliability of this concept. The results indicated that the established system could measure a microbubble size distribution with a root mean squared error of validation that corresponded to 0.1243 % v/v. Additionally, the estimates of real bubble measurement agreed well with the reference method. Thus, this study demonstrated that the developed system could be a potential method to determine bubble size distributions in gas–liquid two‐phase systems.  相似文献   

14.
The linear phenomenological equations giving particle and practical fluxes of a single electrolyte across an ion-selective membrane are stated and interrelated. It is shown that the experimental measurements commonly made in biological and synthetic membrane studies may be used, with minor modification, to obtain the phenomenological transport coefficients and their concentration dependences. It is demonstrated that the electrical properties of a homogeneous membrane may be obtained as functions of the bathing solution concentration by combining fluxes measured under open and short circuit. Attention is paid to the use of radiotracers when measuring ionic fluxes. To obtain all the phenomenological coefficients at least one measurement must be made under a pressure gradient. The experimental difficulties in such measurements are discussed and the merits and demerits of various experiments considered. The problems of measuring potentials and concentrations at the low pressure face of a supported membrane make several mathematically simple approaches experimentally unattractive. The best methods appear to be either the measurement of a succession of “apparent osmotic pressures” under concentration differences sufficiently small that the membrane does not require support or the study of “reverse osmosis”. Sets of equations are given which enable the phenomenological coefficients to be evaluated from convenient experiments. With a stable homogeneous membrane nine coefficients may be obtained thus enabling either the applicability of the reciprocal relations or the applicability of linear theory under the conditions of the experiments to be tested. For a discontinuous system the six independent coefficients may be obtained from experiments in a single membrane cell.  相似文献   

15.
Since the discovery of gating current, electrophysiologists have studied the movement of charged groups within channel proteins by changing potential and measuring the resulting capacitive current. The relation of atomic-scale movements of charged groups to the gating current measured in an external circuit, however, is not obvious. We report here that a general solution to this problem exists in the form of the Ramo-Shockley theorem. For systems with different amounts of atomic detail, we use the theorem to calculate the gating charge produced by movements of protein charges. Even without calculation or simulation, the Ramo-Shockley theorem eliminates a class of interpretations of experimental results. The theorem may also be used at each time step of simulations to compute external current.  相似文献   

16.
The aim of our developments is three-dimensional in vivo recording of those orthodontic force systems inducing tooth movements during treatment with fixed appliances. The concept presented here is the first to permit the forces and torques of these statically multiply undetermined systems to be recorded in vivo. For this purpose the force systems transmitted to the teeth from the archwire are isolated from the respective tooth by means of divisible special-design brackets and introduced into a 3D force torque sensor via a gripping appliance. The sensor is fixed with a purpose-developed device relative to the patient's dental arch. The patient's head is positioned relative to the system by means of a bite fork as well as a forehead and chin support. Electrical measurement of the mechanical quantities is carried out by a six-axis force torque sensor with semiconductor strain gauge elements, an electronical evaluator and a mobile measuring computer (PC). Extensive calibration of the sensor system has shown that the measuring uncertainty of the electrical measuring is less than 2%. Precise spatial fixing of bracket slot and archwire in the therapeutic position is crucial to the measuring accuracy of the system, as even minimum displacements affect the force system to be measured. Movements of the measuring system up to 0.04 mm result from a therapeutic force of 1.5 N. The results of extensive in vitro studies have already demonstrated that the system developed by us is suitable for the specified in vivo measuring function.  相似文献   

17.
Maintaining accurate laboratory measurements over time is crucial for assuring appropriate patient care and disease management. Accurate results over time and location are achieved by standardising measurements and establishing traceability to a reference system. Reference materials are key components of such reference systems and for establishing traceability. Commutability of reference materials is a critical property to ensure they are fit for use.Commutability is defined as the equivalence of the mathematical relationships between the results of different measurement procedures for a reference material and for representative samples from healthy and diseased individuals. This material characteristic is of special importance for measurement procedures that are optimised for measuring analytes directly in patient samples. The commutability of a reference material is measurement procedure specific and its assessment requires special experimental designs.This review explains the importance of commutability and summarises different experimental approaches described in the literature that have been used to assess the commutability of reference materials in clinical chemistry.  相似文献   

18.
通过同时测定葡萄木质部导管液流平均流量和流速,应用变形的哈根-泊萧叶方程,研究了测定葡萄木质部压力梯度的新方法。结果表明,在直径分别为7mm的葡萄茎段和4mm的葡萄叶柄上,用此新方法测得的木质部压力梯度与实际加在其上的压力梯度吻合的很好,说明此新方法可用于连续、实时测定葡萄木质部压力梯度。用此新方法在离体葡萄枝上测定发现,随光照强度增强,其木质部压力梯度成线性正相关增加。  相似文献   

19.
压力室测定根系导水率方法探讨   总被引:16,自引:1,他引:15  
用压力室连续测定了玉米根系长压和降压过程的导水率,结果表明,降压过程湍 得的根系导水率显著大于用升压过程的,并且前者的相关系数大于后者,这种差异是由于这两个过程中质外体途径细胞壁空间充水量不同造成的,开始升压时,由于细胞壁空间含水量低,质外体途径阻力大,导致非结构阻力;随着压力的升高,细胞壁空间含水量增大,质外体途径导度增大,减小甚至可以消除非结构阻力,降压法可以使根系快速复水,消除传统方法因长时间复水所致根结构的改变。建议用降压法测定根系导水率。  相似文献   

20.
Abstract

Arterial tonometry is a widely used non-invasive blood pressure measurement method. In contrast to the cuff-based method, it is possible to obtain a continuous pressure profile with respect to systolic and diastolic pressures using this method. However, due to a requirement of arterial tonometry—that a sensor needs to be placed directly above a blood vessel—placement error is inevitable if the measurement device is only capable of measuring local regions. This study assumed that the plate sensor is flexible, thus reducing the placement error. We investigated the pressure distribution along the wrist surface rather than the local region through the contact simulation between the flexible plate sensor and the wrist. As a result, we concluded that there is a unique pressure distribution for any specific wrist, regardless of the length and position of the plate, and that it is possible to measure the blood pressure using the response at the wrist surface to the pressure inside the radial artery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号