首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 365 毫秒
1.
The tetrameric (H3/H4)2 146 base pair (bp) DNA and hexameric (H3/H4)2(H2A/H2B)1 146 bp DNA subnucleosomal particles have been prepared by depletion of chicken erythrocyte core particles using 3 or 4 M urea, 250 mM sodium chloride, and a cation-exchange resin. The particles have been characterized by cross-linking and sedimentation equilibrium. The structures of the particles, particularly the tetrameric, have been studied by sedimentation velocity, low-angle neutron scattering, circular dichroism, optical melting, and nuclease digestion with DNase I, micrococcal nuclease, and exonuclease III. It is concluded that since the radius of gyration of the DNA in the tetramer particle and its maximum dimension are very close to those of the core particle, no expansion occurs on removal of all the H2A and H2B. Nuclease digestion results indicate that histones H3/H4 in the tetramer particle protect a total of 70 bp of DNA that are centrally located within the 146 bp. Within the 70 bp DNA length, the two terminal regions of 10 bp are, however, not strongly protected from digestion. The optical melting profile of both particles can be resolved into three components and is consistent with the model of histone protection of DNA proposed from nuclease digestion. The structure proposed for the tetrameric histone complex bound to DNA is that of a compact particle containing 1.75 superhelical turns of DNA, in which the H3 and H4 histone location is the same as found for the core particle in chromatin by histone/DNA cross-linking [Shick, V. V., Belyavsky, A. V., Bavykin, S. G., & Mirzabekov, A. D. (1980) J. Mol. Biol. 139, 491-517]. Optical melting of the hexamer particle shows that each (H2A/H2B)1 dimer of the core particle protects about 22 base pairs of DNA.  相似文献   

2.
Rat liver chromatin core particles digested with clostripain yield a structurally well-defined nucleoprotein particle with an octameric core made up of fragmented histone species (designated H'2A, H'2B, H'3 and H'4, respectively) after selective loss of a sequence segment located in the N-terminal region of each core histone. Sequential Edman degradation and carboxypeptidase digestion unambiguously establish that histones H2A, H2B, H3 and H4 are selectively cleaved at the carboxyl side of Arg 11, Lys 20, Arg 26 and Arg 19 respectively and that the C-terminal sequences remain unaffected. Despite the loss of the highly basic N-terminal regions, including approximately 17% of the total amino acids, the characteristic structural organization of the nucleosome core particle appears to be fully retained in the proteolyzed core particle, as judged by physicochemical and biochemical evidence. Binding of spermidine to native and proteolyzed core particles shows that DNA accessibility differs markedly in both structures. As expected the proteolyzed particle, which has lost all the in vivo acetylation sites, is not enzymatically acetylated, in contrast to the native particle. However, proteolyzed histones act as substrates of the acetyltransferase in the absence of DNA, as a consequence of the occurrence of potential acetylation sites in the core histones thus rendered accessible. The possible role of the histone N-terminal regions on chromatin structure and function is discussed in the light of the present observations with the new core particle obtained by clostripain proteolysis.  相似文献   

3.
We have studied the hydrodynamic properties of the complexes formed by interaction of nucleosome core particles with excess histone octamers containing two each of the four core histones. The results are consistent with tight binding of two to three octamers to the exterior of each core particle. The binding is dependent upon the presence of the H3/H4 histone pair: when H3/H4 alone are added to nucleosome core particles, tight binding is observed, but H2A/H2B alone are bound only weakly. We have also examined the properties of the nucleosome core in solutions containing 0·1 m to 0·7 M-NaCl. We show that in this salt range the core particle undergoes some changes in shape, reflected in a 14% increase in the frictional coefficient. Even at the highest salt concentrations used, however, the nucleosome core is still a compact, folded structure.  相似文献   

4.
BACKGROUND: The discovery of histone-like proteins in Archaea urged studies into the possible organization of archaeal genomes in chromatin. Despite recent advances, a variety of structural questions remain unanswered. RESULTS: We have used the atomic force microscope (AFM) with traditional nuclease digestion assays to compare the structure of nucleoprotein complexes reconstituted from tandemly repeated eukaryal nucleosome-positioning sequences and histone octamers, H3/H4 tetramers, and the histone-fold archaeal protein HMf. The data unequivocally show that HMf reconstitutes are indeed organized as chromatin fibers, morphologically indistinguishable from their eukaryal counterparts. The nuclease digestion patterns revealed a clear pattern of protection at regular intervals, again similar to the patterns observed with eukaryal chromatin fibers. In addition, we studied HMf reconstitutes on mononucleosome-sized DNA fragments and observed a great degree of similarity in the internal organization of these particles and those organized by H3/H4 tetramers. A difference in stability was observed at the level of mono-, di-, and triparticles between the HMf particles and canonical octamer-containing nucleosomes. CONCLUSIONS: The in vitro reconstituted HMf-nucleoprotein complexes can be considered as bona fide chromatin structures. The differences in stability at the monoparticle level should be due to structural differences between HMf and core histone H3/H4 tetramers, i.e., to the complete absence in HMf of histone tails beyond the histone fold. We speculate that the existence of core histone tails in eukaryotes may provide a greater stability to nucleosomal particles and also provide the additional ability of chromatin structure to regulate DNA function in eukaryotic cells by posttranslational histone tail modifications.  相似文献   

5.
The preparation of hybrid histone octamers with wheat histone H2A variants replacing chicken H2A in the chicken octamer is described. The fidelity of the reconstituted hybrid octamers was confirmed by dimethyl suberimidate cross-linking. Polyglutamic-acid-mediated assembly of these octamers on long DNA and subsequent micrococcal nuclease (MNase) digestion demonstrated that, whereas chicken octamers protected 167 base-pairs (representing 2 full turns of DNA), hybrid histone octamers containing wheat histone H2A(1) with its 19 amino acid residue C-terminal extension protected an additional 16 base pairs of DNA against nuclease digestion. The protection observed by hybrid histone octamers containing wheat histone H2A(3) with both a 15 residue N-terminal and a 19 residue C-terminal extension was identical with that observed with H2A(1)-containing hybrid histone octamers with only the 19 residue C-terminal extension. These results suggest that the role of the C-terminal extension is to bind to DNA of the "linker" region. The thermal denaturation of chicken and hybrid core particles was identical in 10 mM-Tris.HCl.20 mM-NaCl, 0.1 mM-EDTA, confirming that there was no interaction between the basic C-terminal extension and DNA of the core particle. Denaturation in EDTA, however, showed that hybrid core particles had enhanced stability, suggesting that the known conformational change of core particles at very low ionic strength allows the C-terminal extension to bind to core particle DNA under these conditions. A model accounting for the observed MNase protection is presented.  相似文献   

6.
The interaction of different histone oligomers with nucleosomes has been investigated by using nondenaturing gel electrophoresis. In the presence of 0.2 M NaCl, the addition of the pairs H2A,H2B or H3,H4 or the four core histones to nucleosome core particles produces a decrease in the intensity of the core particle band and the appearance of aggregated material at the top of the gel, indicating that all these histone oligomers are able to associate with nucleosomes. Equivalent results were obtained by using oligonucleosome core particles. Additional electrophoretic results, together with second-dimension analysis of histone composition and fluorescence and solubility studies, indicate that H2A,H2B, H3,H4, and the four core histones can migrate spontaneously from the aggregated nucleosomes containing excess histones to free core DNA. In all cases the estimated yield of histone transfer is very high. Furthermore, the results obtained from electron microscopy, solubility, and supercoiling assays demonstrate the transfer of excess histones from oligonucleosomes to free circular DNA. However, the extent of solubilization obtained in this case is lower than that observed with core DNA as histone acceptor. Our results demonstrate that nucleosome core particles can be formed in 0.2 M NaCl by the following mechanisms: (1) transfer of excess core histones from oligonucleosomes of free DNA, (2) transfer to excess H2A,H2B and H3,H4 associated separately with oligonucleosomes to free DNA, (3) transfer to excess H2A,H2B initially associated with oligonucleosomes to DNA, followed by the reaction of the resulting DNA-(H2A,H2B) complex with oligonucleosomes containing excess H3,H4, and (4) a two-step transfer reaction similar to that indicated in (3), in which excess histones H3,H4 are transferred to DNA before the reaction with oligonucleosomes containing excess H2A,H2B. The possible biological implications of these spontaneous reactions are discussed in the context of the present knowledge of the nucleosome function.  相似文献   

7.
Native, reassociated, and reconstituted core particles from chicken erythrocytes were compared by both biophysical and immunochemical methods. No significant difference between the three types of core particles could be demonstrated by electron microscopy, circular dichroism, or immunochemical analysis with antisera to histone H2B, H2A, and H3. Core particles were also reconstituted with calf thymus non-acetylated H3, H2A, and H2B with either mono-, di-, or tri-acetylated H4 isolated from cuttle -fish testes. The hyperacetylation of H4 did not significantly alter the biophysical characteristics of core particles but it induced several changes in their immunochemical reactivity. Binding to core particles of antibodies specific for H2A, H3, and for the IRGERA (synthetic C-terminal) peptide of H3 was considerably decreased when di- or tri-acetylated H4 was used for reconstitution, whereas binding of H2B antibodies remained the same. Our results suggest that the presence of hyperacetylated H4 within core particles leads to conformational changes that alter the antigenic determinants of several of the histones present at the surface of chromatin subunits. Since histone acetylation is correlated with the open structure of active chromatin, it may become possible to monitor the activity of chromatin by immunochemical methods.  相似文献   

8.
9.
Histone-DNA contacts in the 167 bp 2-turn core particle.   总被引:1,自引:0,他引:1  
The histone-DNA contacts in the 167 bp 2-turn core particle have been compared with those in the 146 bp 1.75-turn core particle by the methodology developed by Mirzabekov and his colleagues. The contacts in the 167 bp 2-turn core particle retain the essential features of those in the 146 bp 1.75-turn core particle but contacts for histones H3 and H2A were found in the 10 bp extension that discriminates the two particles. In addition the contact for histone H2A near the dyad axis was far more pronounced in the case of the 146 bp core particle.  相似文献   

10.
We have reconstructed nucleosomes from a histone octamer (H2A, H2B, H3, H4)2 and DNA 146 b.p. or 2-3 thousands b.p. in length. Comparison by means of DNA-histone cross-links of the primary organization of minimal nucleosomes obtained by reconstruction or isolated from chromatin of chicken erythrocyte nuclei has demonstrated a high similarity in histone location on their DNAs. Simultaneously, there have been observed some variations in the character of interaction for all core histones with DNA on nucleosomes. Thus, the cross-link of histone H4 with DNA of a core particle at H4 sites (65), unlike H4(55) and H4(88) sites, significantly depends on the superstructure of chromatin, ionic strength of solution and the presence of denaturating agents. All these differences are expected to probe the existence of conformational isomers for core particles. (Bracketed is the distance from the histone interaction site with the DNA of the core particle to the DNA 5'-terminus.)  相似文献   

11.
The tails of histone proteins are central players for all chromatin-mediated processes. Whereas the N-terminal histone tails have been studied extensively, little is known about the function of the H2A C-terminus. Here, we show that the H2A C-terminal tail plays a pivotal role in regulating chromatin structure and dynamics. We find that cells expressing C-terminally truncated H2A show increased stress sensitivity. Moreover, both the complete and the partial deletion of the tail result in increased histone exchange kinetics and nucleosome mobility in vivo and in vitro. Importantly, our experiments reveal that the H2A C-terminus is required for efficient nucleosome translocation by ISWI-type chromatin remodelers and acts as a novel recognition module for linker histone H1. Thus, we suggest that the H2A C-terminal tail has a bipartite function: stabilisation of the nucleosomal core particle, as well as mediation of the protein interactions that control chromatin dynamics and conformation.  相似文献   

12.
Recent studies report that the frictional resistance of partially acetylated core particles increases when the number of acetyl groups/particle exceeds 10 (Bode, J., Gomez-Lira, M. M. & Schr?ter, H. (1983) Eur. J. Biochem. 130, 437-445). This was attributed to an opening of the core particle though other explanations, e.g. unwinding of the DNA ends were also suggested. Another possible explanation is that release of the core histone N-terminal domains by acetylation increased the frictional resistance of the particle. Neutron scatter studies have been performed on core particles acetylated to different levels up to 2.4 acetates/H4 molecule. Up to this level of acetylation the neutron scatter data show no evidence for unfolding of the core particle. The fundamental scatter functions for the envelope shape and internal structure are identical to those obtained previously for bulk core particles. The structure that gave the best fit to these fundamental scatter functions was a flat disc of diameter 11-11.5 nm and of thickness 5.5-6 nm with 1.7 +/- 0.2 turns of DNA coiled with a pitch of 3.0 nm around a core of the histone octamer. The data analysis emphasizes the changes in pair distance distribution functions at relatively low contrasts, particularly when the protein is contrast matched and DNA dominates the scatter. Under these conditions there is no evidence for the unwinding of long DNA ends in the hyperacetylated core particles. The distance distribution functions go to zero between 11.5 and 12 nm which gives the maximum chord length in a particle of dimension, 11 nm X 5.5 nm. The distance distribution function for the histone octamer contains 85% of the vectors within the 7.0-nm diameter of the histone core. 15% of the histone vectors lie between 7.0 and 12.0 nm, and these are attributed to the N-terminal domains of the core histones which extend out from the central histone core. Histone vectors extending beyond 7.0 nm are necessary to account for the measured radius of gyration of the histone core of 3.3 nm. A similar value of 3.2 nm is calculated for the recent ellipsoidal shape of 11.0 X 6.5 X 6.5 nm from the crystal structure of the octamer. However, the nucleosome model based on this structure is globular, roughly 11 nm in diameter, which does not accord with the flat disc shape core particle obtained from detailed neutron scatter data nor with the cross-section radii of gyration of the histone and DNA found previously for extended chromatin in solution.  相似文献   

13.
The assembly of hybrid core particles onto long chicken DNA with histone H2B in the chicken histone octamer replaced with either wheat histone H2B(2) or sea urchin sperm histone H2B(1) or H2B(2) is described. All these histone H2B variants have N-terminal extensions of between 18 and 20 amino acids, although only those from sea urchin sperm have S(T)PXX motifs present. Whereas chicken histone octamers protected 167 base pairs (bp) (representing two full turns) of DNA against micrococcal nuclease digestion (Lindsey, G. G., Orgeig, S., Thompson, P., Davies, N., and Maeder, D. L. (1991) J. Mol. Biol. 218, 805-813), all the hybrid histone octamers protected an additional 17-bp DNA against nuclease digestion. This protection was more marked in the case of hybrid octamers containing sea urchin sperm histone H2B variants and similar to that described previously (Lindsey, G. G., Orgeig, S., Thompson, P., Davies, N., and Maeder, D. L. (1991) J. Mol. Biol. 218, 805-813) for hybrid histone octamers containing wheat histone H2A variants all of which also have S(T)PXX motifs present. Continued micrococcal nuclease digestion reduced the length of DNA associated with the core particle via 172-, 162-, and 152-bp intermediates until the 146-bp core particle was obtained. These DNA lengths were approximately 5 bp or half a helical turn longer than those reported previously for stripped chicken chromatin and for core particles containing histone octamers reconstituted using "normal" length histone H2B variants. This protection pattern was also found in stripped sea urchin sperm chromatin, demonstrating that the assembly/digestion methodology reflects the in vivo situation. The interaction between the N-terminal histone H2B extension and DNA of the "linker" region was confirmed by demonstrating that stripped sea urchin sperm chromatin precipitated between 120 and 500 mM NaCl in a manner analogous to unstripped chromatin whereas stripped chicken chromatin did not. Tryptic digestion to remove all the histone tails abolished this precipitation as well as the protection of DNA outside of the 167-bp core particle against nuclease digestion.  相似文献   

14.
The binding of core histone proteins to DNA, measured as a function of [NaCl[ is a reversible process. Dissociation and reassociation occurs in two stages. Between 0.7 and 1.2 M NaCl H2a H2b bind non-cooperatively as an equimolar complex with deltaGo = 1.6 Kcals/mole at 4 degree C and 1.0 M NaCl. Between 1.2 and 2.0 M NaCl H3 and H4 bind cooperatively as an equimolar complex with delta Go = 7.4 Kcal/mole at 4 degree C and 1.0 M NaCl. The proper binding of H2a and H2b requires the presence of bound H3 and H4. Nuclease digestion of the H3-H4 DNA produces a tetramer of H3-H4 bound to fragments of DNA 145, 125 and 104 base pairs long. Thus an H3-H4 tetramer can protect fragments of DNA as long as those found in complete core particles and must therefore span the nucleosome core particle.  相似文献   

15.
In non-denaturing low ionic strength gels, the titration of core DNA with H2A,H2B produces five well-defined bands. Quantitative densitometry and cross-linking experiments indicate that these bands are due to the successive binding of H2A,H2B dimers to core DNA. Only two bands are obtained with DNA-(H3,H4) samples. The slower of these bands is broad and presumably corresponds to two complexes containing one and two H3,H4 tetramers, respectively. In gels of higher ionic strength, DNA-(H2A,H2B) samples produce an ill-defined band, suggesting that the lifetime of the complexes containing H2A,H2B is relatively short. However, the low intensity of the free DNA band observed in these gels indicates that most of the DNA is associated with H2A,H2B. In agreement with this, our results obtained using different techniques (sedimentation, cross-linking, trypsin and nuclease digestions, and thermal denaturation) demonstrate that the association of H2A,H2B with core DNA occurs in free solution in both the absence and presence of NaCl (0.1 to 0.2 M). The low mobilities of DNA-(H2A,H2B) complexes, together with sedimentation and DNase I digestion results, indicate that the DNA in these complexes is not folded into the compact structure found in the core particle. Furthermore, non-denaturing gels have been used to study the dynamic properties of DNA-(H2A,H2B) and DNA-(H3,H4) complexes in 0.2 M-NaCl. Our results show that: (1) H2A,H2B and H3,H4 can associate, respectively, with DNA-(H3,H4) and DNA-(H2A,H2B) to produce complexes containing the four core histones; (2) DNA-(H2A,H2B) and DNA-(H3,H4) are able to transfer histones to free core DNA; (3) an exchange of histone pairs takes place between DNA-(H2A,H2B) and DNA-(H3,H4) and produces complexes with the same histone composition as that of the normal nucleosome core particle; and (4) although both histone pairs can exchange, histones H2A,H2B show a higher tendency than H3,H4 to migrate from one incomplete core particle to another. The complexes produced in these reactions have the same compact structure as reconstituted core particles containing the four core histones. Our kinetic results are consistent with a reaction mechanism in which the transfer of histones involves direct contacts between the reacting complexes. The possible participation of these spontaneous reactions on the mechanism of nucleosome assembly is discussed.  相似文献   

16.
We have digested chicken erythrocyte soluble chromatin, both unstripped and stripped of histones H1 and H5 with either 0.6 M NaCl or DNA-cellulose, with micrococcal nuclease (MNase). Digestion of unstripped chromatin to monomeric particles initially paused at 188 bp DNA; continued digestion resulted in another pause at 177 before the 167 bp chromatosome and 146 bp core particle were obtained. Digestion of stripped chromatin to monomeric particles paused transiently at 177 bp; continued digestion resulted in marked pauses at 167 and 156 before the 146 bp core particle was obtained. These results suggested that 167 bp DNA representing two complete turns are bound to the histone octamer. Histone H1/H5 binds an additional two helical turns of DNA, thereby protecting up to 188 bp DNA against nuclease digestion. Monomeric particles containing 167 bp DNA were isolated from stripped chromatin and found by DNase I digestion to be a homogeneous population with a 10 bp DNA extension to either end relative to the 146 bp core particle. Thermal denaturation and circular dichroism spectroscopy showed stronger histone-DNA interactions and increased DNA winding as the length of DNA attached to the core histone octamer was decreased. Thermal denaturation also showed three classes of histone-DNA interaction: the core particle containing 167 bp DNA had tight binding of ten helical turns of DNA, intermediate binding of two helical turns and looser binding of four helical turns.  相似文献   

17.
We engineered nucleosome core particles (NCPs) with two site-specific cysteine crosslinks that increase the stability of the particle. The first disulfide was introduced between the two copies of H2A via an H2A-N38C point mutation, effectively crosslinking the two H2A/H2B heterodimers together to stabilize the histone octamer against H2A/H2B dimer dissociation. The second crosslink was engineered between an R40C point mutation on the N-terminal tail of H3 and the NCP DNA ends by the introduction of a convertible nucleotide. This crosslink maintains the nucleosome DNA in a fixed translational setting relative to the histone octamer and prevents dilution-driven dissociation. The X-ray crystal structures of NCPs containing the disulfides in isolation and in combination were determined. Both disulfides stabilize the structure of the NCP without disturbing the overall structure. Nucleosomes containing these modifications will be advantageous for biochemical and structural studies as a consequence of their greater resistance to dissociation during high dilution in purification, elevated salt for crystallization and vitrification for cryogenic electron microscopy.  相似文献   

18.
Using immobilized trypsin and an appropriate fractionation procedure, we have been able to prepare, for the first time, nucleosome core particles containing selectively trypsinized histone domains. The particles thus obtained: [(H3T-H4T)2-2(H2AT-H2BT)].DNA; [(H3-H4)2-2(H2AT-H2BT)].DNA; [H3T-H4T)2-2(H2A-H2B)].DNA (where T means trypsinized), together with the non-trypsinized controls have been characterized using the following techniques: analytical ultracentrifugation, circular dichroism, thermal denaturation and DNAse I digestion. The major aim of this study was to analyze the role of the amino-terminal regions (the histone "tails") on the stability of the nucleosome in solution. The data obtained from this analysis clearly show that stability of the nucleosome core particle to dissociation (below a salt concentration of 0.7 M-NaCl) is not affected by the presence or the absence of any of the N-terminal regions of the histones. Furthermore, these histone regions make very little contribution, if any, to the conformational transition that nucleosomes undergo in this range of salt concentrations. They play, however, a very important role in determining the thermal stability of the particle, as reflected in the dramatic alterations exhibited by the melting profiles upon selective removal of these tails by trypsinization. The melting data can be explained by a simple hypothesis that ascribes interaction of H2A/H2B and H3/H4 tails to particular regions of the nucleosomal DNA.  相似文献   

19.
The kinetics of thiol modification of histone H3 from chicken erythrocyte nuclei with the fluorogenic compound N-[p-(2-benzimidazolyl)phenyl]maleimide was determined at pH 5.5 and 2°C. Comparative experiments were performed with H3 in the natural mixture of the other histones (whole histone), assembled in the nucleosomal and in H2a/H2b depleted core particles. Exposure of the H3 thiols in core particles occurs within a rather narrow NaCl concentration range. The transition midpoint is shifted to lower ionic strength with decreasing core particle concentration and with increasing concentration of ethidium bromide added. The results presented permit the following conclusions about the disassembly process of core particles. Release of the H2a/H2b pairs at 0.5–0.7 m NaCl is not directly correlated with an exposure of H3 thiols. Exposure occurs at around 0.1 m NaCl and starts with a rather fast conformational transition of the depleted core followed by histone-DNA dissociation. Comparative experiments exploring the air mediated oxidation of thiols and the reactivity of lysine side chains with fluorescamine illustrate that the thiol exposure is a rather distinct event in core particle disassembly.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号