首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Quantitative analysis of benthic foraminifera is used to characterize the paleoenvironments of the Upper Coniacian-Lower Campanian succession in the Jbil section of north-western Tunisia. Foraminiferal parameters and benthic foraminiferal assemblages show that the studied section includes four distinct paleoenvironmental phases. From oldest to youngest, these are as follows: (1) an interval with a Praebulimina reussi assemblage with infaunal ratios as high as 96.1%. High abundances of P. reussi, reflecting an increase in organic matter flux to the seafloor (meso-to eutrophic) under oxygenated bottom-water conditions. (2) An interval characterized by a Gavelinella costulata assemblage with mixed infaunal/epifaunal foraminifera with higher Fisher's alpha values (ranging from 4 to 15.2), reflecting mesotrophic conditions in an outer shelf environment. (3) An interval with a Gaudryina laevigata assemblage indicative of a middle to outer shelf environment; there is a considerable increase in infaunal agglutinated foraminifera, as well as a relatively abundant and moderately diversified oxic/suboxic foraminifera. (4) The final interval occurs in the lower Campanian (the Globotruncana ventricosa Zone) and includes a Bolivinoides decoratus assemblage reflecting an outer shelf to upper bathyal environment. It contains a higher planktonic percentage and biodiversity with a slight increase in dysoxic species; the mixed infaunal/epifaunal content (57.6 to 73.3%) reflects mesotrophic conditions. Four well-recognized major sea-level falls are matched by the dual signatures of eustatic sea-level changes. These are coincident with the results of this study, which represent the first documentation of these events in Tunisian faunal and paleoenvironmental changes, at the following boundaries: Coniacian/Santonian, intra-Santonian, Santonian/Campanian, and intra-early Campanian.  相似文献   

2.
The objective of this study is a paleobathymetric reconstruction of the depositional environment during the Cretaceous (Aptian-Maastrichtian) on the northern flank of the Eastern Venezuelan Basin. The model is based on the presence of benthic foraminifera in 17 well sections, spread across the paleoslope in a passive margin. Cluster analysis separates five distinct assemblages of foraminifers. The analysis is based on the assumption that the species must occur in 10% or in at least two wells of the area. The R-mode for each well provides clusters of species that are similar in distribution and abundance trends. These clusters together with the diversity and abundance of planktic foraminifers, dinoflagellates, pollen, spores, calcareous nannofossils, and sedimentological data help to delineate the biofacies. The biofacies are distributed in a pattern from the updip position (southwest) to the downdip position (northeast). The shallowest biofacies (0–50 m) is represented by Ammobaculites sp., Haplophragmoides sp., Lituolidae, with abundant terrestrial palynomorphs and dinoflagellates. Abundant species in depths greater than 100 m are Praebulimina carseyae, Epistomina lacunosa, Gavelinella sp., Buliminella sp., and Pullenia cretacea. This biofacies interpretation allows us to establish a paleocoast orientation during the Aptian-Maastrichtian.The establishment of the age-paleobathymetry relationships in this area provides the basis for the stratigraphic reconstruction of the Cretaceous in the Eastern Venezuelan Basin, thus reducing the risk for oil exploration.  相似文献   

3.
In this study we investigate the species composition and spatial distribution patterns of Rose Bengal stained and unstained benthic foraminifera from the central part of the Sunda Shelf in the south-western South China Sea in relation to environmental factors. The uppermost centimetre of the surface sediments (> 150 μm) from 45 sites from inner (60 m) to outer shelf (226 m) water depths revealed 584 species including 443 stained species.The univariate analyses of individual species abundances and community parameters and next canonical correspondence analysis were used to relate the faunal data to a set of measured environmental parameters. Four biofacies recognised on the Sunda Shelf are most strongly correlated to water depth, primary production and sediment type of the habitat. The inner shelf biofacies (CCA cluster A), defined by Ammomassilina alveoliniformis and Asterorotalia pulchella, occurs in fine grained sediments classified as modern terrigenous mud in the region with the highest primary production values. The high-energy inner shelf biofacies (CCA cluster B), defined by Heterolepa dutemplei and Textularia lythostrota, occurs in modern terrigenous sand and silt dominated sediments, northeast from the Natuna Island. The high-energy outer shelf biofacies (CCA cluster C), defined by Cibicidoides pachyderma and Textularia bocki, is sandwiched between assemblages of biofacies D. It occurs in the region characterised by neritic relict sand. In the shallow-waters on the Sunda Shelf the relationship of benthic foraminiferal faunal composition to grain size of sediments indirectly signals the prevailing bottom hydrodynamic conditions. The dominance of the epibenthic foraminifera attached to bigger particles (e.g. Cibicides lobatulus, Planulina arimiensis) and much higher abundances of empty tests suggest greater current velocities northeast of Natuna Island. The outer shelf biofacies (CCA cluster D) is defined by Facetocochlea pulchra and Bulimina marginata. It occurs in an area covered with modern terrigenous silt and mud and is characterised by lower annual primary production, but seasonally influenced by weak upwelling.  相似文献   

4.
Study of Recent abyssal benthic foraminifera from core-top samples in the eastern equatorial Indian Ocean has identified distinctive faunas whose distribution patterns reflect the major hydrographic features of the region. Above 3800 m, Indian Deep Water (IDW) is characterized by a diverse and evenly-distributed biofacies to whichGlobocassidulina subglobosa, Pyrgo spp.,Uvigerina peregrina, andEggerella bradyi are the major contributors.Nuttalides umbonifera andEpistominella exigua are associated with Indian Bottom Water (IBW) below 3800 m. Within the IBW fauna,N. umbonifera andE. exigua are characteristic of two biofacies with independent distribution patterns.Nuttalides umbonifera systematically increases in abundance with increasing water depth. TheE. exigua biofacies reaches its greatest abundance in sediments on the eastern flank of the Ninetyeast Ridge and in the Wharton-Cocos Basin. The hydrographic transition between IDW and IBW coincides with the level of transition from waters supersaturated to waters undersaturated with respect to calcite and with the depth of the lysocline. Carbonate saturation levels, possibly combined with the effects of selective dissolution on the benthic foraminiferal populations, best explain the change in faunas across the IDW/IBW boundary and the bathymetric distribution pattern ofN. umbonifera. The distribution of theE. exigua fauna cannot be explained with this model.Epistominella exigua is associated with the colder, more oxygenated IBW of the Wharton-Cocos Basin. The distribution of this biofacies on the eastern flank of the Ninetyeast Ridge agrees well with the calculated bathymetric position of the northward flowing deep boundary current which aerates the eastern basins of the Indian Ocean.  相似文献   

5.
Bathymetric biodiversity patterns of marine benthic invertebrates and demersal fishes have been identified in the extant fauna of the deep continental margins. Depth zonation is widespread and evident through a transition between shelf and slope fauna from the shelf break to 1000 m, and a transition between slope and abyssal fauna from 2000 to 3000 m; these transitions are characterised by high species turnover. A unimodal pattern of diversity with depth peaks between 1000 and 3000 m, despite the relatively low area represented by these depths. Zonation is thought to result from the colonisation of the deep sea by shallow‐water organisms following multiple mass extinction events throughout the Phanerozoic. The effects of low temperature and high pressure act across hierarchical levels of biological organisation and appear sufficient to limit the distributions of such shallow‐water species. Hydrostatic pressures of bathyal depths have consistently been identified experimentally as the maximum tolerated by shallow‐water and upper bathyal benthic invertebrates at in situ temperatures, and adaptation appears required for passage to deeper water in both benthic invertebrates and demersal fishes. Together, this suggests that a hyperbaric and thermal physiological bottleneck at bathyal depths contributes to bathymetric zonation. The peak of the unimodal diversity–depth pattern typically occurs at these depths even though the area represented by these depths is relatively low. Although it is recognised that, over long evolutionary time scales, shallow‐water diversity patterns are driven by speciation, little consideration has been given to the potential implications for species distribution patterns with depth. Molecular and morphological evidence indicates that cool bathyal waters are the primary site of adaptive radiation in the deep sea, and we hypothesise that bathymetric variation in speciation rates could drive the unimodal diversity–depth pattern over time. Thermal effects on metabolic‐rate‐dependent mutation and on generation times have been proposed to drive differences in speciation rates, which result in modern latitudinal biodiversity patterns over time. Clearly, this thermal mechanism alone cannot explain bathymetric patterns since temperature generally decreases with depth. We hypothesise that demonstrated physiological effects of high hydrostatic pressure and low temperature at bathyal depths, acting on shallow‐water taxa invading the deep sea, may invoke a stress–evolution mechanism by increasing mutagenic activity in germ cells, by inactivating canalisation during embryonic or larval development, by releasing hidden variation or mutagenic activity, or by activating or releasing transposable elements in larvae or adults. In this scenario, increased variation at a physiological bottleneck at bathyal depths results in elevated speciation rate. Adaptation that increases tolerance to high hydrostatic pressure and low temperature allows colonisation of abyssal depths and reduces the stress–evolution response, consequently returning speciation of deeper taxa to the background rate. Over time this mechanism could contribute to the unimodal diversity–depth pattern.  相似文献   

6.
We investigate the combination of environmental factors that influence the distribution patterns of benthic foraminiferal tests (> 63 μm) in a topographically varied region crossed by both the Subtropical and Subantarctic Fronts, south-east of New Zealand. Seafloor sample sites, extending from outer shelf (50 m) to abyssal (5000 m) depths, are bathed by five different water masses, and receive phytodetritus from Subtropical, Subantarctic and Circumpolar surface water masses. Eight mappable associations are recognised by Q-mode cluster analysis of the benthic foraminiferal census data. Similar associations are identified using cluster analysis based solely on the presence or absence of species. Canonical correspondence analysis and a correlation coefficient matrix were used to relate the faunal data to a set of environmental proxies. These show that factors related to water depth (especially decreasing food supply with increasing depth) are the most significant in determining the overall foraminiferal distribution. Other contributing factors include surface water productivity and its seasonality; bottom water ventilation; energetic state of the benthic boundary layer and resulting substrate texture; and bottom water carbonate corrosiveness. Three shallow-water associations (50–700 m), dominated by Cassidulina carinata, Trifarina angulosa, Globocassidulina canalisuturata, Gavelinopsis praegeri, and Bolivina robusta, occur in coarse substrates on the continental shelf, and on the crests and upper slopes of four seamounts under well-oxygenated, high energy regimes, and high food input. Three mid bathyal to upper abyssal associations (500–3300 m), dominated by Alabaminella weddellensis, C. carinata, and Epistominella exigua, occur in biopelagic sandy mud, beneath a region of strongly seasonal food supply, with their composition influenced by total food flux, ventilation (Oxygen Minimum Zone), and bottom current strength. An unusual lower bathyal association (1200–2100 m), dominated by T. angulosa and Ehrenbergina glabra, occurs in a belt of coarser sandy substrate that runs along the crest of the submarine plateaux slopes beneath the strongly-flowing Subantarctic Front-related currents. A deep abyssal association (3500–5000 m), dominated by Nuttallides umbonifer and Globocassidulina subglobosa, occurs on the abyssal plain beneath oligotrophic lower Circumpolar Water south-east of the Subantarctic Front and is strongly influenced by the cold, carbonate-corrosive conditions.  相似文献   

7.
Surface sediment samples taken by ? corer from 45 stations on the Norwegian continental margin and in the Norway Basin have been investigated for their benthic foraminiferal content. Unlike previous studies, the living benthic foraminiferal fauna was differentiated from empty tests comprising the foraminiferal death assemblage. Factor analysis of both the living and dead faunal data reveals six living species assemblages and five corresponding dead assemblages. The additional living assemblage is characterized by the arenaceous speciesCribrostomoides subglobosum that dominates between 1400 and 2000 m water depth, but is rare in the dead faunal data.Trifarina angulosa and, to a lesser extent,Cibicides lobatulus characterize the shallowest foraminiferal assemblage from 200 to 600 m water depth, where it is associated with strong bottom currents and warm, saline Atlantic water of the North Atlantic Drift. On the slope between 600 and 1200 m water depth, theMelonis zaandami Species Assemblage dominates, particularly in areas characterized today by rapid sedimentation of terrigeneous material. Between 1000 and 1400 m depth, where the slope is covered by fine grained, organic-rich, terrigeneous mud, the living foraminiferal assemblage is characterized byCassidulina teretis andPullenia bulloides. Below 1400 m, three foraminiferal assemblages are found:C. subglobosum is found from 1400 to 2000 m,Cibicidoides wuellerstorfi andEpistominella exigua predominantly live from 2000 to 3000 m water depth, and below 3000 m,Oridorsalis umbonatus andTriloculina frigida dominate the fauna.All of theElphidium excavatum tests found in this study and theCassidulina reniforme tests found above 500 m water depth were found to be reworked.Analysis of the sediment grain-size distribution and the organic carbon content in surface samples from the deepest stations suggest that the abundance ofC. wuellerstorfi andE. exigua is positively correlated to relatively coarse (caused by planktic foraminifera) and organic-rich sediments, whereas high frequencies ofO. umbonatus andT. frigida coincide with low organic carbon content. We suggest thatC. wuellerstorfi is adapted to deep-sea environments with relatively high food supply, tolerating relatively low interstitial water oxygen content, whereasO. umbonatus may tolerate lower food supply prefering well-oxygenated interstitial waters.  相似文献   

8.
《Marine Micropaleontology》1988,13(3):193-212
Foraminifera and diatoms have been analyzed from an upper Miocene through Pleistocene(?) sequence of marine sediments exposed on Maria Madre Island, largest of the Trés Marias Islands off the Pacific coast of Mexico. The Neogene stratigraphic sequence exposed on Maria Madre Island includes a mid-Miocene(?) non-marine and/or shallow marine sandstone unconformably overlain by a lower upper Miocene to uppermost Miocene upper to middle bathyal laminated and massive diatomite, mudstone, and siltstone unit. This unit is unconformably overlain by lower Pliocene middle to lower bathyal sandstones and siltstones which, in turn, are unconformably overlain by upper Pliocene through Pleistocene(?) upper bathyal to upper middle bathyal foraminiferal limestones and siltstones. These beds are unconformably capped by Pleistocene terrace deposits. Basement rocks on the island include Cretaceous granite and granodiorite, and Tertiary(?) andesites and rhyolites. The upper Miocene diatomaceous unit contains a low diversity foraminiferal fauna dominated by species of Bolivina indicating low oxygen conditions in the proto-Gulf Maria Madre basin. The diatomaceous unit grades into a mudstone that contains a latest Miocene upper to middle bathyal biofacies characterized by Baggina californica and Uvigerina hootsi along with displaced neritic taxa. An angular unconformity separates the upper Miocene middle bathyal sediments from overlying lower Pliocene siltstones and mudstones that contain a middle to lower bathyal biofacies and abundant planktonic species including Neogloboquadrina acostaensis and Pulleniatina primalis indicating an early Pliocene age. Significantly, this Pliocene unit contains common occurrences of benthic species restricted to Miocene sediments in California including Bulimina uvigerinaformis. Pliocene to Pleistocene(?) foraminiferal limestones and siltstones characterize submarine bank accumulations formed during uplift of the Trés Marias Island area, and include abundant planktonic foraminifera such as Pulleniatina obliquiloculata and Neogloboquadrina duterteri. Common benthic foraminifera in this unit are indicative of upper bathyal water depths. The Neogene depositional history recorded on Maria Madre Island involves an early late Miocene subsidence event marking formation of the Trés Marias Basin with relatively undiluted diatomaceous sediment deposited in a low oxygen setting. Subsidence and deepening of the basin continued into the early Pliocene along with rapid deposition of terrigenous clastics. Uplift of the basinal sequence began in late Pliocene time accompanied by deposition of upper Pliocene-Pleistocene foraminiferal limestones on a rising submarine bank. Continued episodic uplift of the Neogene deposits brought the island above sea level by late Pleistocene time.  相似文献   

9.
Deep-sea benthic foraminifera show important but transient assemblage changes at the Cretaceous/Paleogene (K/Pg) boundary, when many biota suffered severe extinction. We quantitatively analyzed benthic foraminiferal assemblages from lower bathyal–upper abyssal (1500–2000 m) northwest Pacific ODP Site 1210 (Shatsky Rise) and compared the results with published data on assemblages at lower bathyal (~ 1500 m) Pacific DSDP Site 465 (Hess Rise) to gain insight in paleoecological and paleoenvironmental changes at that time.At both sites, diversity and heterogeneity rapidly decreased across the K/Pg boundary, then recovered. Species assemblages at both sites show a similar pattern of turnover from the uppermost Maastrichtian into the lowermost Danian: 1) The relative abundance of buliminids (indicative of a generally high food supply) increases towards the uppermost Cretaceous, and peaks rapidly just above the K/Pg boundary, coeval with a peak in benthic foraminiferal accumulation rate (BFAR), a proxy for food supply. 2) A peak in relative abundance of Stensioeina beccariiformis, a cosmopolitan form generally more common at the middle than at the lower bathyal sites, occurs just above the buliminid peak. 3) The relative abundance of Nuttallides truempyi, a more oligotrophic form, decreases at the boundary, then increases above the peak in Stensioeina beccariiformis. The food supply to the deep sea in the Pacific Ocean thus apparently increased rather than decreased in the earliest Danian. The low benthic diversity during a time of high food supply indicates a stressed environment. This stress might have been caused by reorganization of the planktic ecosystem: primary producer niches vacated by the mass extinction of calcifying nannoplankton may have been rapidly (<10 kyr) filled by other, possibly opportunistic, primary producers, leading to delivery of another type of food, and/or irregular food delivery through a succession of opportunistic blooms.The deep-sea benthic foraminiferal data thus are in strong disagreement with the widely accepted hypothesis that the global deep-sea floor became severely food-depleted following the K/Pg extinction due to the mass extinction of primary producers (“Strangelove Ocean Model”) or to the collapse of the biotic pump (“Living Ocean Model”).  相似文献   

10.
Benthic foraminiferal distribution patterns throughout the late Maastrichtian Tethyan deep sea are analyzed. Many species are ubiquitously distributed throughout this region and therefore it is hard to assess their ecological preferences. However, five species show distribution patterns, which suggest that they may have distinctive paleoenvironmental preferences. These preferences are interpreted from hypothesized surface circulation and upwelling patterns. Additional information comes from Recent benthic foraminiferal ecology and from responses to the Cretaceous/Paleogene (K/Pg) boundary event. This enables us to assess the ecological preferences of these late Maastrichtian taxa, and establish them as ecological-marker (ecomarker) species for paleoenvironmental interpretation of the late Maastrichtian bathyal-abyssal Tethyan realm.(1) Eouvigerina subsculptura is suggested to be indicative of reasonably oxygenated upper-middle bathyal environments, though with high abundance of utilizable organic matter. (2) Sliteria varsoviensis is linked to areas of late Maastrichtian upwelling and seems to have been an epibenthic species with an opportunistic life mode. (3) Gavelinella beccariiformis and (4) Nuttallides truempyi are considered to be indicative of oligotrophic conditions unless they occur with a large proportion of endobenthic morphotypes. (5) Gavelinella pertusa is proposed to indicate neritic-middle bathyal environments of the ‘boreal’ realm, which might be influenced by more seasonal food-fluxes and by higher oxygen levels than similar settings in the (sub)tropics.Finally, the anomalous high abundances of the buliminid species Sitella cf. plana in deep open ocean environments is discussed in terms of possible mechanisms permitting such a (morphologically) opportunistic species to thrive in such an assumedly oligotrophic environment.  相似文献   

11.
Benthonic foraminifera from 15 surface- and 70 core-sediment samples (three cores) from the Western Australian continental margin (Exmouth Plateau) were quantitatively investigated. As far as possible, the occurrences of the species were correlated with the recent oceanographic conditions especially as related to water depths. The sampled sites are separated from the Australian Shelf by the Montebello Trough so that the taphocoenoses cannot become adulterated by foraminifera from the shelf. Only 1% or less of the foraminifera are benthonic species. The benthonic foraminiferal faunas of the surface sediment samples from 3800 to 1700 m are composed of about the same deep-water species as described from southeastern Indian Ocean basins by Corliss (1979a). They differ from one another only because different species dominate the faunas dependent on different water depth and/or water mass. Above 1700 m the character of the benthonic foraminiferal fauna is slowly changing from abyssal to bathyal. Downcore the benthonic foraminifera show marked changes in abundance patterns, which partly parallel the changes which can be observed with the “cool” and “warm” indicating planktonic foraminifera, partly show regular phase displacement with these changes. The different abundances of the same species in a core from, for instance, 3000 m or from 2000 m water depth, respectively, prevent a direct correlation between the cores. It also proved impossible to correlate the changes in the frequency patterns of certain species to certain paleo-oceanographic conditions. Examples for this are given.  相似文献   

12.
Summary The lithologic associations within the Lower Ordovician Mungok Formation in Korea define four depositional facies that formed across a continental margin fringing the Sino-Korean block: these facies represent lagoonal/restricted marine, shoal, inner shelf, and outer shelf environments. The stacking pattern of these facies reveals two systems tracts composed of five depositional sequences. The lower highstand systems tract consists of the lagoonal/restricted marine and shoal facies, whereas the upper lowstand systems tract comprises, in ascending order, inner shelf, outer shelf, and inner shelf facies. Three trilobite biofacies are recognized in the Mungok Formation: i.e.,Yosimuraspis, Kainella, andShumardia biofacies in ascending order. TheYosimuraspis Biofacies is dominated byYosimuraspis but also containsJujuyaspis andElkanaspis. The predominance of the endemic eponymous taxon suggests a lagoonal/restricted marine environment. The nearly monotaxicKainella Biofacies, which comprises pandemic genera such asKainella and occasionallyLeiostegium, may represent a less restricted environment than theYosimuraspis Biofacies. TheShumardia Biofacies occurs in the marlstone/shale lithofacies through relatively thick stratigraphic interval and is dominated by cosmopolitan trilobite taxa with some endemic species. The lithofacies and cosmopolitan trilobite assemblage of theShumardia Biofacies indicate that it occupied an outer shelf environment. The vertical succession of lithofacies and trilobite biofacies in the Mungok Formation records in general a shift from a restricted, shallow water environment to deeper-water environment.  相似文献   

13.
Recognition of North Pacific paleoceanographic events in the marginal Humboldt (Eel River) basin of northern California enables correlation of stratigraphic sections and development of a chronostratigraphy. Paleoclimatically related coiling shifts in Neogloboquadrina pachyderma (Ehrenberg) and benthic foraminiferal datums form the basis of the chronostratigraphy. Benthic foraminiferal datums are defined by the occurrence of selected benthic species and abundance maxima of benthic biofacies. The compiled chronostratigraphy is used to refine reconstructions of the depositional history of Humboldt basin. Paleoceanographic events, recognized by the distribution of benthic foraminiferal biofacies, are used to infer paleoceanographic history along the northeastern Pacific margin.

The similarity in coiling curves of N. pachyderma from the marine sequence at DSDP Site 173 and the coastal Centerville Beach section of Humboldt basin and at other independently dated sites along the northeastern Pacific margin demonstrates that matching records of climatic oscillations is a reliable method of correlating marine sequences. Benthic fauna from the Centerville Beach section vary in phase with climatically related coiling shifts in N. pachyderma. In particular these data show an increase in displaced neritic fauna during inferred warm intervals and resurgence of deeper bathyal fauna during inferred cool events. Similar data are observed from the inland Eel River section, demonstrating that benthic foraminiferal trends recognized at Centerville Beach can be identified elsewhere in Humboldt basin. This in-phase benthic response to climatic fluctuations probably results from changes in vertical depth range of many benthic species in response to paleoclimatically related vertical changes in water-mass position.

Depositional histories reconstructed for two key sites in southern Humboldt basin indicate low rates of sediment accumulation during early basin filling with hemipelagic sediments. Initiation of turbidite sedimentation in the early Pliocene resulted in a sharp increase in rate of sediment accumulation. This increase in rate of sediment accumulation is partially a response to tectonic uplift in the northern Coast Ranges and may be an effect of realignment of motion between the Pacific and North American plates at about this time. The inland site shoaled more rapidly during turbidite sedimentation as a result of a higher rate of sediment accumulation. The rate of sediment accumulation increased again at this site in the late Pliocene during deposition of shelf and nearshore facies. The Eel River region subsided concurrent with deposition of these shallow-water deposits.  相似文献   


14.
In a 10-stations bathymetrical transect in the Bay of Biscay, we observed important changes in the density, composition and microhabitats of live foraminiferal faunas from the outer continental shelf to the abyssal plain. Four zones are recognised: (1) at the upper continental shelf (140 m water depth), foraminiferal densities are very high and the superficial sediment is occupied by Bolivina subaenariensis and Valvulineria bradyana. Globobulimina spp., Chilostomella oolina and Nonion fabum dominate the infaunal niches, which are positioned close to the sediment-water interface due to a strong compaction of the vertical succession of redox zones. (2) At the upper continental slope stations (300-1000 m), foraminiferal densities are high and the superficial sediments are dominated by Uvigerina mediterranea/peregrina. Deeper in the sediment, intermediate infaunal niches are occupied by Melonis barleeanus. Due to a deeper oxygen penetration, the deep infaunal taxa Globobulimina spp. and C. oolina live at a considerable depth in the sediment. (3) At the mid and lower slope stations (1000-2000 m) in the superficial sediment Cibicidoides kullenbergi and Hoeglundina elegans progressively replace U. mediterranea. U. peregrina is still a dominant taxon, reflecting its preference for a somewhat intermediate organic flux level. Deep infaunal taxa become increasingly rare. (4) At the lower slope and abyssal plane stations (deeper than 2000 m), faunal densities are very low and the fauna is composed exclusively by shallow infaunal species, such as Nuttallides umboniferus and Melonis pompilioides. The foraminiferal data together with the pore water data in the sediment give evidence of the presence of a trophic gradient from very eutrophic settings at the upper continental shelf towards oligotrophic settings at the abyssal area.  相似文献   

15.
《Marine Micropaleontology》2006,58(3):219-242
During the late Pliocene–middle Pleistocene, 63 species of elongate, bathyal–upper abyssal benthic foraminifera (Extinction Group = Stilostomellidae, Pleurostomellidae, some Nodosariidae) declined in abundance and finally disappeared in the northern Indian Ocean (ODP Sites 722, 758), as part of the global extinction of at least 88 related species at this time. The detailed record of withdrawal of these species differs by depth and geography in the Indian Ocean. In northwest Indian Ocean Site 722 (2045 m), the Extinction Group of 54 species comprised 2–15% of the benthic foraminiferal fauna in the earliest Pleistocene, but declined dramatically during the onset of the mid-Pleistocene Transition (MPT) at 1.2–1.1 Ma, with all but three species disappearing by the end of the MPT (∼0.6 Ma). In northeast Indian Ocean Site 758 (2925 m), the Extinction Group of 44 species comprised 1–5% of the benthic foraminiferal fauna at ∼3.3–2.6 Ma, but declined in abundance and diversity in three steps, at ∼2.5, 1.7, and 1.2 Ma, with all but one species disappearing by the end of the MPT. At both sites there are strong positive correlations between the accumulation rate of the Extinction Group and proxies indicating low-oxygen conditions with a high organic carbon input. In both sites, there was a pulsed decline in Extinction Group abundance and species richness, especially in glacial periods, with some partial recoveries in interglacials. We infer that the glacial declines at the deeper Site 758 were a result of increased production of colder, well-ventilated Antarctic Bottom Water (AABW), particularly in the late Pliocene and during the MPT. The Extinction Group at shallower water depths (Site 722) were not impacted by the deeper water mass changes until the onset of the MPT, when cold, well-ventilated Glacial North Atlantic Intermediate Water (GNAIW) production increased and may have spread into the Indian Ocean. Increased chemical ventilation at various water depths since late Pliocene, particularly in glacial periods, possibly in association with decreased or more fluctuating organic carbon flux, might be responsible for the pulsed global decline and extinction of this rather specialised group of benthic foraminifera.  相似文献   

16.
Noncalcareous Pleistocene sediments of the Central Arctic Ocean contain sparse benthic foraminiferal assemblages consisting entirely of agglutinated taxa. Deep water agglutinated foraminifera are studied from two piston cores collected from the Lomonosov Ridge and Amundsen Basin [Cores PS 2177-5 (KAL) and 2176-3 (KAL)]. Core PS 2177-5 (KAL) contains an assemblage of 10 species, dominated by Cyclammina pusilla Brady, and is interpreted to reflect a bathyal environment with variable organic flux and nutrition levels. Core PS 2176-3 (KAL) in the Amundsen Basin yielded a very depauperate benthic foraminiferal assemblage. It is assumed that the environment was inhospitable for agglutinated foraminifera.  相似文献   

17.
We studied the adaptive variations of the hemolymph concentrations in relation to water depth and pressure using deep-dwelling amphipods from Lake Baikal. Hemolymph osmolality was determined in six bathyal and abyssal species immediately after capture when values come closest to the habitat concentrations. In three species, hemolymph osmolalities correlated positively with depth of capture. Prevalent ions in the hemolymph are sodium and chloride. Lactate, our indicator for capture stress, was highest after trawling (2–6 mM) and lowest after retrieval from cages (0–0.6 mM). Acclimation to different pressure was studied by exposing the specimens to different water depths over several days. Hemolymph concentrations did not change after acclimation to surface pressure in the sublittoral Acanthogammarus albus, a native also to shallow water, but decreased by 30–80 mosmol/kg H2O in the bathyal and abyssal species Acanthogammarus grewingki, Acanthogammarus reicherti, and Parapallasea lagowskii. Similarly, hemolymph osmolality decreased in A. reicherti and P. lagowskii originating from deep water, when acclimated to reduced water depth, and, in A. reicherti hemolymph osmolality reached its original high value when returned to the depth of capture. Higher hemolymph osmolalities and NaCl concentrations, demonstrated here for the first time, may provide selective advantages to abyssal species. Accepted: 24 August 2000  相似文献   

18.
Bathymetric gradients of biodiversity in the deep-sea benthos constitute a major class of large-scale biogeographic phenomena. They are typically portrayed and interpreted as variation in alpha diversity (the number of species recovered in individual samples) along depth transects. Here, we examine the depth ranges of deep-sea gastropods and bivalves in the eastern and western North Atlantic. This approach shows that the abyssal molluscan fauna largely represents deeper range extensions for a subset of bathyal species. Most abyssal species have larval dispersal, and adults live at densities that appear to be too low for successful reproduction. These patterns suggest a new explanation for abyssal biodiversity. For many species, bathyal and abyssal populations may form a source-sink system in which abyssal populations are regulated by a balance between chronic extinction arising from vulnerabilities to Allee effects and immigration from bathyal sources. An increased significance of source-sink dynamics with depth may be driven by the exponential decrease in organic carbon flux to the benthos with increasing depth and distance from productive coastal systems. The abyss, which is the largest marine benthic environment, may afford more limited ecological and evolutionary opportunity than the bathyal zone.  相似文献   

19.
Oceanic islands in the paths of currents induce the development of wakes and stationary eddies. The situation to the lee of Tobago, western tropical Atlantic Ocean, is further complicated by the occurrence of the seasonally variable, hypopycnal Orinoco plume. Here we investigate the impact of the combined plume, wake and eddy on bathyal benthic foraminifera to the NW of Tobago. Three surface sediment samples were recovered from around each of five well-sites to the NW of Tobago, three of the sites (Warap-A, Cassra-A and Cassra-CC) being at upper bathyal depths and two (Bene-1, Sancoche-1) at middle bathyal depths. Warap-A, Cassra-A, Cassra-CC and Bene-1 form a transect along the northern side of the leeward wake, while the other two sites are in the vicinity of the stationary eddy. The samples obtained around Sancoche-1 were taken north of the wake. These were supplemented by samples from four 80-cm piston cores from upper bathyal and outer neritic depths sampled at ~ 10 cm intervals. Benthic foraminifera reveal different biofacies at upper (Warap-A, Cassra-A, Cassra-CC) and middle (Bene-1, Sancoche-1) bathyal depths. The upper bathyal biofacies is dominated by Cassidulina curvata and the middle bathyal biofacies contains abundant Uvigerina hispidocostata, both of which are indicative of a high nutrient flux. The presence of Martinottiella communis and M. pallida at Warap-A indicate that pore waters are low in dissolved oxygen in the immediate lee of the island. Percentages of the fauna as serial tests indicated decreasing current velocities with increasing depth, as confirmed by the high abundance of Cibicides ex gr. aknerianus in the shallowest water core. Upper bathyal bottom-current strength was at its lowest in the immediate lee of the island. Species indicative of a perennial nutrient flux were more abundant to the NW, where the interaction of the plume and eddy appears to concentrate nutrients. The short cores, each from a different biofacies, indicate that these environmental conditions have been in place for at least the later Holocene. The most northerly, upper bathyal core presented a stable community structure with low assemblage turnover, while two cores taken farther south (upper bathyal and outer neritic) had an expansive structure with high assemblage turnover. These data raise the possibility of using benthic foraminifera to track the positions of the plume, core and eddy throughout the later Neogene.  相似文献   

20.
The Middle Ordovician conodont genera that are suitable for palaeoenvironmental interpretations from the epicontinental Baltoscandian platform have been identified and evaluated to establish and describe conodont biofacies and their relationship to global cooling. The construction of biofacies was based on multivariate statistical analyses of more than 375 700 conodont specimens from 520 samples and 21 localities across Baltica. Three distinct, recurrent and laterally extensive conodont biofacies existed across the Baltoscandian platform of the Baltica continent during the Dapingian and early to middle Darriwilian stages (Middle Ordovician). A relatively shallow water conodont assemblage named the Baltoniodus–Microzarkodina Biofacies characterized the inner shelf localities in central Sweden, Estonia, Russia and Ukraine. In the distal shelf areas, patterns are more complex. Here, genera of the Periodon Biofacies characterized the shelf margin areas of the Scandinavian Caledonides facing the relatively warm Iapetus Ocean towards the north, whereas the Protopanderodus Biofacies dominated the distal shelf areas facing the cooler Tornquist Sea towards the south‐west. Although these three main biofacies continued to dominate during the succeeding Darriwilian stage, distinct changes in the distribution of biofacies took place during the transition from the Dapingian Stage to the Darriwilian. We argue that the biofacies change was triggered by a regressive event related to early Darriwilian cooling, and that the palaeoclimatological changes influenced the Baltic conodont faunas near the Tornquist Sea margin before those of the Iapetus margin (early vs middle Darriwilian).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号