首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The high affinity receptor for IgE, FcepsilonRI, binds IgE through the second Ig-like domain of the alpha subunit. The role of the first Ig-like domain is not well understood, but it is required for optimal binding of IgE to FcepsilonRI, either through a minor contact interaction or in a supporting structural capacity. The results reported here demonstrate that domain one of FcepsilonRI plays a major structural role supporting the presentation of the ligand-binding site, by interactions generated within the interdomain interface. Analysis of a series of chimeric receptors and point mutants indicated that specific residues within the A' strand of domain one are crucial to the maintenance of the interdomain interface, and IgE binding. Mutation of the Arg(15) and Phe(17) residues caused loss in ligand binding, and utilizing a homology model of FcepsilonRI-alpha based on the solved structure of FcgammaRIIa, it appears likely that this decrease is brought about by collapse of the interface and consequently the IgE-binding site. In addition discrepancies in results of previous studies using chimeric IgE receptors comprising FcepsilonRIalpha with either FcgammaRIIa or FcgammaRIIIA can be explained by the presence or absence of Arg(15) and its influence on the IgE-binding site. The data presented here suggest that the second domain of FcepsilonRI-alpha is the only domain involved in direct contact with the IgE ligand and that domain one has a structural function of great importance in maintaining the integrity of the interdomain interface and, through it, the ligand-binding site.  相似文献   

2.
The high affinity IgE receptor (FcepsilonRI) usually exists as a tetramer composed of alphabetagamma2 subunits. The COOH-tail of beta and gamma subunits contains consensus sequence termed 'immunoreceptor tyrosine-based activation motif' (ITAM). Tyrosine phosphorylated ITAM interacts with signaling proteins that contain the Src homology domain, forming a main amplifying and signaling route for FcepsilonRI. Unlike the COOH-tail, the functional role of NH(2)-tail of beta subunit in the signaling of FcepsilonRI is not clear because it lacks the ITAM sequences. To study the roles of NH(2)-tail of beta subunit, the cDNA library of RBL-2H3 cells was screened by yeast two-hybrid assay, and the NH(2)-tail of the beta subunit was found to interact with phospholipase Cgamma2 (PLCgamma2) but not with PLCgamma1. Since both PLCgamma1 and PLCgamma2 are expressed in RBL-2H3 cells and they possess identical cellular functions, the functional meaning of the protein-protein interaction between PLCgamma2 and NH(2)-tail of beta subunit was studied by comparing the regulatory pathways that control the FcepsilonRI-mediated tyrosine phosphorylation of the two enzymes. Our study shows that PI3-kinase and PMA-sensitive PKCs were required exclusively for the FcepsilonRI-mediated tyrosine phosphorylation of PLCgamma1. Also the FcepsilonRI-mediated tyrosine phosphorylation of PLCgamma1 was more sensitive to the inhibitors of Src and Syk kinases. These results therefore suggest that PLCgamma1 is involved in dynamic regulation of protein kinase C activity and inositol triphosphate levels in response to cellular needs. In contrast, PLCgamma2, through continuous interaction with the NH(2)-tail of beta subunit, co-localizes with FcepsilonRI in the same signaling domain, and maintains the basal cellular PLC activity.  相似文献   

3.
We constructed a soluble minimal receptor-Ig chimera in which the two extracellular domains of human Fcepsilonhain (D1 and D2) were fused to the dimerizing C-terminal domain of human IgG1 heavy chain (gamma1-CH3). The protein was expressed and actively secreted by Chinese hamster ovary (CHO) cells as a fully glycosylated soluble dimeric protein. It showed efficient binding both to human membrane-bound IgE isoforms and to the two secretory IgE isoforms. Moreover, the dimeric receptor binds IgE with the expected 1:2 stoichiometry. The receptor-Ig chimera, in 2-fold molar excess, inhibited engagement of secretory IgE to rat basophilic leukemia cells expressing the human alphabetagamma receptor. Full self-nature and inability to bind Fcgamma receptors make this protein an attractive candidate for clinical applications and a novel biotechnological tool for atopic allergy research.  相似文献   

4.
Immunoglobulin E (IgE) exhibits a uniquely high affinity for its receptor, FcepsilonRI, on the surface of mast cells and basophils. Previous work has implicated the third domain of the constant region of the epsilon-heavy chain (Cepsilon3) in binding to FcepsilonRI, but the smallest fragment of IgE that is known to bind with full affinity is a covalent dimer of the Cepsilon3 and Cepsilon4 domains. We have expressed the isolated Cepsilon3 in Escherichia coli, measured its affinity for FcepsilonRI, and examined its conformation alone and in the complex with FcepsilonRI. Sedimentation equilibrium in the analytical centrifuge reveals that this product is a monomer. The kinetics of binding to an immobilized fragment of the FcepsilonRI alpha-chain, measured by surface plasmon resonance, yields an affinity constant K(a) = 5 x 10(6) M(-)(1), as compared with 4 x 10(9) M(-)(1) for IgE. The circular dichroism spectrum and measurements of fluorescence as a function of the concentration of a denaturant do not reveal any recognizable secondary structure or hydrophobic core. On binding to the FcepsilonRI alpha-chain fragment, there is no change in the circular dichroism spectrum, indicating that the conformation of Cepsilon3 is unchanged in the complex. Thus the isolated Cepsilon3 domain is sufficient for binding to FcepsilonRI, but with lower affinity than IgE. This may be due to the loss of its native immunoglobulin domain structure or to the requirement for two Cepsilon3 domains to constitute the complete binding site for FcepsilonRI or to a combination of these factors.  相似文献   

5.
Properties of the Fc receptor for IgE (FC epsilon R) on cultured human B lymphoblastoid cells (RPMI 8866) were studied. Specificity for human IgE (hIgE) was demonstrated by inhibition studies with both Fc epsilon R+ intact cell and detergent-solubilized receptor preparations. No interaction of the FC epsilon R with other hIg classes or with rodent IgE was seen. In other studies, 3,3-dithiobis(sulfosuccinimidyl) propionate was used to cross-link hIgE to 125I surface-labeled 8866 cells. After detergent solubilization, the 125I receptor components were isolated by immunoprecipitation, and receptor peptides of 83 and 46 kilodalton kD were demonstrated by SDS-PAGE in the presence of reducing agents. Cross-linking performed after detergent solubilization gave identical results. Tryptic maps of the 83 and 46 kD polypeptides were identical with respect to surface-iodinated peptides; this indicates a structural homology between these components. The 83 kD component was more difficult to elute from IgE affinity columns, potentially because of an increased number of IgE binding sites per FC epsilon R molecule. Limited proteolysis studies of the purified FC epsilon R with papain and V8 protease from Staphylococcus aureus demonstrated that a 16 kD FC epsilon R fragment was rapidly produced. This component was also seen after papain treatment of intact cells, and it retained the ability to interact with anti-FC epsilon R antisera and, at least in the absence of detergent, with hIgE affinity columns. Potential relationships between the FC epsilon R and lymphokines that modulate the IgE response (IgE-binding factors) are discussed.  相似文献   

6.
7.
The high affinity of IgE for its receptor, FcepsilonRI (K(a) approximately 10(10) M(-1)), is responsible for the persistence of mast cell sensitization. Cross-linking of FcepsilonRI-bound IgE by multivalent allergen leads to cellular activation and release of pro-inflammatory mediators responsible for the symptoms of allergic disease. We previously demonstrated that limiting the IgE-FcepsilonRI interaction to just one of the two Cepsilon3 domains in IgE-Fc, which together constitute the high affinity binding site, results in 1000-fold reduced affinity. Such attenuation, effected by a small molecule binding to part of the IgE:FcepsilonRI interface or a distant allosteric site, rather than complete blocking of the interaction, may represent a viable approach to the treatment of allergic disease. However, the degree to which the interaction would need to be disrupted is unclear, because the importance of high affinity for immediate hypersensitivity has never been investigated. We have incorporated into human IgE a mutation, R334S, previously characterized in IgE-Fc, which reduces its affinity for FcepsilonRI approximately 50-fold. We have compared the ability of wild type and R334S IgE to stimulate allergen-induced mast cell activation in vitro and in vivo. We confirmed the expected difference in affinity between wild type and mutant IgE for FcepsilonRI (approximately 50-fold) and found that, in vitro, mast cell degranulation was reduced proportionately. The effect in vivo was also marked, with a 75% reduction in the passive cutaneous anaphylaxis response. We have therefore demonstrated that the high affinity of IgE for FcepsilonRI is critical to the allergic response, and that even moderate attenuation of this affinity has a substantial effect in vivo.  相似文献   

8.
IgE antibodies cause long-term sensitization of tissue mast cells and blood basophils toward allergen-induced cross-linking and triggering of allergic inflammation. This persistence of IgE binding is due to its uniquely high affinity for the receptor FcepsilonRI and in particular its slow rate of dissociation once bound. The binding interface consists of two subsites, one contributed by each Cepsilon3 domain of IgE Fc in a 1:1 complex. We have investigated the contributions of Cepsilon3 disulfide linkage and glycosylation to the kinetics and affinity of binding of an Fc subfragment (Fcepsilon3-4) to a soluble receptor fragment (sFcepsilonRIalpha). In contrast to IgG Fc where deglycosylation abrogates receptor binding activity, the removal of the N-linked carbohydrate at Asn-394 in Fcepsilon3-4 only reduces binding affinity by a factor of 4, principally because of a faster off-rate. Removal of the inter-heavy chain disulfide bond unexpectedly resulted in a fragment with a much faster off-rate and the potential to form a complex with a 2:1 stoichiometry (sFcepsilonRIalpha:Fcepsilon3-4). This permitted the determination of the affinity of a single, natively folded Cepsilon3 domain for the first time. The low affinity Ka approximately 10(5)-10(6) m-1, similar to that determined previously for an isolated and partially folded Cepsilon3 domain, demonstrates that substantial reduction in affinity can be achieved by preventing the engagement of one of the two Cepsilon3 domains. Recent structural data indicate that conformational change in IgE is required to allow both Cepsilon3 domains to bind, and thus an allosteric inhibitor that prevents access to the second Cepsilon3 has the potential to reduce the ability of IgE to sensitize allergic effector cells.  相似文献   

9.
Mine Y  Rupa P 《Protein engineering》2003,16(10):747-752
Ovalbumin is a major allergen in hen egg white that causes IgE-mediated food allergic reactions in children. In this study, the immunodominant IgE-binding epitopes of ovalbumin were mapped using arrays of overlapping peptides synthesized on activated cellulose membranes. Pooled human sera from 18 patients with egg allergy were used to probe the membrane. Five distinct regions were found to contain dominant allergic IgE epitopes, these being L38T49, D95A102, E191V200, V243E248 and G251N260. The critical amino acids involved in IgE antibody binding were also determined. These epitopes were composed primarily of hydrophobic amino acids, followed by polar and charged residues and being comprised of beta-sheet and beta-turn structures. One epitope, D95A102, consisted of a single alpha-helix. These results provide useful information on the functional role of amino acid residues to evaluate the structure-function relationships and structural properties of allergic epitopes in ovalbumin. They also provide a strategic approach for engineering ovalbumin to reduce its allergenicity.  相似文献   

10.
11.
12.
13.
A novel human antibody AR16, targeting the G5 linear epitope of rabies virus glycoprotein (RVG) was shown to have promising antivirus potency. Using AR16, the minimal binding region within G5 was identified as HDFR (residues 261–264), with key residues HDF (residues 261–263) identified by alanine replacement scanning. The key HDF was highly conserved within phylogroup I Lyssaviruses but not those in phylogroup II. Using computer-aided docking and interaction models, not only the key residues (Asp30, Asp31, Tyr32, Trp53, Asn54, Glu99, Ile101, and Trp166) of AR16 that participated in the interaction with G5 were identified, the van der Waals forces that mediated the epitope–antibody interaction were also revealed. Seven out of eight presumed key residues (Asp30, Asp31, Tyr32, Trp53, Asn54, Glu99, and Ile101) were located at the variable regions of AR16 heavy chains. A novel mAb cocktail containing AR16 and CR57, has the potential to recognize non-overlapping, non-competing epitopes, and neutralize a broad range of rabies virus.  相似文献   

14.
We developed a confocal real-time imaging approach that allows direct observation of the subcellular localization pattern of proteins involved in proximal FcepsilonRI signaling in RBL cells and primary bone marrow-derived mast cells. The adaptor protein Src homology 2 (SH2) domain-containing leukocyte phosphoprotein of 76 kDa (SLP-76) is critical for FcepsilonRI-induced calcium flux, degranulation, and cytokine secretion. In this study, we imaged SLP-76 and found it in the cytosol of unstimulated cells. Upon FcepsilonRI cross-linking, SLP-76 translocates to the cell membrane, forming clusters that colocalize with the FcepsilonRI, the tyrosine kinase Syk, the adaptor LAT, and phosphotyrosine. The disruption of the SLP-76 interaction with its constitutive binding partner, Gads, through the mutation of SLP-76 or the expression of the Gads-binding region of SLP-76, inhibits the translocation and clustering of SLP-76, suggesting that the interaction of SLP-76 with Gads is critical for appropriate subcellular localization of SLP-76. We further demonstrated that the expression of the Gads-binding region of SLP-76 in bone marrow-derived mast cells inhibits FcepsilonRI-induced calcium flux, degranulation, and cytokine secretion. These studies revealed, for the first time, that SLP-76 forms signaling clusters following FcepsilonRI stimulation and demonstrated that the Gads-binding region of SLP-76 regulates clustering of SLP-76 and FcepsilonRI-induced mast cell responses.  相似文献   

15.
16.
17.
Extracts from immature fruit of the apple (Rosaceae, Malus sp.), which contain procyanidins (polymers of catechins) as the major ingredients, are known to inhibit histamine release from mast cells. We analyzed in this study the mechanism for the anti-allergic activity of two polyphenol-enriched apple extracts. These extracts, termed "crude apple polyphenol (CAP)" and "apple condensed tannin (ACT)", reduced the degranulation of mast cells caused by cross-linking of the high-affinity receptor for IgE (FcepsilonRI) with IgE and the antigen in a dose-dependent manner. Furthermore, western blotting revealed that phosphorylation of the intracellular signal-transduction molecules caused by cross-linking of FcepsilonRI was markedly decreased by the addition of CAP or ACT. We then analyzed the effects of CAP and ACT on the binding of the IgE antibody to FcepsilonRI on mast cells, which is the first key step in the allergic reaction mediated by mast cells, and found that this binding was markedly inhibited by both CAP and ACT. These results indicate that the inhibition of binding between FcepsilonRI and IgE by either CAP or ACT was the probable cause of the suppression of mast cell activation. This is the first report demonstrating the molecular mechanism for the anti-allergic effect of procyanidin-enriched extracts from apples.  相似文献   

18.
19.
20.
Synaptobrevin is a synaptic vesicle protein that has an essential role in exocytosis and forms the SNARE complex with syntaxin and SNAP-25. We have analyzed the structure of isolated synaptobrevin and its binary interaction with syntaxin using NMR spectroscopy. Our results demonstrate that isolated synaptobrevin is largely unfolded in solution. The entire SNARE motif of synaptobrevin is capable of interacting with the isolated C-terminal SNARE motif of syntaxin but only a few residues bind to the full-length cytoplasmic region of syntaxin. This result suggests an interaction between the N- and C-terminal regions of syntaxin that competes with core complex assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号