首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cultures of JU56 cells were irradiated with 2.5 Gy X-rays and 16 h later the cultures were exposed to a moderately inhibitory dose of 1-beta-D-arabinofuranosylcytosine (ara-C) or aphidicolin (APC) and to colcemid, for 2 h. The c-metaphases collected for examination had therefore been exposed to X-rays in G1 or early S, and to the repair inhibitors APC and ara-C during the latter half of G2. It was found that treatment of cells irradiated early in cell cycle, that is, in G1 and early S, with APC or ara-C in G2, (1) reduced the frequency of chromatid and chromosome exchanges below that of cells treated with X-rays alone, (2) produced no more chromatid breaks and gaps than were seen in unirradiated cells, (3) increased the number of chromosome fragments and gaps in a more than additive fashion, and (4) produced only an additive effect, by comparison with the effect of X-rays and drug given separately, on the total number of chromosomal aberrations.  相似文献   

2.
1-β-D-Arabinofuranosyl cytosine (ara-C) is a clinically important cytotoxic drug which is a potent inhibitor of DNA but which has a minimal effect on other cellular processes. The cytotoxic action of ara-C on mammalian cells has been suggested to be due to the chromosome aberrations induced by this compound. Using a marsupial cell line (JU56), the cells of which contain only 9 readily identified chromosomes, the different types of chromosome aberrations induced by a pulse of ara-C have been quantified, and the cell cycle dependence of the damage has been assessed. It was found that, for cells exposed in G2, both chromatid-type and chromosome-type lesions were produced. The frequency of these lesions was reduced by a chase of deoxycytidine, and there was some evidence that the initial lesions are gaps which may later be converted to true breaks. In early G2 and late S cells, lesions were produced chiefly at one chromosome locations; this location was not specifically late-replicating. At all stages of S, lesions were chiefly chromatid-type, and some exchanges occurred. The level of damage in S cells was not influences by a deoxycytidine chase. There was negligible damage in cells exposed in G1.It is suggested that the reason previous investigators have obtained very different cell cycle dependence of chromosomes damage is that the delaying effects of ara-C on cell cycle progression was not taken into account.  相似文献   

3.
Identified, proliferating S-phase cells in the postembryonic fish ear are known to be the precursors to new hair cells. It is not known, however, whether the ability to proliferate is restricted to a small population of cells. The ability of cells that are not normally in the cell cycle to enter S-phase was examined using the antimitotic drug cytosine arabinoside (ara-C). The normal population of S-phase cells in the saccule was destroyed by a single large dose of ara-C. Two weeks later, the prsence of S-phase cells was evaluated using the S-phase marker bromodeoxyuridine. The results strikingly demonstrate that S-phase cells are replaced, since S-phase cells returned to the saccule in the same number as found in normal fish. The data are interpreted to suggest that a large number of nonsensory support cells are capable of entering the cell cycle and that some mechanism must regulate which of these are actually cycling at any given time. © 1995 John Wiley & Sons, Inc.  相似文献   

4.
Some effects of a 2-h exposure to either aphidicolin (APC) or cytosine arabinoside (ara-C) on S-phase cells of the cell line JU56 have been measured. At a concentration of 1.5 X 10(-5) M of either drug, incorporation of tritiated thymidine into log-phase cultured was reduced by 97-99%. A 2-h exposure to either drug at the same concentration induced chromosome aberrations in cells in S when they subsequently reached mitosis. However, exposure to ara-C induced small numbers of aberrations per damaged cells, and most cells were undamaged. Exposure to APC induced gross chromosomal damage (pulverized chromosomes) in damaged cells. More cells were delayed, and for longer, after exposure to APC than after exposure to ara-C. The results of clonal assays were consistent with the assumption that chromosome aberrations are the proximal cause of reproductive cell death. In the case of ara-C, the results of this and a previous study are consistent with the assumption that cell death and chromosome aberrations are correlated with incorporation of ara-C into DNA in S-phase cells, but that these biological effects manifest themselves only with doses when inhibition of semi-conservative DNA synthesis is greater than 97%.  相似文献   

5.
The blast cells in acute myeloblastic leukemia (AML) respond to many of the same regulatory mechanisms that control normal hemopoiesis. These include the growth factors that bind to membrane receptors and steroid hormones or vitamins that have intracellular receptors. We report the effects in culture of the steroid glucocorticoid hydrocortisone on freshly explanted AML blasts from patients and on two continuous AML cell lines. Only small changes in clonogenic cell numbers in suspension cultures were seen in the presence of hydrocortisone. The most striking effect of the hormone was on the sensitivity of blasts cells to cytosine arabinoside (ara-C). In contrast to the response of AML blast cells to retinoic acid, a ligand for intracellular steroid receptors that sensitizes some blast populations to ara-C, hydrocortisone reduced the toxic effects of the drug. The protective action of hydrocortisone was not mediated through the cell cycle since exposure of blasts to hydrocortisone did not affect the percentage of cells in DNA synthesis as measured with the tritiated thymidine (3HTdR) "suicide" technique. The hydrocortisone effect could be demonstrated using a pulse (20 min) exposure protocol. Blasts pulsed with increasing specific activities of 3HTdR showed the usual response pattern with an initial loss in plating efficiency to about 50% of control, followed by a plateau, regardless of whether the cells had been exposed to hydrocortisone. Control blasts exposed to increasing ara-C concentrations gave very similar dose-response curves; in striking contrast, blast cells cultured in hydrocortisone, then pulsed with ara-C did not lose colony-forming ability even though the same population was sensitive to 3HTdR. The hydrocortisone effect was dose and time related; protection from ara-C increased from 10(-8) to 10(-5) M and was seen after 4 hr exposure but required 8 hr to reach a maximum. We conclude that hydrocortisone can protect blasts from the lethal effects of ara-C even while the cells are in active DNA synthesis.  相似文献   

6.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-sense, single-stranded RNA virus that causes the potentially lethal Covid-19 respiratory tract infection. It does so by binding to host cell angiotensin converting enzyme 2 (ACE2) receptors, leading to endocytosis with the receptor, and subsequently using the host cell’s machinery to replicate copies of itself and invade new cells. The extent of the spread of infection in the body is dependent on the pattern of ACE2 expression and overreaction of the immune system. Additionally, by inducing an imbalance in the renin-angiotensin-aldosterone system (RAAS) and the loss of ACE2 would favour the progression of inflammatory and thrombotic processes in the lungs. No drug or vaccine has yet been approved to treat human coronaviruses. Hundreds of clinical trials on existing approved drugs from different classes acting on a multitude of targets in the virus life cycle are ongoing to examine potential effectiveness for the prevention and treatment of the infection. This review summarizes the SARS-CoV-2 virus life cycle in the host cell and provides a biological and pathological point of view for repurposed and experimental drugs for this novel coronavirus. The viral life cycle provides potential targets for drug therapy.  相似文献   

7.
A series of N-diisopropylphosphoryl (DIPP) L-amino acid ester prodrugs of zidovudine (AZT) (3a-3e) and stavudine (d4T) (4a-4e) has been prepared. The activity of these compounds against MCF-7 cells (human pleural effusion breast adenocarcinoma cell line) and K562 cells (human chronic myeloid leukemia (CML) cell line) was evaluated. In difference from that of AZT amino acid phosphoramidates, the alophatic amino acid esters of AZT were found to be more cytotoxic than the aromatic analogues toward MCF-7 cell. Two DIPP-L-amino acid esters of d4T 4b (CC50 = 83 microM) and 4c (CC50 = 182 microM) were found to be more cytotoxic than the parent drug toward K562 cells. MCF-7 and K562 cell cycle disturbance was investigated showing detectable blockade in the S phase when exposed to biologically active AZT, 3a, 3b, 3c, 4b and 4c, indicating that they inhibit cell growth by blocking cell cycle progression. Together with previous reports, present findings suggest that anti-breast cancer activity of AZT may be due to hamper DNA synthesis.  相似文献   

8.
The in vitro relationship between nutritional factors, proliferative status of tumor cells, and the cytotoxic action of cytosine arabinoside (ara-C) was investigated. The reduction in the concentration of only one essential amino acid, L-isoleucine, in the growth medium of A(T1)Cl-3 hamster fibrosarcoma cells decreased DNA synthesis in this cell population and slowed the rate of progression of G1 phase cells into S phase of the cell cycle. The complete omission of isoleucine from the growth medium blocked the progression of G1 phase cells into S phase and prevented the cytotoxic action of ara-C. The addition of isoleucine to the isoleucine-deprived cells permitted these cells to enter the S phase and restored their sensitivity to the cytotoxic action of ara-C. When G1 phase cells were placed in a medium containing reduced levels of all the amino acids and vitamins there was a prolongation of the G1 phase. Since medium with low levels of amino acids produced a delay in the entry of G1 phase cells into the S phase, the time interval in which these cells were most sensitive to the cytotoxic action of ara-C was different for G1 phase cells placed in medium with adequate levels of all the amino acids. These in vitro data indicate that nutritional factors can markedly effect the proliferation of tumor cells and the cytotoxic action of ara-C.  相似文献   

9.
Human immunodeficiency virus I-induced expression of P-glycoprotein   总被引:1,自引:0,他引:1  
Because prolonged treatment of HIV infection with 3'-azido-3'-deoxythymidine (AZT) is associated with in vitro resistance to AZT, we examined whether HIV could induce/amplify the expression of p-glycoprotein in infected cells resulting in reduced drug accumulation leading to reduced sensitivity to AZT. We show that both H9 (T cell line) and U937 (monocytic cell line) cells, upon infection with HIV, expressed increased levels of P-glycoprotein and accumulated significantly less AZT and daunorubicin as compared to uninfected cells. Sodium azide increased intracellular accumulation of daunorubicin in infected cells, suggesting a metabolically active drug efflux mechanism. Addition of cyclosporin A partially corrected intracellular drug accumulation in HIV infected cells. In addition, similar to multidrug resistant tumor cells, HIV-infected cells show depolarization of plasma membrane. Taken together, these data suggest that HIV-induced increased P-glycoprotein expression could be one of the mechanisms for reduced intracellular accumulation of antiviral agents and resistance to AZT and perhaps to other anti-retroviral agents.  相似文献   

10.
目的:构建基于萤光素酶的单次复制人免疫缺陷病毒(HIV)细胞模型,用于抗HIV药物的筛选。方法:构建含萤光素酶报告基因的假型慢病毒质粒,将疱疹性口炎病毒外膜糖蛋白(VSV-G)的表达质粒、HIV-1 Rev蛋白表达质粒、HIV Gag-Pol蛋白表达质粒和含萤光素酶报告基因的重组慢病毒质粒共转染HEK 293FT细胞,制备假型慢病毒;在假型慢病毒生产和再感染新鲜HEK 293FT细胞的过程中加入逆转录酶和蛋白酶抑制剂(如AZT),检测再感染的细胞中萤光素酶的表达水平,从而判断药物对HIV的抑制作用。结果:构建了含萤光素酶报告基因的重组慢病毒质粒pLenti-Luc;利用已知抗HIV药物AZT进行测试,发现HIV药物处理组细胞中萤光素酶活性远低于对照组。结论:建立了基于萤光素酶的HIV药物筛选细胞模型,该系统使用单次复制的报告病毒,具有良好的安全性,而使用萤光素酶基因作为报告基因使该系统具备极高的敏感性,该系统适合于进行高通量药物筛选。  相似文献   

11.
人免疫缺陷病毒Ⅰ型(HIV-1)抗3'─叠氮─3'─脱氧胸腺嘧啶(AZT)抗药株经体外感染C8166淋巴细胞在高浓度AZT条件下筛选获得,并暂命名为HIV─1─R株。该抗药株与HTLV─ⅢB株相比,在同一感染复数(M01)病毒量感染C8166细胞,经不同浓度的AZT处理后,其复制的病毒量和对AZT的敏感性有显著的差异,抗药株感染C8166细胞,加AZT处理后,分离细胞DNA作PCR扩增后分析,特异性病毒的DNA量比敏感株高100倍以上,显示其抗药性作用点在病毒逆转录DNA前。  相似文献   

12.
The clastogenic potential of the intercalating compound ellipticine, an antitumor alkaloid, has been demonstrated in mammalian cells. To characterize the mechanism of action of this drug over the cell cycle, human lymphocyte cultures from 2 healthy donors were treated with 3 micrograms/ml ellipticine in 30-min pulses during different phases of the cell cycle and analyzed for chromosomal aberrations and sister-chromatid exchanges. The G2 phase was most sensitive in terms of induction of aberrations, followed by S and G1. Chromatid-type aberrations were the most common type of chromosomal damage. Induction of SCEs was significantly high only after treatment at G1, when the frequencies of SCEs doubled. The post-treatment effect of lymphocytes with inhibitors of DNA repair, 10(-3) M caffeine and 5 x 10(-6) M 1-beta-D-arabinofuranosylcytosine, was also tested by adding 3 micrograms/ml ellipticine at G2 in 30-min pulses and immediately followed by caffeine and/or ara-C during the last 3 h before harvesting. Three experiments performed on blood from 3 donors showed a moderate potentiation effect on the frequency of chromatid-type aberrations (about 2-3 times) by both inhibitors. Likewise, a 3-fold increase was observed in the frequencies of chromosomal aberrations when caffeine and ara-C were combined. The present data demonstrate that posttreatment with caffeine and ara-C at G2 can modify the response of human lymphocytes treated with ellipticine by increasing the clastogenic action of this compound or by changing the cell-cycle progression.  相似文献   

13.
The time of onset and duration of division delay induced by exposure to 250-kvp x-irradiation have been measured in several mammalian cell lines grown in suspension culture. Unique times of action (i.e. interval from irradiation to cessation of division) late in G2 are characteristic for HeLa, L-5178Y, and Chinese hamster cells, and the time of action is independent of dose over the range 25-800 rads. The duration of delay was directly proportional to dose; all irradiated cells divided at least once and maintained their relative positions in the life cycle for periods exceeding one generation time. Neither random nor synchronous cultures exposed at varying times in the life cycle exhibited differences in radiation sensitivity measured either by onset or duration of the delay period. The time of action was experimentally indistinguishable from the point marking completion of protein synthesis essential for division, leading to speculation that division delay involves a translation defect.  相似文献   

14.
AZT, a chain terminator of DNA synthesis originally developed for chemotherapy, is now prescribed as an antihuman immunodeficiency virus (HIV) drug at 500 to 1500 mg/person/day, which corresponds to 20 to 60 M AZT. The human dosage is based on a study by the manufacturer of the drug and their collaborators, which reported in 1986 that the inhibitory dose for HIV replication was 0.05 to 0.5 M AZT and that for human T-cells was 2000 to 20,000 times higher, i.e. 1000 M AZT. This suggested that HIV could be safely inhibited in humans at 20 to 60 M AZT. However, after the licensing of AZT as an anti-HIV drug, several independent studies reported 20-to 1000-fold lower inhibitory doses of AZT for human and animal cells than did the manufacturer's study, ranging from 1 to 50 M. In accord with this, life threatening toxic effects were reported in humans treated with AZT at 20 to 60 M. therefore, we have re-examined the growth inhibitory doses of AZT for the human CEM T-cell line and several other human and animal cells. It was found that at 10 M and 25 M AZT, all cells are inhibited at least 50% after 6 to 12 days, and between 20 and 100% after 38 to 48 days. Unexpectedly, variants of all cell types emerged over time that were partially resistant to AZT. It is concluded that AZT, at the dosage prescribed as an anti-HIV drug, is highly toxic to human cells.  相似文献   

15.
Perinatal treatment with 3'-azido-3'-deoxythymidine (AZT) has been found to reduce the rate of maternal-infant transmission of HIV; however, AZT is genotoxic in mammalian cells in vitro and induces tumors in the offspring of mice treated in utero. The purpose of the present study was to investigate the relationships between incorporation of AZT into DNA, and the frequency and spectrum of mutations at the HPRT locus of the human lymphoblastoid cell line, TK6, following in vitro exposures to AZT. Cells were cultured in medium containing 0 or 300 microM AZT for 1, 3, or 6 day(s) (n = 5/group). The effects of exposure duration on incorporation of AZT into DNA and HPRT mutant frequency were determined using an AZT radioimmunoassay and a cell cloning assay, respectively. AZT accumulated in DNA in a supralinear manner, approaching a plateau at 6 days of treatment (101.9 +/- 14.7 molecules AZT/10(6) nucleotides). After 3 days of AZT exposure, HPRT mutant frequency was significantly increased (1.8-fold, p = 0.016) compared to background (mutant frequency = 3.78 x 10(-6)). Multiplex PCR amplification of genomic DNA was used to determine the frequency of exon deletions in HPRT mutant clones from untreated cells versus AZT-treated cells. Molecular analyses of AZT-induced mutations revealed a significant difference in the frequency of total gene deletions (44/120 vs. 18/114 in controls, p = 0.004 by the Mann-Whitney U-statistic). In fact, the Chi-square test of homogeneity demonstrate that the differences between the control and AZT-treatment groups is attributed mainly to this increase in total gene deletion mutations (p = 0.00001). These data indicate that the primary mechanism of AZT mutagenicity in human TK6 cells is through the production of large deletions which occur as a result of AZT incorporation into DNA and subsequent chain termination. The data imply that perinatal chemoprophylaxis with AZT may put children of HIV-infected women at potential risk for genetic damage.  相似文献   

16.
Indinavir (IDV) is a potent and selective human immunodeficiency virus type 1 (HIV-1) protease inhibitor (PI) widely used in antiretroviral therapy, but its effects on the immune system are relatively unknown. In this study we have investigated the in vitro effect of IDV on normal human peripheral blood mononuclear cells (PBMC). We used the drug alone or in double and triple combination with AZT and ddC to assess whether IDV interferes with the previously observed immunomodulatory effects induced by AZT and ddC. We found that proliferative response, induction of immunoglobulins (Ig) production and cytokine production was not modulated by IDV. More importantly, IDV used in double or triple combination with AZT and ddC, does not further strenghten the inhibition of proliferative response induced by AZT and is able to abrogate the inhibitory effect induced by ddC on proliferative response. Similarly, IDV/AZT, IDV/ddC and IDV/AZT/ddC combinations does not strenghten the modulation of TNF-alpha, IFN-gamma and IL-4 induced by AZT, ddC and AZT/ddC. On the other hand, IDV neutralizes the up-regulating effects of AZT on IL-2 production while the up-regulating effects of ddC on IL-2 production is not affected. These data suggest that IDV used in combination with AZT and ddC did not add any further immunotoxicity.  相似文献   

17.
Chlamydiae have evolved a biphasic life cycle to facilitate their survival in two discontinuous habitats. The unique growth cycle is represented by two alternating forms of the organism, the elementary body and the reticulate body. Chlamydiae have an absolute nutritional dependency on the host cell to provide ribonucleoside triphosphates and other essential intermediates of metabolism. This report describes the pleiotropic effects of the purine antimetabolite 6-thioguanine on chlamydial replication. In order to display cytotoxicity, 6-thioguanine must first be converted to the nucleotide level by the host cell enzyme hypoxanthine-guanine phosphoribosyltransferase. Our results show that 6-thioguanine is an effective inhibitor of chlamydial growth with either wild-type or hypoxanthine-guanine phosphoribosyltransferase-deficient cell lines as the host. Interestingly, the mechanism of 6-thioguanine-induced inhibition of chlamydial growth is different depending on which cell line is used. With wild-type cells as the host, the cytotoxic effects of 6-thioguanine on chlamydial growth are relatively fast and irreversible. Under these circumstances, cytotoxicity likely results from the combined effect of starving chlamydiae for purine ribonucleotides and incorporation of host-derived 6-thioguanine-containing nucleotides into chlamydial nucleic acids. With hypoxanthine-guanine phosphoribosyltransferase-deficient cells as the host, 6-thioguanine must be present at the start of the chlamydial infection cycle to be effective and the growth inhibition is reversible upon removal of the antimetabolite. These findings suggest that in hypoxanthine-guanine phosphoribosyltransferase-deficient cells, the free base 6-thioguanine may inhibit the differentiation of elementary bodies to reticulate bodies. With hypoxanthine-guanine phosphoribosyltransferase-deficient cells as the host, 6-thioguanine was used as a selective agent in culture to isolate a Chlamydia trachomatis isolate resistant to the effects of the drug. This drug resistant C. trachomatis isolate was completely resistant to 6-thioguanine in hypoxanthine-guanine phosphoribosyltransferase-deficient cells; however, it displayed wildtype sensitivity to 6-thioguanine when cultured in wild-type host cells.  相似文献   

18.
研究了天津市卫津河中多刺裸腹溞(Moinamacrocopastraus)生活史各阶段体外附生累枝虫(Epistylisdaphniae)的数量变化。从1990年4月到10月的13次采样中,累枝虫的数量与其附主的平均体长及雌性怀卵个体所占比例均无显著相关关系。对同一水样中的数据进行分析后发现,以幼龄裸腹为主的三个体长组的体表附生的累枝虫数之间无显著差异,但与以成龄为主的第四个体长组之间的差异却显著。在雌性成体中怀卵阶段后期的裸腹体表的累枝虫数量显著多于前期。本研究的结论是裸腹体表的累枝虫数量的多少主要不是取决于附主有多少表面积可供附着,而主要取决于两次蜕皮间隔时间的长短。还对两性生殖期间雌、雄性裸腹体表的累枝虫数量进行了研究。  相似文献   

19.
CSFs may be useful in improving the clinical effectiveness of cytosine arabinoside (ara-C). In vitro studies have indicated that GM-CSF may be capable of specifically increasing the sensitivity of leukemic cells to this agent. Other studies have indicated that IL-3 may enhance the ability of ara-C to kill leukemic cells by cytokinetic and pharmacologic mechanisms. While the effects of GM-CSF and IL-3 on ara-C-induced differentiation appear limited, the combination of ara-C and leukemia inhibitory factor (LIF) may appear to be useful in overcoming the block in differentiation characteristic of leukemic myeloblasts. On the basis of in vitro studies, clinical trials with ara-C are underway that are examining the usefulness of GM-CSF and IL-3 in cell cycle recruitment of leukemic myeloblasts. These cytokines are also under study in supportive therapy of ara-C-induced myelosuppression. While certain results appear promising, further controlled studies are needed to determine the role of CSFs in improving ara-C therapy.  相似文献   

20.
The relationship between viral DNA and protein synthesis during herpes simplex virus type 1 (HSV-1) replication in HeLa cells was examined. Treatment of infected cells with cytosine arabinoside (ara-C), which inhibited the synthesis of HSV-1 DNA beyond the level of detection, markedly affected the types and amounts of viral proteins made in the infected cell. Although early HSV-1 proteins were synthesized normally, there was a rapid decline in total viral protein synthesis beginning 3 to 4 h after infection. This is the time that viral DNA synthesis would normally have been initiated. ara-C also prevented the normal shift from early to late viral protein synthesis. Finally, it was shown that the effect of ara-C on late protein synthesis was dependent upon the time after infection that the drug was added. These results suggest that inhibition of progeny viral DNA synthesis by ara-C prevents the "turning on" of late HSV-1 protein synthesis but allows early translation to be "switched off."  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号