首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Capsule: Bird migration was recorded by an infrared device at three sites in the southeastern Bay of Biscay, indicating seasonal east–west differences in migration flow.

Aims: The main aims of this study were to quantify and describe nocturnal migration dynamics in proximity of a sea barrier, and to assess seasonal and geographical drivers of migration patterns.

Methods: A thermal-imaging camera was used at two coastal study sites (Punta Galea, Cape Higuer) in spring and three study sites (coast: Punta Galea, Cape Higuer; inland: Iregua Valley) in autumn for four hours from sunset over 90 nights in 2014 and 2015.

Results: Migration was strong at both coastal sites in early spring. Autumn migration was weak at the western coast, but strong at the eastern coast and inland. Tailwind had no significant effect on migration intensity, but migration ceased during strong cross- or headwinds despite clear skies. The majority of the targets were passerines.

Conclusions: The patterns observed suggest spring migration occurs on a broader front, potentially involving sea crossing further to the west, while autumn migration concentrates more eastwards over land. In both seasons, there was no significant response to wind conditions.  相似文献   


2.
The flight behaviour of Griffon Vultures Gyps fulvus was studied at a major migration bottleneck, the Strait of Gibraltar in southernmost Spain, during the autumns of 2004 to 2007. The 14‐km‐wide sea channel significantly impeded the southern migration of the species into Africa, with many birds attempting repeated passage for weeks before crossing, and others not crossing at all and overwintering in Southern Spain. Water‐crossing attempts were restricted to times between 11:00 and 14:00 h on days with light or variable winds, or on days with strong winds from the north or west. No crossing attempts were made on days with strong winds from the south or east. Vultures attempted to cross the Strait in large flocks and never attempted to do so alone. Although 29% of the birds soared during crossing attempts, at least until they flew beyond visible range of approximately 4 km, most engaged in considerable flapping flight when attempting to cross. Overall, birds flying over water flapped more than 10 times as frequently as those flying over land prior to crossing attempts. Vultures did not flap continuously, but intermittently in brief bouts of flapping interspersed with periods of gliding or soaring flight. The number of flaps per bout over water was significantly greater than the number of flaps per bout over land. Vultures flying over water that flapped at rates of 20 flaps or more per minute typically aborted attempted crossings and returned to Spain in intermittent flapping and gliding flight. There are numerous reports of Vultures falling into the Strait and drowning while attempting to cross, as well as reports of returning Vultures collapsing on the beach having reached Spain in spring ( Barrios Partida 2006 ). Our observations indicate that passage of Griffon Vultures at the Strait of Gibraltar is limited by the species’ over‐water flapping‐flight abilities, including its inability to flap continuously for even short periods of time. We suggest that even relatively short sea crossings represent significant obstacles to migrating Vultures and discuss the implications of this limitation on the distribution and abundance of the species.  相似文献   

3.
J. VOELCKER 《Ostrich》2013,84(2):204-214
Bruderer, B. 1994. Nocturnal bud migration in the Negev (Israel) a tracking radar study. Ostrich 65: 204–212.

The present publication summarizes the methodological possibilities of tracking radar and describes some features of nocturnal migration at two sites in the Negev, which include anwers to basic questions of bird migration. The directions of spring and autumn migration were practically opposite; only the headings in spring indicated some more compensation for stronger westerly winds. The volume of nocturnal spring migration was only about 65% of autumn migration, which may be an indication of mortality outside tie breeding area. Highest densities of migration at the two radar sites in the Negev Highlands (450 m above sea level) and in the Arava Valley (150 m below sea level) indicated flightlevels adjusted to atmospheric conditions aloft, and not to round level. Due to the trade-wind system, the birds heading southward in autumn flew mainly below flew mainly above 1500 m above sea level, while in spring they tended to make use of the anti-trades at higher altitudes. The decisive factor for altitude choice was the speed of tailwind in spring and autumn; other factors, such as temperature, humidity and pressure had no significant influence on the altitude distributions. With respect to the question of non-stop or intermittent flight across large desert areas, the data show that between the eastern deserts of Egypt and the Sinai/Negev complex the nocturnal migrants maintained their schedule of nocturnal flight and diurnal rest. A few exceptions of nocturnal migrants continuing migration at high altitudes into the day were identified mainly as heron- and gull-type birds. The proportion of waders and waterfowl identified by wing-beat pattern in nocturnal migration is nearly the same at both sites, indicating broad-front migration across the desert. The numbers of birds with continuous wingbeats is, however, so large compared to available estimates of waders and waterfowl wintering in Africa that careful reconsideration of the underlying assumptions in the radar and field estimates is necessary.  相似文献   

4.
Capsule: Juvenile Short-toed Snake Eagles Circaetus gallicus hatching in the peripheral populations of Greece and Italy have limited opportunities for social learning of migration routes compared to those hatched elsewhere.

Aims: To test the prediction that there would be a higher degree of migration synchrony between adult and juvenile Short-toed Snake Eagles originating from peripheral populations and using an extremely detoured flyway, when compared to other populations using a direct overland flyway.

Methods: We use linear regression models to compare seasonal changes in the age distribution of migrating Short-toed Snake Eagles counted at two migration watch-sites in Italy (Arenzano) and Georgia (Batumi), along a detoured and a direct flyway, respectively.

Results: Juveniles migrated a few days later than adults at both sites and the age ratios recorded at these two sites was similar. The daily proportion of juveniles increased along a similar slope during the migration season, thus showing a similar degree of synchrony between the age classes on both flyways.

Conclusions: Contrary to our hypothesis, juvenile and adult migration is not more synchronized in peripheral populations using a detoured flyway compared to a core population using a direct migration flyway. Our results suggest that juveniles do not learn detours to complete trans-Mediterranean migration from their parents, but from other elders.  相似文献   


5.
The Mediterranean Sea is known as an ecological barrier for numerous migratory birds flying from European breeding grounds to African wintering sites. Birds generally avoid migration over open sea and fly over land. In the Mediterranean Basin, few land bridges or bottlenecks for migratory birds exist. The narrowest are at the western and eastern extremes: the Strait of Gibraltar and Israel. Comparative studies between these locations are extremely rare to date. Therefore, in order to elucidate the differences between the two flyways, we compared data collected simultaneously for two sister leaf warbler species, the Bonelli’s Warbler complex, Phylloscopus bonelli and Phylloscopus orientalis, at ringing stations in the western Mediterranean Basin Gibraltar, and the eastern Eilat, Israel. Data on biometrics and passage dates of individuals trapped at Gibraltar and Eilat were used, and it was found that mean arrival date of Western Bonelli’s Warblers at Gibraltar was 15 days later than Eastern Bonelli’s Warblers at Eilat. Furthermore, Western Bonelli’s Warblers had shorter wings than Eastern Bonelli’s Warblers. On the other hand, birds in Eilat were in poorer body condition than individuals in Gibraltar. The comparison between geographically distant stop-over sites contributes to furthering our understanding of the development of migration strategies across ecological barriers in sibling species. Our study showed that populations that breed in southwestern Europe migrate through Gibraltar and winter in West Africa are able to accomplish migration in comparatively good body condition. This is in contrast to those that winter in East Africa, migrate through Israel and have to endure the combined challenge of crossing the Sahel, Sahara and Sinai deserts before reaching their breeding grounds across southeast Europe and southwest Asia. Hence, the discrepancies described between the western and the eastern flyway suggest that individuals in the west, in general, migrate shorter distances, have a physiologically less demanding crossing of the North African deserts and appear to stage before their crossing the Strait of Gibraltar, a privilege unavailable to the migrants of the eastern flyway.  相似文献   

6.
Capsule: Citizen science data on Wood Warblers Phylloscopus sibilatrix showed that the species non-selectively used a wide variety of habitats during migration but had a tendency for settling to breed in forest and natural areas.

Aims: We tested the hypothesis that habitat used during spring stopovers in Spain differed from habitat use during the breeding period in Switzerland in a year of exceptional abundance as a result of persistent easterly winds in the Mediterranean.

Methods: Habitat use during spring migration 2015 was compared by using bootstrapping resampling techniques on citizen science data from Spain and Switzerland, comparing the land-cover categories between locations of observations with random pseudo-absences.

Results: Wood Warblers showed no preference for habitat features during migration and covered practically all available habitat types from urbanized areas to wetlands and forests, whereas in the breeding range birds showed an increasing tendency to be present in forest habitats.

Conclusions: Habitat use during spring migration covered most available habitat types from urbanized areas to wetlands and forests. Breeding habitat use was restricted to forested areas. Citizen science allowed a quick collection of biological data over a wide area to potentially identify large-scale biological patterns. This is essential to potentially manage international conservation efforts for declining species.  相似文献   


7.
Capsule Red-spotted Bluethroats Luscinia s. svecica from two European breeding populations spent the boreal winter on the Indian sub-continent.

Aim Tracking the migration of Red-spotted Bluethroats from Europe to the hitherto unknown non-breeding areas and back.

Methods Light-level geolocators were deployed on male Bluethroats at breeding sites in the Czech Republic (n?=?10) and in Norway (n?=?30). Recorded light intensity data were used to estimate the locations of non-breeding sites and migration phenology during the annual cycle.

Results Bluethroats spent the boreal winter in India (n?=?3) and Pakistan (n?=?1), on average more than 6000?km from their breeding areas. Autumn migration started in August (n?=?1) or early September (n?=?2), and lasted for 26–74 days. Spring migration commenced on 8 and 9 April (n?=?2) and lasted for about a month. During both autumn and spring migration, birds stopped over two or three times for more than 3 days.

Conclusion This study for the first time showed where Red-spotted Bluethroats from European breeding populations stay during the boreal winter. This seems to be the first time that a passerine bird has been tracked along the Indo-European flyway.  相似文献   

8.
Thomas  Alerstam  Carl-Axel  Bauer Gunnar  Roos 《Ibis》1974,116(2):194-210
Eider migration in southern Scandinavia in spring 1972 was studied simultaneously at three radar stations and ten field observation sites. The Eiders winter in Danish and West German waters, from which they set out on spring migration on courses ranging from SE to NE; those from the northern part of the wintering area flew SE, those from the south NE, while birds wintering in between these geographical extremes set out on intermediate courses around E. Radar showed that most Eiders fly over the island of Zealand and the peninsula of Skåne, but only exceptionally further north over Sweden. Few Eiders crossing land were registered by field observers and most evidently passed at high altitudes beyond the range of vision. After having crossed Skåne, on varying tracks both south and north of east, the Eiders descended and changed flight direction towards NE. Some Eiders from the northern part of the wintering area circumnavigated Skåne, passing south along the Swedish coast of the Sound, crossing the very narrow peninsula of Falsterbo, and subsequently following the south coast of Skåne eastwards. Eiders from southern Denmark and Germany were often deflected eastwards along the south coast. After having passed Skåne no significant land crossings were made. Upon reaching the province of Blekinge on a course towards NE, the Eiders were deflected E to ESE along the coast and later NNE along the west coast of Öland through Kalmar sound. Approximately 350 000 ducks migrated during daytime of the study period, 250 000 crossing the land of Skåne while 100 000 passed along the south coast. Almost 300 000 migrated north in Kalmar sound, and 17 % of all Eiders passed east of Gland over the open sea. Three distinct peaks of activity during the day were noted in Skåne. The first, at around sunrise, originated from birds resting in waters off Skåne. The second occurred about four hours later and probably consisted of birds which had departed from the wintering area in the early morning. A final peak at sunset was often recorded. Migration also took place during the night, but involved only one fifth of the total number. From combined radar and field counts the total Baltic Eider population is estimated to have been 700 000–800 000 in spring 1972, indicating about 300 000 breeding pairs in the Baltic Sea.  相似文献   

9.
Nocturnal avian migration flyways remain an elusive concept, as we have largely lacked methods to map their full extent. We used the network of European weather radars to investigate nocturnal bird movements at the scale of the European flyway. We mapped the main migration directions and showed the intensity of movement across part of Europe by extracting biological information from 70 weather radar stations from northern Scandinavia to Portugal, during the autumn migration season of 2016. On average, over the 20 nights and all sites, 389 birds passed per 1 km transect per hour. The night with highest migration intensity showed an average of 1621 birds km–1 h–1 passing the radar stations, but there was considerable geographical and temporal variation in migration intensity. The highest intensity of migration was seen in central France. The overall migration directions showed strong southwest components. Migration dynamics were strongly related to synoptic wind conditions. A wind‐related mass migration event occurred immediately after a change in wind conditions, but quickly diminished even when supporting winds continued to prevail. This first continental‐scale study using the European network of weather radars demonstrates the wealth of information available and its potential for investigating large‐scale bird movements, with consequences for ecosystem function, nutrient transfer, human and livestock health, and civil and military aviation.  相似文献   

10.
Migratory raptors rarely fly over stretches of water larger than 25 km, although different species undertake water crossings of varying lengths, depending mainly on their wing morphology. Oriental Honey‐buzzards fly c. 680 km over the East China Sea in autumn from breeding areas in Japan to wintering areas in Southeast Asia, but avoid this long water crossing in spring. We investigated the effects of weather on this exceptional migratory behaviour and its seasonality through a maximum entropy niche modelling approach. We used data collected through satellite tracking of 31 adult birds as presence points and a set of variables related to wind, precipitation and convective condition as environmental predictors. Results of modelling showed very different, almost non‐overlapping, areas suitable for migration over the East China Sea region in autumn and spring. Suitable migration routes in autumn mostly occurred over the sea, whereas suitable areas for spring migration mostly occurred over land, suggesting that circumnavigating the East China Sea is preferable in spring. At the regional scale, wind conditions facilitate water‐crossing behaviour of Oriental Honey‐buzzards in autumn, but not in spring. Specifically, suitable tailwinds over the sea enable water‐crossing in autumn, whereas in spring, wind support and convective conditions are best over land. Our modelling did not suggest any importance of convective conditions for autumn migration. However, we expect that at smaller temporal scales, convective conditions would be a considerable facilitator of the water‐crossing behaviour in this species.  相似文献   

11.
Although radar has been used in studies of bird migration for 60 years, there is still no network in Europe for comprehensive monitoring of bird migration. Europe has a dense network of military air surveillance radars but most systems are not directly suitable for reliable bird monitoring. Since the early 1990s, Doppler radars and wind profilers have been introduced in meteorology to measure wind. These wind measurements are known to be contaminated with insect and bird echoes. The aim of the present research is to assess how bird migration information can be deduced from meteorological Doppler radar output. We compare the observations on migrating birds using a dedicated X‐band bird radar with those using a C‐band Doppler weather radar. The observations were collected in the Netherlands, from 1 March to 22 May 2003. In this period, the bird radar showed that densities of more than one bird per km3 are present in 20% of all measurements. Among these measurements, the weather radar correctly recognized 86% of the cases when birds were present; in 38% of the cases with no birds detected by the bird radar, the weather radar claimed bird presence (false positive). The comparison showed that in this study reliable altitudinal density profiles of birds cannot be obtained from the weather radar. However, when integrated over altitude, weather radar reflectivity is correlated with bird radar density. Moreover, bird flight speeds from both radars show good agreement in 78% of cases, and flight direction in 73% of cases. The usefulness of the existing network of weather radars for deducing information on bird migration offers a great opportunity for a European‐wide monitoring network of bird migration.  相似文献   

12.
The population decline of the Lesser Kestrel Falco naumanni has been the subject of studies across its Western Palaearctic breeding range, but little is known about its use of pre‐migratory areas or African wintering quarters. We used geolocators to describe the temporal and spatial patterns of Portuguese Lesser Kestrel migration and wintering behaviour. Data on the complete migration were obtained from four individuals and another three provided further information. Prior to southward migration, Lesser Kestrels showed two different behaviours: northward‐orientated movements to Spain and movements in the proximity of the breeding area. Autumn migration took place mostly in late September; spring departures occurred mainly in the first half of February. Wintering grounds included Senegal, Mauritania and Mali, with individuals overlapping considerably in Senegal. Movements registered within the wintering grounds suggest itinerant behaviour in relation to local flushes of prey. During spring migration, birds crossed the Sahara Desert through Mauritania, Western Sahara and Morocco before passing over the Mediterranean to reach Portugal. Autumn migration lasted 4.8 ± 1.1 days, and spring migration lasted 4.1 ± 0.3 days. The mean daily flight range varied between approximately 300 and 850 km for an entire journey of around 2500 km. Effective protection of roosting sites in both pre‐migratory and wintering areas and maintaining grasshopper populations in Sahelian wintering quarters appear crucial in preserving this threatened migratory raptor across its African–Eurasian flyway. There was no evidence of any deleterious effects of fitting birds with loggers.  相似文献   

13.
Ecological barriers such as oceans, mountain ranges or glaciers can have a substantial influence on the evolution of animal migration. Along the migration flyway connecting breeding sites in the North American Arctic and wintering grounds in Europe or Africa, nearctic species are confronted with significant barriers such as the Atlantic Ocean and the Greenland icecap. Using geolocation devices, we identified wintering areas used by ringed plovers nesting in the Canadian High‐Arctic and investigated migration strategies used by these nearctic migrants along the transatlantic route. The main wintering area of the ringed plovers (n = 20) was located in western Africa. We found contrasting seasonal migration patterns, with ringed plovers minimizing continuous flight distances over the ocean in spring by making a detour to stop in Iceland. In autumn, however, most individuals crossed the ocean in one direct flight from southern Greenland to western Europe, as far as southern Spain. This likely resulted from prevailing anti‐clockwise winds associated with the Icelandic low‐pressure system. Moreover, the plovers we tracked largely circumvented the Greenland icecap in autumn, but in spring, some plovers apparently crossed the icecap above the 65°N. Our study highlighted the importance of Iceland as a stepping‐stone during the spring migration and showed that small nearctic migrants can perform non‐stop transatlantic flights from Greenland to southern Europe.  相似文献   

14.
Abstract

Seasonal flight patterns of the bluegreen aphid (BGA), Acyrthosiphon kondoi Shinji (Homoptera: Aphididae) were studied. BGA had flight peaks twice a year in spring and autumn, BGA flight appeared to be diurnal. The main period of activity extended from 5 am to 7.30 pm.

The accumulated spring and autumn flight peaks lasted 422 Degree Days (DD) and 351 DD (2.9 and 2.4 BGA generations) respectively. Accumulated DD between the median of spring and autumn flights, and the autumn and following spring flight, was 1667 and 1676 DD; this corresponds to 11.5 and 11.6 BGA generations respectively. The use of DD for predicting BGA flight is discussed.  相似文献   

15.
Capsule?Sixteen Black Storks (Ciconia nigra) were tracked by satellite during their autumnal and spring migrations in order to identify their major stopover sites and connections between stopovers in Europe and Africa. Among journeys with stopovers, the longest distance that a stork travelled without stopover was 2433?km (defined here as ‘accessible distance’) meaning that those storks which have stopovers use only a single stopover on average, and this is usually in Spain. We identified nine crucial stopovers (seven in Spain and two in Africa) with high connectivity highlighting the importance of Spanish stopover locations on the flyway of Black Storks.  相似文献   

16.
We studied the long‐distance migration of Lesser Black‐backed Gulls Larus fuscus fuscus breeding in northern Norway along their eastern flyway using geolocators in 2009 and 2010. The majority of birds wintered in lakes in East Africa and the southeast Mediterranean was the most important stopover area. Larus f. fuscus along the eastern flyway travelled at a net travel speed of 399 and 177 km/day during the autumn and spring migration, respectively, higher than published travel speeds for Dutch Larus fuscus migrating along the western flyway. The results suggest that the long‐distance migratory Norwegian L. f. fuscus seek to minimize time spent in transit, whereas lower travel speed during northerly spring migration may reflect differences in wind patterns or food conditions between spring and autumn.  相似文献   

17.
On their migratory journeys, terrestrial birds can come across large inhospitable areas with limited opportunities to rest and refuel. Flight over these areas poses a risk especially when wind conditions en route are adverse, in which case inhospitable areas can act as an ecological barrier for terrestrial migrants. Thus, within the east-Atlantic flyway, the North Sea can function as an ecological barrier. The main aim of this study was to shed light on seasonal patterns of bird migration in the southern North Sea and determine whether departure decisions on nights of intense migration were related to increased wind assistance. We measured migration characteristics with a radar that was located 18 km off the NW Dutch coast and used simulation models to infer potential departure locations of birds on nights with intense nocturnal bird migration. We calculated headings, track directions, airspeeds, groundspeeds on weak and intense migration nights in both seasons and compared speeds between seasons. Moreover, we tested if departure decisions on intense migration nights were associated with supportive winds. Our results reveal that on the intense migration nights in spring, the mean heading was towards E, and birds departed predominantly from the UK. On intense migration nights in autumn, the majority of birds departed from Denmark, Germany and north of the Netherlands with the mean heading towards SW. Prevailing winds from WSW at departure were supportive of a direct crossing of the North Sea in spring. However, in autumn winds were generally not supportive, which is why many birds exploited positive wind assistance which occurred on intense migration nights. This implies that the seasonal wind regimes over the North Sea alter its migratory dynamics which is reflected in headings, timing and intensity of migration.  相似文献   

18.
The flexibility for migrant land birds to be able to travel long distances rapidly without stopovers, and thus to cross wide inhospitable areas such as deserts and oceans, is likely to be a major determinant of their survival during migration. We measured variation in flight distance, speed and duration of major stopovers (more than 2 days), using geolocator tracks of 35 Whinchats Saxicola rubetra that migrated successfully from central Nigeria to Eastern Europe in spring, and examined how these measures changed, or depended on age, when crossing the barriers of the Sahara or the Mediterranean Sea. In all, 31% of Whinchats crossed at least the Sahara and the Mediterranean before a major stopover and 17% travelled over 4751 km on average without any major stopovers. Flight distance and speed during, and duration of major stopovers after, crossing the Mediterranean Sea were indistinguishable from migration over Continental Europe. Speed during a migration leg was lowest crossing Continental Europe and fastest, with longer duration major stopovers afterwards, when crossing the Sahara, but there was much individual variation, and start date of migration was also a good predictor of stopover duration. As the distance travelled during a leg increased, so major stopover duration afterwards increased (1 day for every 1000 km), but the speed of travel during the leg had no effect. There were no differences in any migration characteristics with age, other than an earlier start date for adult birds. The results suggest that adaptive shortening or even dropping of daily stopovers may occur often, allowing rapid, long‐distance migration at the cost of major stopovers afterwards, but such behaviour is not restricted to or always found when crossing barriers, even for birds on their first spring migration. The results may highlight the importance of stopover sites rather than barrier width as the likely key component to successful migration. Individual variation in spring migration may indicate that small passerine migrants like Whinchats may be resilient to future changes in the extent of barriers they encounter, although this may not be true of first autumn migrations or if stopover sites are lost.  相似文献   

19.
Thomas  Alerstam 《Ibis》1975,117(4):489-495
The detailed process of Crane Grus grus migration over sea and land, respectively, was studied from films of a radar station in Skåne, southernmost Sweden, during the spring migratory periods in 1972 and 1973. The true air speed for travelling over the sea was 67 km h-1, whereas over land the Cranes made use of thermal air to soar and gain height and the true air speed was 44 km h-1. Soaring lasted on the average 6.3 min and the distance travelled between the soaring interludes was 13.3 km. True air speed during the flights between thermals was about 70 km h-1. The Cranes compensated completely for wind drift over land, but only incomplete compensation took place over the sea. The angle between the Cranes' heading and track directions over the sea was composed of 68% compensation and 32% drift.  相似文献   

20.
Migratory animals are affected by various factors during their journeys, and the study of animal movement by radars has been instrumental in revealing key influences of the environment on flying migrants. Radars enable the simultaneous tracking of many individuals of almost all sizes within the radar range during day and night, and under low visibility conditions. We review how atmospheric conditions, geographic features and human development affect the behavior of migrating insects and birds as recorded by radars. We focus on flight initiation and termination, as well as in‐flight behavior that includes changes in animal flight direction, speed and altitude. We have identified several similarities and differences in the behavioral responses of aerial migrants including an overlooked similarity in the use of thermal updrafts by very small (e.g. aphids) and very large (e.g. vultures) migrants. We propose that many aerial migrants modulate their migratory flights in relation to the interaction between atmospheric conditions and geographic features. For example, aerial migrants that encounter crosswind may terminate their flight or continue their migration and may also drift or compensate for lateral displacement depending on their position (over land, near the coast or over sea). We propose several promising directions for future research, including the development and application of algorithms for tracking insects, bats and large aggregations of animals using weather radars. Additionally, an important contribution will be the spatial expansion of aeroecological radar studies to Africa, most of Asia and South America where no such studies have been undertaken. Quantifying the role of migrants in ecosystems and specifically estimating the number of departing birds from stopover sites using low‐elevation radar scans is important for quantifying migrant–habitat relationships. This information, together with estimates of population demographics and migrant abundance, can help resolve the long‐term dynamics of migrant populations facing large‐scale environmental changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号