首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Total extracts and kuwanon G from Morus nigra root bark showed antifungal activity against several phytopathogenic fungi, with minimal inhibitory concentration (MIC50) ranging from 32 to 128 μg/ml and from 16 to 64 μg/ml, respectively. Acetonic extracts inhibited 60% B. cinerea biofilm formation at concentration of 128 μg/ml.  相似文献   

2.

Background

Hydroxychavicol, isolated from the chloroform extraction of the aqueous leaf extract of Piper betle L., (Piperaceae) was investigated for its antifungal activity against 124 strains of selected fungi. The leaves of this plant have been long in use tropical countries for the preparation of traditional herbal remedies.

Methods

The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of hydroxychavicol were determined by using broth microdilution method following CLSI guidelines. Time kill curve studies, post-antifungal effects and mutation prevention concentrations were determined against Candida species and Aspergillus species "respectively". Hydroxychavicol was also tested for its potential to inhibit and reduce the formation of Candida albicans biofilms. The membrane permeability was measured by the uptake of propidium iodide.

Results

Hydroxychavicol exhibited inhibitory effect on fungal species of clinical significance, with the MICs ranging from 15.62 to 500 μg/ml for yeasts, 125 to 500 μg/ml for Aspergillus species, and 7.81 to 62.5 μg/ml for dermatophytes where as the MFCs were found to be similar or two fold greater than the MICs. There was concentration-dependent killing of Candida albicans and Candida glabrata up to 8 × MIC. Hydroxychavicol also exhibited an extended post antifungal effect of 6.25 to 8.70 h at 4 × MIC for Candida species and suppressed the emergence of mutants of the fungal species tested at 2 × to 8 × MIC concentration. Furthermore, it also inhibited the growth of biofilm generated by C. albicans and reduced the preformed biofilms. There was increased uptake of propidium iodide by C. albicans cells when exposed to hydroxychavicol thus indicating that the membrane disruption could be the probable mode of action of hydroxychavicol.

Conclusions

The antifungal activity exhibited by this compound warrants its use as an antifungal agent particularly for treating topical infections, as well as gargle mouthwash against oral Candida infections.  相似文献   

3.
A set of N-arylbenzenesulfonamides with various substituents at the arylamine and benzenesulfonyl positions were prepared, and their antifungal properties were measured in vitro against such plant pathogenic fungi as Pythium ultimum, Phytophthora capsici, Rhizoctonia solani, and Botrytis cinerea. Compounds 3, 4, 8, 9, 10, 14, 16, 18, 20, 21, 24 and 27 had antifungal activity over a broad spectrum of the phytopathogenic fungi tested, where 50% of inhibition (ED50) was in the range of 3-15 μg/ml. Based on the in vitro activity, six derivatives (3, 4, 10, 18, 21 and 27) were selected and tested further for their fungicidal efficacy in vivo. The fungicidal efficacy of 10, 21 and 27 had a disease control value of over 85% at 50 μg/ml against wheat leaf rust, while that of 4 was selective against cabbage club root disease.  相似文献   

4.
BackgroundSertraline (SRT) is an antidepressant that has proven its activity in vitro against Cryptococcus, Coccidioides, Trichosporon and other fungi. Disseminated sporotrichosis, although rare, has a high mortality and its treatment is difficult and prolonged, often relying in combining two or more antifungals.AimsIn our study we evaluate the antifungal activity of SRT, alone and in combination with itraconazole (ITC), voriconazole (VRC) and amphotericin B (AMB), against 15 clinical isolates of Sporothrix schenckii.MethodsWe used the broth microdilution method as described by the CLSI to test the susceptibility to antifungals, and the checkerboard microdilution method to evaluate drug interactions.ResultsThe minimum inhibitory concentration (MIC) with SRT was in the range of 4–8 μg/ml, while for AMB, VRC and ITC were 0.5–4 μg/ml, 0.5–8 μg/ml and 0.125–2 μg/ml, respectively. In addition, SRT showed synergy with ITC in one strain, mainly additivity with VRC, and indifference with AMB in others.ConclusionsThe MIC values with SRT for the isolates studied show the potential role of this drug as an adjuvant in the treatment of sporotrichosis, especially in disseminated or complicated cases.  相似文献   

5.
《Experimental mycology》1989,13(4):419-427
Saponin-like compounds isolated fromPisum sativum were tested for antifungal activity, effect on pea tissue, and effect on chitin and chitosan synthesis inFusarium solani. Growth ofFusarium solani f. sp.phaseoli and f. sp.pisi macroconidia was inhibited by saponins at concentrations of 150 and 300 μg/ml, respectively. Pod endocarp tissue treated with saponins showed temporary reduction in cell viability (esterase activity); however, there was no significant reduction in resistance toF. solani f. sp.phaseoli, normally incompatible on peas. Macroconidia germinated in the presence of saponin showed decreased incorporation ofN-[3H]acetylglucosamine into chitin and chitosan at concentrations as low as 32 μg/ml. Thus, a reduction in chitin and chitosan synthesis may be associated with inhibition of fungal growth. Saponins may contribute to the disease resistance of peas  相似文献   

6.
Previous studies have demonstrated that macroalgae from Brittany (France) contain products with antifouling activity against marine bacteria, fungi, diatoms, seaweeds and mussels. Little is known regarding the ecological function of these compounds and insufficient attention has been paid to evaluating the possible temporal variation in antifouling activity. Studies of chemical defenses in both terrestrial and marine organisms suggest that organisms vary widely in the production of chemical defenses associated with physical (temperature, light) and biological (e.g. grazing pressure) factors, season and geographical location. The present study aimed to investigate the antifouling activity of crude extracts of monthly collections of the brown alga, Bifurcaria bifurcata, against two marine bacteria, Cobetia marina and Pseudoalteromonas haloplanktis, and cypris larvae of the barnacle, Balanus amphitrite. The toxicity of the extracts was determined with a B. amphitrite nauplius assay.The antimicrobial activity of the extracts was found to be subject to seasonal variation, with the highest level of activity recorded from samples collected between April and September. Results of the anti-settlement experiments showed that the extracts of B. bifurcata (when tested from 0 to 100 μg/ml) can be divided into three groups on the basis of their minimum inhibitory concentrations (MICs): (1) extracts from plants collected from September to March reduced settlement at nontoxic concentrations (50-100 μg/ml); (2) extracts from plants collected from April to July (which were the most active extracts) reduced settlement significantly when tested at >5 μg/ml, but were toxic at 100 μg/ml; (3) the extract prepared from plants harvested in August was inhibitory at >25 μg/ml, but was toxic at 100 μg/ml. Toxicity tests on nauplii showed that LC50 values of samples from the September to March collections were >100 μg/ml, demonstrating that they were nontoxic to nauplii. In contrast, samples obtained from the April to August collections were toxic to nauplii; the most toxic ones being from algae collected in May (LC50=55.6 μg/ml) and in June (LC50=38.3 μg/ml).The antifouling activity of extracts thus reached a peak in summer corresponding to maximal values for water temperature, light intensity and fouling pressure. It remains to be investigated whether this activity has an ecological role in the alga.  相似文献   

7.
A series of sarisan analogs containing 1,3,4‐oxadiazole moieties were synthesized by iodine‐mediated oxidative cyclization and screened in vitro for their antifungal activities at 50 μg/mL against five phytopathogenic fungi such as Valsa mali, Curvularia lunata, Alternaria alternate, Fusarium solani and Fusarium graminearum. 1,3,4‐Oxadiazole derivatives 7e , 7p , 7r , 7t and 7u exhibited potent and a broad spectrum of antifungal activities against at least three phytopathogenic fungi at the concentration of 50 μg/mL. Especially, compound 7r displayed more potent antifungal activities against five phytopathogenic fungi than the positive control hymexazol. The EC50 of 7r against V. mali, C. lunata and A. alternate were 12.6, 14.5 and 17.0 μg/mL, respectively. Additionally, some interesting results of structure‐activity relationships (SARs) were also observed.  相似文献   

8.
Thirteen Lactic acid bacteria strains isolated from fermenting cocoa and seven reference strains were used in order to assess their antifungal properties towards three ochratoxin A (OTA) producing fungi (Aspergillus carbonarius, Aspergillus niger and Aspergillus ochraceus). Furthermore, two of the isolates strains (A19 and A21) identified as belonging to the genus of Pediococcus as well as Lactobacillus plantarum B4496, Lactobacillus brevis 207 and Lactobacillus sanfranciscensis BB12 showed interesting in vitro broad antifungal activities towards the three ochratoxin-producing fungi with inhibition percentages ranging from 15% to 66.7%. Treatment of cell-free supernatant at 100°C affected antifungal activity suggesting that the main compounds responsible for this activity were of proteic nature, and hence could be bacteriocins. Application of isolate A19 in cocoa fermentation as starter inhibited the growth of each of the OTA-producing species. At the end of fermentation in boxes inoculated with A19, A. niger was not detectable while A. carbonarius concentration was found to be 2 Log CFU/g of wet beans. The assessment of the ochratoxin produced during fermentation of cocoa inoculated with A. carbonarius indicated that the use of isolate A19 as starter could reduce their level of growth so as to have only a toxin production of 0.0012 ± 0.0005 μg/kg after 40 days of storage, while this was 2.45 ± 0.35 μg/kg of fermented and dried cocoa beans in the absence of A19. This work is a contribution for the application of biological control of OTA-producing fungi during cocoa production.  相似文献   

9.
Forty-five sesquiterpene lactones were screened for their antifungal activities against Microsporum cookei, Trichophyton mentagrophytes and Fusarium sp. The screening tests showed that a majority of sesquiterpene examined possess at least weak antifungal activity, the eudesmanolides being the most active. The antifungal activity of sesquiterpene lactones cannot be explained by the presence or absence of two potential active sites (the exocyclic methylene and, in pseudoguaianolides, a β-unsubstituted cyclopentenonel) but other functions must play a role in enhancing or reducing this activity.  相似文献   

10.
The aims of this study were to evaluate the antifungal properties of Baccharis glutinosa and Ambrosia confertiflora extracts against Aspergillus flavus, A. parasiticus and Fusarium verticillioides, and to isolate the group of compounds that are responsible for the antifungal activity. Samples of aerial parts from each plant were extracted with 70% methanol and sequentially partitioned with hexane, ethyl acetate, and n-butanol. The partitioned fractions were evaluated in their capacity to inhibit the radial growth of the three species of fungi. The active fraction was used for an assay-guided chromatography of antifungal extracts. The results showed that the extract from B. glutinosa partitioned in ethyl acetate (Bea) showed the highest antifungal activity against the three fungi. Bea completely inhibited the growth of F. verticillioides at 0.8 mg/ml, whereas the radial growth of A. flavus and A. parasiticus was inhibited 70% at 1.5 mg/ml. The purified antifungal fraction from Bea showed 72, 54, and 52% of antifungal activity, respectively.  相似文献   

11.
In continuation of our program to discover new potential antifungal agents, a series of amide and imine derivatives containing a kakuol moiety were synthesized and characterized by the spectroscopic analysis. By using the mycelium growth rate method, the target compounds were evaluated systematically for antifungal activities in vitro against four plant pathogenic fungi, and structure–activity relationships (SAR) were derived. Compounds 7d, 7e, 7h, 7i and 7r showed obvious inhibitory activity against the corresponding tested fungi at 50 μg/mL. Especially, compounds 7e and 7r displayed more potent antifungal activity against B. cinerea than that of thiabendazole (a positive control). Moreover, compound 7e also exhibited good activity against A. alternata with EC50 values of 11.0 µg/mL, and the value was slightly superior to that of thiabendazole (EC50 = 14.9 µg/mL). SAR analysis showed that the ether group was a highly sensitive structural moiety to the activity and the type as well as position of substituents on benzene ring could make some effects on the activity.  相似文献   

12.
Heparin inhibits (I50 = 2 μg/ml) the activity of luteinizing hormone and human chorionic gonadotropin-stimulated adenylate cyclase in purified rat ovarian plasma membranes. Unstimulated enzyme activity and activity stimulated by NaF, GTP or guanosine 5′-(β,γ-imido)triphosphate were inhibited to a lesser extent. Human chorionic gonadotropin binding to this membrane preparation was inhibited by hepatin (I50 = 6 μg/ml). The inhibition with respect to hormone concentration was of a mixed type for hormone binding and adenylate cyclase stimulation. Inhibition by heparin was not eliminated at saturating hormone concentration. The degree of inhibition was unaffected by the order in which enzyme, hormone and heparin were introduced into the assay system. Herapin (3 μg/ml) did not affect the pH activity relationship of basal and hormone-stimulated adenylate cyclase activity and did not change the dependence of enzyme activity on magnesium ion concentration. The inhibitory action of heparin cannot be solely attributed to interference with either catalysis or hormone binding. The possibility is considered that the highly charged herapin molecule interferes with enzyme receptor coupling, by restricting the mobility of these components or by effecting their conformation.  相似文献   

13.
In this paper, the nitrogen atom was inserted into the anthracycline system of the isocryptolepine nucleus to obtain the “Aza”-type structure benzo[4,5]imidazo[1,2-c] quinazoline. A series of “Aza”-type derivatives were designed, synthesized and evaluated for their antifungal activity against six plant fungi in vitro. Among all derivatives, compounds A-0, B-1 and B-2 showed significant antifungal activity against B. cinerea with the EC50 values of 2.72 μg/mL, 5.90 μg/mL and 4.00 μg/mL, respectively. Compound A-2 had the highest activity against M. oryzae with the EC50 values of 8.81 μg/mL, and compound A-1 demonstrated the most control efficacy against R. solani (EC50, 6.27 μg/mL). Moreover, compound A-0 was selected to investigate the in vivo tests against B. cinerea and the results indicated that the preventative efficacy of it up to 72.80% at 100 μg/mL. Preliminary mechanism studies revealed that after treatment with A-0 at 5 µg/mL, the B. cinerea mycelia appeared curved, collapsed and the cell membrane integrity may be damaged. The reactive oxygen species production, mitochondrial membrane potential and nuclear morphometry of mycelia have been changed, and the membrane function and cell proliferation of mycelia were destroyed. Compounds A-0, A-1, B-1 and B-2 presented weaker toxicities against two cells lines than isocryptolepine. This study lays the foundation for the future development of isocryptolepine derivatives as environmentally friendly and safe agricultural fungicides.  相似文献   

14.
Actinomycetes are well-known for producing numerous bioactive secondary metabolites. In this study, primary screening by antifungal activity assay found one actinomycete strain WA23-4-4 isolated from the intestinal tract of Periplaneta americana that exhibited broad spectrum antifungal activity. 16S rDNA gene analysis of strain WA23-4-4 revealed close similarity to Streptomyces nogalater (AB045886) with 86.6% sequence similarity. Strain WA23-4-4 was considered as a novel Streptomyces and the 16s rDNA sequence has been submitted to GenBank (accession no. KX291006). The maximum antifungal activity of WA23-4-4 was achieved when culture conditions were optimized to pH 8.0, with 12% inoculum concentration and 210 ml ISP2 medium, which remained stable between the 5th and the 9th day. 3-Acetyl benzoyl amide was isolated by ethyl acetate extraction of WA23-4-4 fermentation broth, and its molecular formula was determined as C9H9NO2 based on MS, IR, 1H, and 13C NMR analyses. The compound showed significant antifungal activity against Candida albicans ATCC 10231 (MIC: 31.25 μg/ml) and Aspergillus niger ATCC 16404 (MIC: 31.25 μg/ml). However, the compound had higher MIC values against Trichophyton rubrum ATCC 60836 (MIC: 500 μg/ml) and Aspergillus fumigatus ATCC 96918 (MIC: 1,000 μg/ml). SEM analysis showed damage to the cell membrane of Candida albicans ATCC 10231 and to the mycelium of Aspergillus niger ATCC 16404 after being treatment with 3-acetyl benzoyl amide. In conclusion, this is the first time that 3-acetyl benzoyl amide has been identified from an actinomycete and this compound exhibited antifungal activity against Candida albicans ATCC 10231 and Aspergillus niger ATCC 16404.  相似文献   

15.
Propolis has been used in traditional folk medicine for ages owing to a number of biological effects. Four propolis samples of Czech and one of Slovak origin were extracted using Soxhlet apparatus and analysed by thin-layer chromatography. Raw propolis samples and their extracts were tested by microdilution broth method to determine minimal inhibitory concentration (MIC) in eight strains of human pathogenic fungi. Raw propolis samples showed a lower in vitro antifungal activity than their extracts. In general, the petroleum ether extracts exhibited the highest in vitro antifungal activity (MIC range of 16–64 μg/ml). The content of flavonoids in the samples varied according to region. The highest amount of flavonoids was found in sample A that originated from Broumov (4%). The most susceptible to the propolis extracts were Trichophyton mentagrophytes and Candida albicans. The propolis samples of Czech and Slovak origin and their extracts showed a considerable in vitro antifungal effect which was associated especially with nonpolar petroleum ether and toluene extracts. There was only a partial correlation between flavonoids content and in vitro antifungal activity.  相似文献   

16.
The bioactivity screening of fractions from two inter-tidal sponges collected from the north of China Yellow Sea and one sponge collected from the South Chinese Sea was reported in this study. In sponge Hymeniacidon perleve there were 9 fractions out of 15 from CHCl3 extract with anti Staphylococcus aureus activity, 9 fractions out of 19 from BuOH extract with anti Escherichia coli activity, and three fractions from CHCl3 extract which had moderate to strong activity in inhibiting Bacillus subtilis, Candida albicans, and Aspergilus niger. The fractions of Reniochalina sp. showed bioactivity against bacteria and fungi. The fractions of Acanthella acuta Schmidt showed bioactivity against S. aureus and fungi. One compound from H. perleve obtained by the bioactively directing isolation was tested for bioactivity against the human hepatoma cell line Qgy7701 (IC50 10.1 μg/ml), Burkitt's lymphoma cell line Raji (IC50 9.76 μg/ml) and chronic myelogenous leukemia K562 (IC50 1.90 μg/ml).  相似文献   

17.
Primary aliphatic alkanols from C6 to C13 were tested for their antifungal activity against Saccharomyces cerevisiae using a broth dilution method. Undecanol (C11) was found to be the most potent fungicide against this yeast with the minimum fungicidal concentration (MFC) of 25 μg/ml (0.14 mM), followed by decanol (C10) with the minimum inhibitory concentration (MIC) of 50 μg/ml (0.31 mM). The time-kill curve study showed that undecanol was fungicidal against S. cerevisiae at any growth stages. This fungicidal activity was not influenced by pH values. Dodecanol (C12) was the most effective fungistatic but did not show any fungicidal activity up to 1600 μg/mL. Fungistatic dodecanol quickly reduced cell viability, but the cell viability recovered shortly after and then finally became no longer different from the control indicating that the effect of dodecanol on S. cerevisiae was classified as a sublethal damage. However, fungistatic dodecanol combined with sublethal amount of anethole showed a fungicidal activity against this yeast. Anethole completely restricted the recovery of cell viability. Therefore expression of the synergistic effect was probably due to the blockade of the recovering process from dodecanol induced-stress. The alkanols tested inhibited glucose-induced acidification by inhibiting the plasma membrane H+-ATPase. Octanol (C8) increased plasma membrane fluidity in the spheroplast cells of S. cerevisiae. The same series of aliphatic primary alkanols was also tested against a food spoilage fungus Zygosaccharomyces bailii and compared with their effects against S. cerevisiae. Decanol was found to be the most potent fungicide against Z. bailii with an MFC of 50 μg/ml (0.31 mM), whereas undecanol was found to be the most potent fungistatic with an MIC of 25 μg/ml (0.14 mM). The time-kill curve study showed that decanol was fungicidal against Z. bailii at any growth stage. This antifungal activity was slightly enhanced in combination with anethole. The primary antifungal action of medium-chain (C9–C12) alkanols comes from their ability as nonionic surfactants to disrupt the native membrane-associated function of the integral proteins. Hence, the antifungal activity of alkanols is mediated by biophysical process, and the maximum activity can be obtained when balance between hydrophilic and hydrophobic portions becomes the most appropriate.  相似文献   

18.
Hexane extract of cell free culture filtrate of Bacillus licheniformis MTCC 7445 isolated from rhizoshere soil of a resistant tomato plant showed antifungal activity against a number of soilborne and human pathogenic fungi. Maximum activity was observed against Botrytis cinerea (ED50 = 23.79 μg/ml), Candida albicans (ED50 33.45 μg/ml) and Microsporum canis (ED50 = 39.02 μg/ml). Metabolites such as 1-methyl pyrrolidene, 1-methyl cyclohexene, 4,4-dimethyl cyclohexane, ethyl-4-ethoxybenzoate, 2-butoxyethanol, naphthalene, ter butyl benzene and phenoxy acetic acid were identified by GC-MS and comparing the mass spectrum with the NIST library.  相似文献   

19.
A series of novel 2,3-dihydro-4H-1-benzoselenin-4-one (thio)semicarbazone derivatives were designed and synthesized by using molecular hybridization approach. All the target compounds were characterized by HRMS and NMR and evaluated in vitro antifungal activity against five pathogenic strains. In comparison with precursor selenochroman-4-ones, the hybrid molecules in this study showed significant improvement in antifungal activities. Notably, compound B8 showed significant antifungal activity against other strains excluding Aspergillus fumigatus (0.25 μg/mL on Candida albicans, 2 μg/mL on Cryptococcus neoformans, 8 μg/mL on Candida zeylanoides and 2 μg/mL on fluconazole-sensitive strains of Candida albicans). Moreover, compounds B8, B9 and C2 also displayed most potent activities against four fluconazole-resistance strains. Especially the MIC values of the hybrid molecule B8 against fluconazole-resistant strains were in the range of 0.5–2 μg/mL. Therefore, the molecular hybridization approach in this study provided new ideas for the development of antifungal drug.  相似文献   

20.
The in vitro activity of isavuconazole and nine antifungal comparator agents was assessed using reference broth microdilution methods against 1,421 common and uncommon species of Candida from a 2012 global survey. Isolates were identified using CHROMagar, biochemical methods and sequencing of ITS and/or 28S regions. Candida spp. were classified as either susceptible or resistant and as wild type (WT) or non-WT using CLSI clinical breakpoints or epidemiological cutoff values, respectively, for the antifungal agents. Isolates included 1,421 organisms from 21 different species of Candida. Among Candida spp., resistance to all 10 tested antifungal agents was low (0.0–7.9 %). The vast majority of each species of Candida, with the exception of Candida glabrata, Candida krusei, and Candida guilliermondii (modal MICs of 0.5 µg/ml), were inhibited by ≤0.12 µg/ml of isavuconazole (99.0 %; range 94.3 % [Candida tropicalis] to 100.0 % [Candida lusitaniae and Candida dubliniensis]). C. glabrata, C. krusei, and C. guilliermondii were largely inhibited by ≤1 µg/ml of isavuconazole (89.7, 96.9 and 92.8 %, respectively). Decreased susceptibility to isavuconazole was most prominent with C. glabrata where the modal MIC for isavuconazole was 0.5 µg/ml for those strains that were SDD to fluconazole or WT to voriconazole, and was 4 µg/ml for those that were either resistant or non-WT to fluconazole or voriconazole, respectively. In conclusion, these data document the activity of isavuconazole and generally the low resistance levels to the available antifungal agents in a large, contemporary (2012), global collection of molecularly characterized species of Candida.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号