首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intraspecific and interspecific differentiations of voles of the Russian Far East with respect to allozymic and karyotypic characteristics have been studied. The morphologically similar but karyotypically different species Microtus oeconomus, M. fortis, M. maximowiczii, and M. sachaliensis are characterized by considerable allozymic differentiation. In these voles, the allozymic differentiation has been found to increase in the order adjacent populations-subspecies-species. The interspecific allozymic differentiation of the chromosomally polymorphic M. maximowiczii-M. evoronensis-M. mujanensis does not exceed the intraspecific differences in M. oeconomus, M. fortis, and M. maximowiczii. The results are analyzed in terms of the allopatric and stasipatric models of speciation. The taxonomic status of M. maximowiczii gromovi is considered.  相似文献   

2.

Background

The genus Micronycteris is a diverse group of phyllostomid bats currently comprising 11 species, with diploid number (2n) ranging from 26 to 40 chromosomes. The karyotypic relationships within Micronycteris and between Micronycteris and other phyllostomids remain poorly understood. The karyotype of Micronycteris hirsuta is of particular interest: three different diploid numbers were reported for this species in South and Central Americas with 2n?=?26, 28 and 30 chromosomes. Although current evidence suggests some geographic differentiation among populations of M. hirsuta based on chromosomal, morphological, and nuclear and mitochondrial DNA markers, the recognition of new species or subspecies has been avoided due to the need for additional data, mainly chromosomal data.

Results

We describe two new cytotypes for Micronycteris hirsuta (MHI) (2n?=?26 and 25, NF?=?32), whose differences in diploid number are interpreted as the products of Robertsonian rearrangements. C-banding revealed a small amount of constitutive heterochromatin at the centromere and the NOR was located in the interstitial portion of the short arm of a second pair, confirmed by FISH. Telomeric probes hybridized to the centromeric regions and weakly to telomeric regions of most chromosomes. The G-banding analysis and chromosome painting with whole chromosome probes from Carollia brevicauda (CBR) and Phyllostomus hastatus (PHA) enabled the establishment of genome-wide homologies between MHI, CBR and PHA.

Conclusions

The karyotypes of Brazilian specimens of Micronycteris hirsuta described here are new to Micronycteris and reinforce that M. hirsuta does not represent a monotypic taxon. Our results corroborate the hypothesis of karyotypic megaevolution within Micronycteris, and strong evidence for this is that the entire chromosome complement of M. hirsuta was shown to be derivative with respect to species compared in this study.
  相似文献   

3.
The subfamily Phyllostominae comprises taxa with a variety of feeding strategies. From the cytogenetic point of view, Phyllostominae shows different rates of chromosomal evolution between genera, with Phyllostomus hastatus probably retaining the ancestral karyotype for the subfamily. Since chromosomal rearrangements occur rarely in the genome and have great value as phylogenetic markers and in taxonomic characterization, we analyzed three species: Lophostoma silvicola (LSI), Phyllostomus discolor (PDI) and Tonatia saurophila (TSA), representing the tribe Phyllostomini, collected in the Amazon region, by classic and molecular cytogenetic techniques in order to reconstruct the phylogenetic relationships within this tribe. LSA has a karyotype of 2n=34 and FN=60, PDI has 2n=32 and FN=60 and TSA has 2n=16 and FN=20. Comparative analysis using G-banding and chromosome painting show that the karyotypic complement of TSA is highly rearranged relative to LSI and PHA, while LSI, PHA and PDI have similar karyotypes, differing by only three chromosome pairs. Nearly all chromosomes of PDI and PHA were conserved in toto, except for chromosome 15 that was changed by a pericentric inversion. A strongly supported phylogeny (bootstrap=100 and Bremer=10 steps), confirms the monophyly of Phyllostomini. In agreement with molecular topologies, TSA was in the basal position, while PHA and LSI formed sister taxa. A few ancestral syntenies are conserved without rearrangements and most associations are autapomorphic traits for Tonatia or plesiomorphic for the three genera analyzed here. The karyotype of TSA is highly derived in relation to that of other phyllostomid bats, differing from the supposed ancestral karyotype of Phyllostomidae by multiple rearrangements. Phylogenies based on chromosomal data are independent evidence for the monophyly of tribe Phyllostomini as determined by molecular topologies and provide additional support for the paraphyly of the genus Tonatia by the exclusion of the genus Lophostoma.  相似文献   

4.
Members of Rhogeessa are hypothesized to have undergone speciation via chromosomal rearrangements in a model termed speciation by monobrachial centric fusions. Recently, mitochondrial cytochrome-b sequence data tentatively supported this hypothesis but could not explicitly test the model’s expectations regarding interbreeding among karyotypic forms. These data showed potential evidence for hybridization or incomplete lineage sorting between the karyotypically distinct R. tumida and R. aeneus and identified multiple lineages of karyotypically identical R. tumida. Here, we present a more comprehensive test of speciation by monobrachial centric fusions in Rhogeessa. Our analysis is based on sequence data from two nuclear loci: paternally inherited ZFY and autosomal MPI genes. These data provide results consistent either with incomplete lineage sorting or ancient hybridization to explain alleles shared at low frequency between R. aeneus and R. tumida. Recent and ongoing hybridization between any species can be ruled out. These data confirm the presence of multiple lineages of the 2n = 34 karyotypic form (“R. tumida”) that are not each other’s closest relatives. These results are generally consistent with speciation by monobrachial centric fusions, although additional modes of speciation have also occurred in Rhogeessa. Phylogeographic analyses indicate habitat differences may be responsible for isolation and divergence between different lineages currently referred to as R. tumida.  相似文献   

5.
Ceropegia includes more than 200 species distributed in the Old World ranging from the Canary Islands to Australia. In India, there are about 50 species described on a morphological basis as belonging to Ceropegia, and most of them are endemic to the Western Ghats. To investigate evolutionary relationships among Indian Ceropegia taxa and their allies, a phylogenetic analysis was conducted to include 31 Indian taxa of Ceropegia and Brachystelma and their congeners from other geographical regions using nuclear ribosomal internal transcribed spacer (ITS) and three noncoding chloroplast DNA (cpDNA) sequences, including intergenic spacers trnT-L and trnL-F, and trnL intron. The Western Ghats Ceropegia species were found to be most closely related to Indian Brachystelma, with the two genera being placed sister to each other in the ITS phylogeny or with the Brachystelma clade nested within one of the two subclades of Indian Ceropegia in the cpDNA phylogeny. In contrast, Ceropegia species from other regions and African Brachystelma all formed separate clades basal to the Indian Ceropegia–Brachystelma clade. Thus, it can be concluded that the classical morphology-based delineation of the two genera needs revision to reflect their phylogenetic relationships, which are more in accordance with their geographical origin than with morphology.  相似文献   

6.
The chromosomes of 26 taxa from Mexico of the tribes Passalini (three species) and Proculini (23 species) have been studied, increasing the karyotypically known species of the family Passalidae to 56. Karyotypic dynamism is high since the diploid number varies from 18 to 44 in the tribe Proculini. and from 25 to 31 in the tribe Passalini. In addition, supernumerary chromosomes, chromosome heteromorphism, translocations and possible sex multivalents have been found. These results contrast with the numerical conservatism found in related families of the superfamily Scarabaeoidea. However, both tribes are conservative with regard to sex determination, as all species of Proculini have male XY chromosomes whereas species of the Passalini have male XO chromosomes. It is postulated that differences in patterns shown by these two tribes are mainly due to population structure, because many species of Proculini are endemic to restricted areas of Meso and South America, favouring the settlement of karyotypic changes, whereas species of Passalini are distributed over large areas in the lowlands. It is also postulated that the ancestral karyotypic formula of the family is close to 12–14 pairs of autosomes although the ancestral male sex determination may be either XY or XO. At present only a weak relationship between morphological and karyotypic evolution has been found, which together with the marked numerical variability found within and between genera make it difficult to obtain phylogenetic conclusions from karyotypic results.  相似文献   

7.
Repeating members of multiple-copy sequence families display high levels of sequence homogeneity. In order to examine the rates at which this is achieved, and to compare the rates with those assessed for the ribosomal DNA and histone gene families (Coen et al., 1982, accompanying paper), we have examined the patterns of variation in the Drosophila melanogaster species subgroup for the “complex” noncoding families of high copy-number. Our analysis reveals that the evolution of some of the families has involved the gradual replacement of ancestral repeats by variant repeats, independently within each species. Hybridizations between genomes at different levels of stringency indicate the presence of two basic ancestral families (the “500” and “360” families) within the subgroup. The majority of repeats representative of these families can be characterized by restriction sites and patterns of organization that are uniquely diagnostic for each species, excepting the two most closely related species. Drosophila mauritiana and Drosophila simulans. Another family (the “180” family) is confined to the one species. Drosophila orena, with features suggestive of a more rapid origin. The wide karyotypic distribution of some members of the 500 and 180 families, revealed by hybridization in situ, shows that chromosomes are evolving in concert with respect to gradual and rapidly evolving families. The distribution of sequence and pattern variation within the subgroup shows that the time required for gradual fixation (concerted evolution) of variants within large families, distributed throughout the karyotype, is longer than that required for the smaller and chromosomally restricted families of rDNA and histone genes (Coen et al., 1982). We discuss the forces that might either accelerate or retard the fixation of variants in karyotypically dispersed families.  相似文献   

8.
《Aquatic Botany》2005,83(2):108-118
Trapa L. (Trapaceae) is one of the most common aquatic plants in Japan. However, its taxonomic treatment has differed among authors. As a step toward a revision of Japanese Trapa, we analyzed allozymes in plant samples collected from 55 populations and tentatively classified into 6 taxa. Allozyme analysis indicated three distinct groups corresponding to the size class of the fruits: T. incisa (small), T. japonica group (medium), and T. natans group (large). The development of lower protuberances or spines and the presence or absence of tubercles had no correspondence to allozymic differentiation and thus are to be considered as variants within taxa. Fixed heterozygosity found in the T. japonica group indicates that the group might be of hybrid origin between T. incisa and plants of the T. natans group.  相似文献   

9.
To provide basic information for orchid conservation, we surveyed the plant allozyme literature to summarize genetic diversity and structure data for (i) rare orchids native to the Korean Peninsula, and (ii) their congeners irrespective of being common and rare or Korean or not. A total of 68 taxa (32 taxa in Korea and 37 outside Korea; Goodyera repens being included in both datasets) were considered in this study. Overall, rare Korean orchid species had significantly lower levels of genetic diversity than their common congeners and common orchids in general at both population and species levels. However, mean values of G ST (or F ST) for rare and common orchids (Korean or not) did not differ significantly from each other. We found patterns of both low and high genetic diversity in rare Korean orchids. Many rare orchids harbored a complete lack of allozyme variation or extremely low within-population variation, perhaps due to rarity associated with random genetic drift and/or, for the case of warm-temperate orchids, to founder effects during post-glacial re-colonization. In contrast, high levels of genetic variation were found for a few orchids that have become recently rare (due to over-collection during the past several decades), probably because there have not been sufficient generations for the initial diversity to be substantially eroded. In addition, several orchids occurring in the main mountain system of the Korean Peninsula (the Baekdudaegan), that served as a glacial refugium, maintained moderate to high levels of within-population genetic diversity. Based on our genetic data, conservation priority should be given to rare orchid species. Particularly, urgent measures should be implemented on Jeju Island, a popular vacation spot, because it also a hotspot for threatened orchids with low levels of genetic diversity.  相似文献   

10.
Heterochromatin is a dominant component of the genome in the bottae group of the pocket gopher genus Thomomys, having had a major role in the karyotypic evolution of member species. Heterochromatin characteristics of two subspecies of T. bottae and one of T. umbrinus were examined with fluorochrome dyes identifying presumptive GC- and AT-rich regions. In two karyotypic forms of T. b. fulvus and in T. umbrinus, chromatin that fluoresces brightly with chromomycin A3 is also C-band positive, although not all heterochromatin fluoresces. However, in T. b. bottae, only euchromatic regions fluoresce brightly with chromomycin. Fluorescence patterns produced with DAPI are the reverse of the chromomycin banding in all karyotypic forms. Heterochromatin in these taxa is thus highly differentiated, exhibiting heterogeneity in staining characteristics, and presumably in underlying DNA sequences, both across the genome within a given chromosomal complement as well as among the different karyotypic races and species of the bottae group of pocket gophers.  相似文献   

11.
Thirteen wild species of Passiflora were analyzed using conventional and CMA/DA/DAPI staining to evaluate the karyotype diversity between and within the subgenus Decaloba and Passiflora. The karyotypic features indicate that both subgenera have a conserved chromosome number, as reported before for several species. Submetacentric (sm) chromosomes were found in species from both subgenera, suggesting that sm chromosomes are not restricted to a particular subgenus. The analysis of the karyotypic heterogeneity enabled to distribute the species in three groups, but with no support to phylogenetic and taxonomic levels. The application of fluorochromes allowed for the visualization of CMA+/DAPI blocks, which in our studies always correlated with the occurrence of satellites, showing that occurrence of two chromosome pairs with satellites per cell is a characteristic shared by some species from both subgenera. This feature does not always have relationship with the basic chromosome number. The data found in this study will help to understand the phylogeny, cytotaxonomy, and evolution of the genus Passiflora showing that karyotypic variation can be seen between and within the subgenus Decaloba and Passiflora.  相似文献   

12.
The species of the common shrew (Sorex araneus) group are morphologically very similar but exhibit high levels of karyotypic variation. Here we used genetic variation at 10 microsatellite markers in a data set of 212 individuals mostly sampled in the western Alps and composed of five karyotypic taxa (Sorex coronatus, Sorex antinorii and the S. araneus chromosome races Cordon, Bretolet and Vaud) to investigate the concordance between genetic and karyotypic structure. Bayesian analysis confirmed the taxonomic status of the three sampled species since individuals consistently grouped according to their taxonomical status. However, introgression can still be detected between S. antinorii and the race Cordon of S. araneus. This observation is consistent with the expected low karyotypic complexity of hybrids between these two taxa. Geographically based cryptic substructure was discovered within S. antinorii, a pattern consistent with the different postglaciation recolonization routes of this species. Additionally, we detected two genetic groups within S. araneus notwithstanding the presence of three chromosome races. This pattern can be explained by the probable hybrid status of the Bretolet race but also suggests a relatively low impact of chromosomal differences on genetic structure compared to historical factors. Finally, we propose that the current data set (available at http://www.unil.ch/dee/page7010_en.html#1) could be used as a reference by those wanting to identify Sorex individuals sampled in the western Alps.  相似文献   

13.
We describe a new species of Imantodes from the Chocó region of northwestern Ecuador. The new species differs most significantly from all other congeners in lacking a loreal scale. We analyze the phylogenetic relationships among species of Imantodes based on two mitochondrial genes, and postulate that the new species and Imantodes lentiferus are sister taxa. A key to the species of Imantodes from Ecuador is presented.  相似文献   

14.
The species and races of the shrews of the Sorex araneus group exhibit a broad range of chromosomal polymorphisms. European taxa of this group are parapatric and form contact or hybrid zones that span an extraordinary variety of situations, ranging from absolute genetic isolation to almost free gene flow. This variety seems to depend for a large part on the chromosome composition of populations, which are primarily differentiated by various Robertsonian fusions of a subset of acrocentric chromosomes. Previous studies suggested that chromosomal rearrangements play a causative role in the speciation process. In such models, gene flow should be more restricted for markers on chromosomes involved in rearrangements than on chromosomes common in both parent species. In the present study, we address the possibility of such differential gene flow in the context of two genetically very similar but karyotypically different hybrid zones between species of the S. araneus group using microsatellite loci mapped to the chromosome arm level. Interspecific genetic structure across rearranged chromosomes was in general larger than across common chromosomes. However, the difference between the two classes of chromosomes was only significant in the hybrid zone where the complexity of hybrids is expected to be larger. These differences did not distinguish populations within species. Therefore, the rearranged chromosomes appear to affect the reproductive barrier between karyotypic species, although the strength of this effect depends on the complexity of the hybrids produced.  相似文献   

15.

Background and Aims

Myrica rivas-martinezii is a critically endangered endemic of the laurel forest of the Canary Islands and co-occurs very close to M. faya. Some authors suggest that M. rivas-martinezii and M. faya are two morphs of the same species, so molecular markers were used to estimate the levels and structuring of genetic variation within and among natural populations in order to evaluate genetic relationships between these two congeners.

Methods

Six polymorphic microsatellite (simple sequence repeat, SSR) markers were used to determine the genetic diversity and the genetic relationship between both Myrica species.

Key Results

Most of the natural populations analysed were in Hardy–Weinberg equilibrium for both taxa. Analysis of molecular variance (AMOVA) for both species revealed that most of the genetic variability detected was contained within populations (92·48 and 85·91 % for M. faya and M. rivas-martinezii, respectively), which it is consistent with outcrossing and dioecious plants. Estimates of interpopulation genetic variation, calculated from FST and GST, were quite low in the two taxa, and these values did not increase substantially when M. rivas-martinezii and M. faya populations were compared. The UPGMA dendrogram based on Nei''s genetic distance clustered the populations by their island origin, independently of taxon. In fact, the mixture of individuals of both taxa did not appreciably disrupt the intrapopulational genetic cohesion, and only 3·76 % variation existed between species.

Conclusions

All the results obtained using molecular markers indicate clearly that both taxa share the same genetic pool, and they are probably the same taxa. Considering that M. rivas-martinezii is classified as at risk of extinction, there should be a change of focus of the current management actions for the conservation of this putatively endangered Canarian endemic.Key words: Canary Islands, conservation genetics, microsatellites, Myrica rivas-martinezii, Myrica faya, plant conservation  相似文献   

16.
Pulsed field gel electrophoresis using OFAGE, TAFE, and CHEF systems has been used to more fully characterize karyotypic variation within the two closely related fungal species of Ophiostoma ulmi sensu lato. Twelve wild-type and laboratory strains, representing the less agressive species O. ulmi and both of the biotypes of the more aggressive species O. novo-ulmi were studied and their karyotypes determined. Depending on the strain, a minimum of four to a minimum of eight chromosomal DNA bands were present that fall into three distinct size classes, with one exception. Strain CESSI6K (O. novo-ulmi, North American aggressive subgroup) contains a unique chromosomal DNA band which comigrated near a Saccharomyces cerevisiae chromosome of 0.95 Mb. This unique band was the smallest O. ulmi s. l. chromosomal DNA observed. Seven of the twelve strains shared a common chromosomal DNA banding pattern, whereas each of the other five had a unique karyotype. There was no correlation between chromosome profile and species, as some O. novo-ulmi and O. ulmi strains shared common electrophoretic karyotypes.  相似文献   

17.

Background  

It has been hypothesized that rapid divergence in centromere sequences accompanies rapid karyotypic change during speciation. However, the reuse of breakpoints coincident with centromeres in the evolution of divergent karyotypes poses a potential paradox. In distantly related species where the same centromere breakpoints are used in the independent derivation of karyotypes, centromere-specific sequences may undergo convergent evolution rather than rapid sequence divergence. To determine whether centromere sequence composition follows the phylogenetic history of species evolution or patterns of convergent breakpoint reuse through chromosome evolution, we examined the phylogenetic trajectory of centromere sequences within a group of karyotypically diverse mammals, macropodine marsupials (wallabies, wallaroos and kangaroos).  相似文献   

18.
Rana TS  Narzary D  Ohri D 《Gene》2012,495(1):29-35
The present study was undertaken to understand the genetic differentiation and relationships in various components of C. album complex, C. giganteum and some related species using inter simple sequence repeats (ISSR) profiles and internal transcribed spacer (ITS) sequences. The relationships based on UPGMA dendrograms have shown the heterogenous nature of C. album complex. The 2x taxa while showing close relation among themselves are sharply segregated from 4x and 6x taxa belonging to C. album and C. giganteum. Among the three cytotypes from North Indian plains the 4x shows greater similarity to 6x than to 2x which is corroborated by the karyotypic studies. Furthermore, the 6x C. album and C. giganteum accessions of American and European origin are clearly segregated from those of Indian origin which may show their separate origin. Other related species show relationships according to their taxonomic position. The present study based on ISSR profiles and ITS sequences has therefore been very useful in explaining the relationships between various components of C. album complex and related species. However, more work needs to be done using different CpDNA loci to define correct species boundary of the taxa under C. album complex from Himalayas and North Indian Plains.  相似文献   

19.
F. M. Sene  H. L. Carson 《Genetics》1977,86(1):187-198
The species are endemic to the newest island in the archipelago and are broadly sympatric. They are easily distinguished morphologically in both sexes. Using standard electrophoretic procedures, we have examined 25 loci encoding for structural proteins from 539 silvestris and 325 heteroneura collected at three widely-separated localities where the two species are sympatric. Pairwise comparisons within and between the species show the following coefficients of genetic identity (Nei''s I): within silvestris, 0.961 ± 0.01; within heteroneura, 0.949 ± 0.02; between silvestris and heteroneura, 0.939 ± 0.01. Neither the differences within nor between the species are significant. There are no fixed allelic differences either within or between the species. At the three areas of sympatry, the species show gene frequency differences (P < 0.05) at 9, 11 and 13 loci respectively. This is not much different from the variation within either one of the species across the three localities. The two species have similar heterozygosity ( H) levels (silvestris, 0.083; heteroneura, 0.089) and percent of polymorphic loci (both 0.37). It is suggested that despite their morphological divergence, these species are much more newly formed than classical sibling species. Significant allozymic differences may not have had time to accumulate.  相似文献   

20.
Twelve taxa belonging to two subsections of section Idaeobatus in Rubus L. from southwestern China were characterized by karyotypic, palynological, and random amplified polymorphic DNA (RAPD) data as follows: (1) The 12 taxa were all diploid species (2n = 2x = 14), among which the chromosome counts for R. mesogaeus var. oxycomus, R. subtibetanus, R. ellipticus var. obcordatus, R. inopertus var. echinocalyx, and R. stans were reported for the first time; (2) All taxa except for R. ellipticus and R. pinfaensis could be distinguished from each other by karyotype, pollen morphology, and RAPD markers. Karyotypes were mainly characterized by the difference in numbers and positions of submetacentric chromosomes and chromosomes with satellited pair, the index of the karyotypic asymmetry, and the ratio of the longest to the shortest chromosome. Pollen morphology were mainly characterized by the discrepancy in specific pollen size, P/E ratio, colpi width, distance between the apices of two ectocolpi, and exine ornamentation characters. The cluster results based on RAPD markers were consistent with morphology classification except for R. pinfaensis; (3) Based on the general data of karyotypic, palynological, and RAPD, R. ellipticus var. obcordatus should be treated as a species R. obcordatus, R. ellipticus and R. pinfaensis should be combined as R. ellipticus, and it was more reasonable to place the combinants and R. obcordatus into subsection Stimulantes rather than into subsection Pungentes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号