首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The proteins that bind to rat liver 5.8 S ribosomal ribonucleic acid were identified by affinity chromatography. The nucleic acid was oxidized with periodate and coupled by its 3'-terminus to Sepharose 4B through and adipic acid dihydrazide spacer. The ribosomal proteins that associate with the immobilized 5.8 S rRNA were identified by polyacrylamide gel electrophoresiss: they were L19, L8, and L6 from the 60 S subunit; and S13 and S9 from the small subparticle. Small amounts of L14, L17', L18, L27/L27', and L35', and of S11, S15, S23/S24, and S26 also were bound to the affinity column, but whether they associate directly and specifically with 5.8 S rRNA is not known. Escherichia coli ribosomal proteins did not bind to the rat liver 5.8 S rRNA affinity column.  相似文献   

2.
M A Peters  T A Walker  N R Pace 《Biochemistry》1982,21(10):2329-2335
Limited digestion of mouse 5.8S ribosomal RNA (rRNA) with RNase T2 generates 5'- and 3'-terminal "half-molecules". These fragments are capable of independently and specifically binding to 28S rRNA, so there exist at least two contacts in the 5.8S rRNA for the 28S rRNA. The dissociation constants for the 5.8S/28S, 5' 5.8S fragment/28S, and 3' 5.8S fragment/28S complexes are 9 x 10(-8) M, 6 x 10(-8) M, and 13 x 10(-8) M, respectively. Thus, each of the fragment binding sites contributes about equally to the overall binding energy of the 5.8S/28S rRNA complex, and the binding sites act independently, rather than cooperatively. The dissociation constants suggest that the 5.8S rRNA termini from short, irregular helices with 28S rRNA. Thermal denaturation data on complexes containing 28S rRNA and each of the half-molecules of 5.8S rRNA indicate that the 5'-terminal binding site(s) exist(s) in a single conformation while the 3'-terminal site exhibits two conformational alternatives. The functional significance of the different conformational states is presently indeterminate, but the possibility they may represent alternative forms of a conformational switch operative during ribosome function is discussed.  相似文献   

3.
Neurospora crassa ribosomes contain a species of ribonucleic acid (RNA) of molecular weight 54,000, similar to 5.8S ribosomal RNA previously described for other eukaryotic organisms. The 5.8S RNA from N. crassa was found to be released by heat treatment at 60 C from 25S ribosomal RNA but not from 18S ribosomal RNA. The base composition of N. crassa 5.8S RNA was similar to that of 5.8S RNA from Saccharomyces cerevisiae, but differed from animal 5.8S RNA. During the course of this study, it was discovered that N. crassa 25S ribosomal RNA had a number of internal cleavages that may exist in vivo.  相似文献   

4.
T O Sitz  N Banerjee  R N Nazar 《Biochemistry》1981,20(14):4029-4033
Naturally occurring differences in the nucleotide sequences of 5.8S ribosomal ribonucleic acids (rRNAs) from a variety of organisms have been used to study the role of specific nucleotides in the secondary structure and intermolecular interactions of this RNA. Significant differences in the electrophoretic mobilities of free 5.8S RNAs and the thermal stabilities of 5.8S--28S rRNA complexes were observed even in such closely related sequences as those of man, rat, turtle, and chicken. A single base transition from a guanylic acid residue in position 2 in mammalian 5.8S rRNA to an adenylic acid residue in turtle and chicken 5.8S rRNA results both in a more open molecular conformation and in a 5.8S--28S rRNA junction which is 3.5 degrees C more stable to thermal denaturation. Other changes such as the deletion of single nucleotides from either the 5' or the 3' terminals have no detectable effect on these features. The results support secondary structure models for free 5.8S rRNA in which the termini interact to various degrees and 5.8S--28S rRNA junctions in which both termini of the 5.8S molecule interact with the cognate high molecular weight RNA component.  相似文献   

5.
6.
The nucleotide sequence of ribosomal 5.8 S RNA (also known as 7 S or 5.5 S rRNA) from Novikoff hepatoma ascites cells has been determined to be (see article). Estimations of the secondary structure based upon maximized base pairing and the fragments of partial ribonuclease digestion indicate that there may be five base-paired regions in the molecule, three forming a folding of the termini and two forming secondary hairpin loops. The sequence of Novikoff hepatoma 5.8 S rRNA is about 75% homologous with that of yeast 5.8 S rRNA (Rubin, G.M. (1973) J. Biol. Chem. 248, 3860-3875) and similar models for secondary structure are proposed. Both models contain a very stable G-C rich hairpin loop (residues 116 to 138), a less stable A-U-rich hairpin loop (residues 64 to 91) and two symmetrical bulges (residues 15 to 25 and 40 to 44).  相似文献   

7.
8.
Evidence that 32 S nRNA contains 5.8 S rRNA was provided by studies on specific oligonucleotide sequences of these RNA species. Purified 32P-labeled 5.8 and 28 S rRNA and 32 S RNA were digested with T-1 ribonuclease, and the products were fractionated according to chain length by chromatography on DEAE-Sephadex A-25 at neutral pH. The oligonucleotides in Peak 8 were treated with alkaline phosphatase and the products were separated by two-dimensional electrophoresis on cellulose acetate at pH 3.5 and DEAE-paper in 7% formic acid. Seven unique oligonucleotide markers for 5.8 S rRNA including the methylated octanucleotide A-A-U-U-Gm-G-A-Gp were present in 32 S RNA but were not found in 28 S rRNA, indicating that 5.8 S rRNA is directly derived from the 32 S nucleolar precursor. These studies confirm a maturation pathway for rRNA species in which 32 S nucleolar RNA is a precursor of 5.8 S rRNA as well as 28 S rRNA.  相似文献   

9.
Specific binding of purified proteins from the large ribosomal subunits of Saccharomyces cerevisiae to 5.8 S rRNA was examined by three different methods: nitrocellulose membrane filtration, sucrose density gradient centrifugation, and RNA-Sepharose column chromatography. RNA-protein complex formation was proportional to the amount of proteins added to the reaction mixture. The binding of proteins to the RNA could be saturated. Such RNA-protein complexes were isolated on sucrose density gradients. Protein species present in these complexes were isolated, iodinated, and analyzed by two-dimensional polyacrylamide gel electrophoresis. Eleven proteins, L13, L14, L17, L19, L21, L24, L25, L29, L30, L33, and L39, were identified. By comparison, only six proteins interacted with the 5.8 S rRNA-Sepharose under similar ionic conditions. They were proteins L14, L21, L24, L27, L29, and L30. To better characterize these binding proteins, the interaction of individual proteins with 5.8 S rRNA was studied by nitrocellulose membrane filtration. Proteins L14, L19, L21, L29, L33, and L39 were observed to bind individually with 5.8 S rRNA. Binding of each protein to the RNA could be saturated. The apparent association constants (K'a), measured at 4 degrees C and in 30 mM Tris-HCl, pH 7.4, 20 mM MgCl2, 330 mM KCl, and 6 mM beta-mercaptoethanol, ranged from 1.05 to 3.70 X 10(6) M-1.  相似文献   

10.
11.
12.
13.
14.
15.
16.
Fourier-transform infrared (FT-IR) spectra of yeast ribosomal 5S RNA have been acquired at several temperatures between 30 and 90 degrees C. The difference spectrum between 90 (bases unstacked) and 30 degrees C (bases stacked) provides a measure of base stacking in the RNA. Calibration difference spectra corresponding to stacking of G-C or A-U pairs are obtained from "reference" FT-IR spectra of poly(rG) X poly(rC) minus 5'-GMP and 5'-CMP or poly(rA) X poly(rU) minus 5'-AMP and 5'-UMP. The best fit linear combination of the calibration G-C and A-U difference spectra to the 5S RNA (90-30 degrees C) difference spectrum leads to a total of 25 +/- 3 base pairs (17 G-C pairs + 8 A-U pairs) for the native yeast 5S RNA in the absence of Mg2+. In the presence of Mg2+, an additional six base pairs are detected by FT-IR (one G-C and five A-U). FT-IR melting curve midpoints show that A-U and G-C pairs melt together (65 and 63 degrees C) in the presence of Mg2+ but A-U pairs melt before G-C pairs (47 vs. 54 degrees C) in the absence of Mg2+.  相似文献   

17.
Rat liver ribosome treatment with ethanol and 1 M NH4Cl releases some 31–33 ribosomal proteins. This split protein fraction binds Phe-tRNA, Ac-Phe-tRNA, Met-tRNAM and f-Met-tRNAF in the absence of K+ and Mg++ ions. When the split protein fraction is passed through Sephadex G-100 only six proteins are retained in the column: S10, S14, S15, S19, L35, and L36. The aminoacyl-tRNA binding activity of this protein fraction retained in the Sephadex G-100 column is similar to that of the total split protein fraction, suggesting that the above six proteins, or only some of them, are involved in the binding reaction.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号