首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ascorbate caused a dose-dependent increase in sister-chromatid exchanges (SCEs) in Chinese hamster ovary (CHO) cells and in human lymphocytes. Moreover, in the DNA synthesis inhibition test with HeLa cells, ascorbate gave results typical of DNA-damaging chemicals. Catalase reduced SCE induction by ascorbate, prevented its cytotoxicity in CHO cells, and prevented its effect on HeLa DNA synthesis. Ascorbate reduced induction of SCE in CHO cells by N-methylN′-nitrosoguanidine (MNNG) by direct inactivation of MNNG.  相似文献   

2.
From an X-irradiated human B-lymphoblastoid cell line (CCRF-SB), we have isolated a unique mutant clone (CCRF-SB-T1) which reveals high frequencies of sister-chromatid exchanges (SCEs) and chromosomal fragilities in the C-band regions of chromosomes Nos. 1, 9 and 16, when exposed to high concentrations of bromodeoxyuridine (BrdU). A clear BrdU dose-dependent increase of SCEs (9.6 SCEs/cell at 0.05 mM, 40 SCEs/cell at 0.37 mM on average) in this mutant was observed. Relative contributions of nucleoside and a thymidine (dT) analog of BrdU to high SCEs were studied, since an unusual SCE response to BrdU led us to suspect the significance of BrdU incorporation into DNA and dT pool disturbances. Addition of deoxycytidine (dC), dT or both dC and dT causes an increase of SCEs. On the other hand, deoxyadenosine (dA) and deoxyguanosine (dG) did not have significant effects on SCEs in SB-T1 cells. These results suggest that disturbances of pyrimidine-nucleotide synthesis, including gross imbalance of nucleotide pools, play a pivotal role in the high SCE induction of SB-T1 cells by BrdU.  相似文献   

3.
Summary In order to know the mutagenic effects of synthetic auxins (NAA, 2,4-D, and 2,4,5-T) and a cytokinin (kinetin) in vitro, sister chromatid exchanges (SCEs) were analyzed in cultured cells of a hexaploid wheat (Triticum aestivum L.). In the MS medium supplemented with 2.0 mg/l 2,4-D, the mean number of SCEs per cell was 15.2, and per pg of DNA, 0.42. No significant effect was found in the treatments of NAA or 2,4-D at concentrations of 0.5–10.0 mg/l, whereas more than 2.0 mg/l of 2,4,5-T induced dramatic increases of SCEs. Kinetin itself had no significant effect on SCE induction, but there was a tendency that SCEs induced by 2,4,5-T were suppressed by kinetin.  相似文献   

4.
In this study the frequencies of sister-chromatid exchanges (SCEs) were controled with measurements of the release of reactive oxidants by phagocytes, as determined by luminol-enhanced chemiluminescence (LECL), and levels of the anti-oxidants ascorbate, β-carotene and vitamine E in blood speciments taken from 65 young asymptomatic cigarette smokers. Increased SCE frequencies related with LECL responses (p < 0.0075) of activated blood phagocytes. Anti-oxidant levels did not correlate with either LECL or SCEs. These findings indicated that increased generation of reactive oxidants by circulating phagocytes from cigarette smokers are associated cytogenetic changes.  相似文献   

5.
Mutagenic 1,2-dicarbonyls have been reported to occur in coffee and other beverages and in various foods. We have measured the induction of sister-chromatid exchanges (SCEs) and endoreduplicated cells (ERCs) to determine the genotoxicity of various 1,2-dicarbonyl compounds in Chinese hamster ovary (CHO) AUXB1 cells and human peripheral lymphocytes. The 1,2-dicarbonyls glyoxal, methylglyoxal and kethoxal each induced highly significant increases in both SCEs and ERCs in AUXB1 cells. Glyoxal and kethoxal induced SCEs but not ERCs in human peripheral lymphocytes. In addition, hydrogen peroxide induced highly significant levels of SCEs and ERCs in AUXB1 cells. Bisulfite, which reacts with carbonyl groups to form addition products, significantly reduced the frequency of SCEs and the proportion of ERCs when glyoxal, methylglyoxal, kethoxal and diacetyl were administered to AUXB1 cells. In addition, bisulfite blocked the formation of ERCs, but not SCEs, induced by hydrogen peroxide. These in vitro results suggest that 1,2-dicarbonyls may play an important role in the genotoxicity of some foods and beverages.  相似文献   

6.
研究了6-BA和A5A对渗透胁迫时杨树幼苗叶片光合作用光抑制和活性氧代谢的影响.结果表明,渗透胁迫时杨树叶片净光合速率(Pn)和表观量子效率(AQY)降低,光合作用光抑制加剧,超氧化物歧化酶(SOD)活性升高,抗坏血酸过氧化物酶(APX)活性降低,O2产生加快,H2O2和膜脂过氧化产物丙二醛(MDA)含量升高.6-BA和A5A预处理使胁迫时叶片SOD和APx活性升高。O2生成减少。H2O22和MDA含量降低,同时缓解了光合作用的光抑制.相关分析表明,杨树叶片活性氧水平和MDA含量与Pn和AQY呈负相关.胁迫时杨树叶片活性氧的积累与光合作用光抑制有一定关系,6-BA和A5A对光抑制的缓解作用与其对活性氧清除系统的促进作用有关。  相似文献   

7.
Culture of cells in high exogenous levels (>10–4 M) of bromodeoxyuridine (BrdUrd) or thymidine will increase the baseline sister chromatid exchange (SCE) frequency. The effect is thought to be related to the balance of the DNA precursors thymidine and deoxycytidine. Exogenous addition of deoxycytidine will reverse this effect. Single and twin SCEs were analysed in Colcemid-induced tetraploid Chinese hamster ovary cells exposed to different concentrations of BrdUrd to determine at what stage SCEs are induced by high levels of BrdUrd. In cells exposed to low concentrations of BrdUrd (10–5 M), equal numbers of SCEs were induced in each of the two cell cycles. With increasing concentrations of BrdUrd (10–4 to 2×10–4 M), SCE frequency increased in both cell cycles, but far more SCEs were induced in the second cell cycle. Deoxycytidine (2×10–4 M) reduced the frequency of SCEs primarily by reducing the frequency of SCEs induced in the second cell cycle. Treatment with 3-aminobenzamide (3AB), a potent inhibitor of poly(ADP-ribose) polymerase, produced effects similar to exposure to high levels of BrdUrd including inducing SCEs in the second replication cycle. This suggests a similar mechanism of action. Deoxycytidine had no effect on 3AB-induced SCEs, however, and there was no interaction between 3AB and high exogenous levels of BrdUrd in SCE induction. Thus these two agents probably act through different mechanisms.  相似文献   

8.
Sister-chromatid exchange (SCE) induced by ultraviolet (UV) irradiation and viability after UV irradiation were studied in lymphoblastoid cell lines derived from 7 patients with xeroderma pigmentosum (XP) and 6 normal donors. UV irradiation caused significant increases of SCEs in both XP and normal cells. In 3 XP cell lines, which were deficient in unscheduled DNA synthesis (UDS) and sensitive to the killing effect of UV, very high SCE frequencies were observed after UV irradiation. Cells from a patient with the De Sanctis-Cacchione syndrome were the most sensitive to UV in terms of both SCE induction and cell killing. In 2 of 4 UDS-proficient XP cell lines tested, the incidences of UV-induced SCEs were similar to those in normal cell lines, but in 2 other UDS-proficient lines from 2 XP patients with skin cancer, the frequencies of UV-induced SCEs were significantly higher than in normal cells.Continuous post-UV treatment with 1 mM caffeine markedly enhanced UV-induced SCEs in 3 of 4 UDS-proficient XP cell lines but had only slight effects on cells from the 4th UDS-proficient XP patient and from normal individuals.  相似文献   

9.
D Arquette  L D Caren 《Life sciences》1992,50(11):753-759
Vitamin C is an effective antioxidant that neutralizes reactive oxygen radicals. The purpose of this study was to determine if sodium ascorbate would neutralize the reactive oxygen products generated during the respiratory burst of thioglycollate-elicited murine peritoneal exudate cells (PEC). In vitro and in vivo studies were done. Cells treated in vitro showed a significant, dose-dependent reduction in chemiluminescence (CL) after activation with opsonized zymosan. Higher concentrations of sodium ascorbate (24.2 mM) produced a significantly greater reduction in CL than did lower concentrations (0.242 mM). This range of sodium ascorbate concentrations overlaps those found in normal leukocytes (1-4 mM). Sodium ascorbate at physiological plasma concentrations (0.09 mM) did not reduce CL. Cells incubated with 500 mM sodium ascorbate in vitro and then washed once prior to zymosan activation also showed a significant reduction in CL. In contrast, PEC harvested from mice treated in vivo with sodium ascorbate (one or five daily doses of 1.0 M sodium ascorbate, 0.01 ml/g body weight) did not show a reduction in CL. This concentration of sodium ascorbate represents a dose that is 2310 times greater than the Recommended Dietary Allowance (RDA). These studies show that physiological doses of sodium ascorbate can quench CL in vitro, but even large doses of sodium ascorbate administered in vivo do not affect the CL of harvested murine PEC.  相似文献   

10.
In these studies we have used wild-type Chinese hamster ovary cells (AA8) and a mutant cell line (UV-41) deficient in excision repair to compare sister chromatid exchange (SCE) induction after X irradiation under oxic and hypoxic conditions. X irradiation of AA8 cells under oxic conditions induced only a slight increase in SCEs, whereas at each dose tested a significantly greater number of SCEs were induced in hypoxic cells. When AA8 cells were X-irradiated and the addition of bromodeoxyuridine (BrdU) was delayed for 20 h to allow DNA lesions to be repaired, the levels of SCEs detected in both oxic and hypoxic cells returned to background levels. X irradiation of UV-41 cells also induced only a slight increase of SCEs in oxic cells, whereas a significant number of SCEs were induced in hypoxic cells. However, in contrast to results with AA8 cells, when hypoxic UV-41 cells were X-irradiated and the addition of BrdU was delayed for 20 h, the number of SCEs remained significantly above background levels. In combination with previous alkaline elution data, these results are consistent with the possibility that DNA-protein crosslinks are responsible for the SCEs induced by X irradiation of hypoxic cells. Irrespective of the mechanism(s) involved, the data presented suggest that the SCE assay may potentially aid in the detection of hypoxic tumor cells.  相似文献   

11.
The modifying effects of tannin components extracted from green tea and black tea on mutagen-induced SCEs and chromosome aberrations were studied. These tannin components did not affect spontaneous SCEs and chromosome aberrations in cultured Chinese hamster cells. The frequency of SCEs and chromosome aberrations induced by mitomycin C (MMC) or UV was enhanced by the posttreatment with tea tannin components. When cells were post-treated with tea tannin components in the presence of metabolic enzymes of rat liver (S9 mix), the modifying effects on the induction of SCEs and chromosome aberrations by mutagens were complicated. MMC- and UV-induced SCEs and chromosome aberrations were suppressed by the posttreatment with tea tannin components at low concentrations (less than or equal to 6.7 micrograms/ml) with S9 mix. At a high concentration of tea tannin components (20 micrograms/ml) with S9 mix, a co-mutagenic effect was observed. The modifying effects of tea tannin components were shown to occur in the G1 phase of the cell cycle. In cells from a patient with xeroderma pigmentosum (XP) and a normal human embryo, MMC-induced SCEs were suppressed by the posttreatment with tea tannin components in the presence of S9 mix, and enhanced in the absence of S9 mix. On the other hand, tea tannin components modified SCE frequencies in UV-irradiated normal human cells but not in UV-irradiated XP cells. Our results suggested that tea tannin components themselves inhibited DNA-excision repair and resulted in a co-mutagenic effect, while in the presence of S9 mix metabolites of tea tannin components promoted DNA-excision repair activity and resulted in an antimutagenic effect. MMC-induced chromosome aberrations in mouse bone marrow cells were suppressed by the pretreatment with green tea and black tea tannin mixture.  相似文献   

12.
Sister-chromatid exchanges (SCEs) induced by mitomycin C (MMC), 4-nitroquinoline-1-oxide (4NQO) or UV-light in cultured Chinese hamster ovary cells (CHO K-1 cells) were enhanced by cinoxate (2-ethoxyethyl p-methoxycinnamate) or methyl sinapate (methyl 3,5-dimethoxy 4-hydroxycinnamate). Both substances are cinnamate derivatives and cinoxate is commonly used as a cosmetic UV absorber. Methyl sinapate also increased the frequency of cells with chromosome aberrations in the CHO K-1 cells treated with MMC, 4NQO or UV. These increasing effects of methyl sinapate were critical in the G1 phase of the cell cycle and the decline of the frequencies of UV-induced SCEs and chromosome aberrations during liquid holding was not seen in the presence of methyl sinapate. Both compounds were, however, ineffective in cells treated with X-rays. In cells from a normal human embryo and from a xeroderma pigmentosum (XP) patient, MMC-induced SCEs were also increased by the post-treatment with methyl sinapate. The SCE frequencies in UV-irradiated normal human cells were elevated by methyl sinapate, but no SCE-enhancing effects were observed in UV-irradiated XP cells. Our results suggest that the test substances inhibit DNA excision repair and that the increase in the amount of unrepaired DNA damage might cause the enhancement of induced SCEs and chromosome aberrations.  相似文献   

13.
The possible effects of environmental and genetic factors on spontaneous frequencies of sister chromatid exchanges (SCEs) and cells with chromosome aberrations (CAs) in human lymphocytes were investigated by analysing 177 completed families (mother, father and at least one child). After removing the effects of methodological, biological and life-style factors by the use of multifactor analysis of variance (MANOVA), SCEs and CAs residuals were analysed by simple correlation analysis and principal component analysis. SCEs and CAs inter-familiar variability was higher than that found within families. A significant correlation was found between the average SCE frequencies shared by parents (the so-called 'midpoint parents', or 'midparent') and offspring (linear slope b=0.26+/-0.07, p<0.05), but also between mother and father (b=0.23+/-0.11, p<0.05) suggesting the presence of an effective environmental factor. The midparent-offspring correlation was found to be sustained by the mother-offspring relationship (b=0.28+/-0.08, p<0.05), being the father-offspring correlation not significant (b=0.16+/-0.11, p0.05). Concerning CAs, no statistically significant correlation between parents was found, but the strong relationship between mother and offspring was confirmed (b=0.468+/-0.11, p<0.001). The SCEs correlation between mother vs. offspring disappeared for older offspring (over 23 years old). The obtained findings strongly showed that the genetic make-up is barely detectable in the presence of domestic environment factors which are shown to play the major role in determining the interfamilial variability of SCE and CA in a general population. These results strengthen the suitability of the use of SCEs and CAs analysis in human cytogenetic surveillance for the detection of effective environmental factors.  相似文献   

14.
15.
Cyclo-oxygenase-2 (COX-2) is believed to induce neuronal oxidative stress via production of radicals. While oxygen radicals are not directly involved in COX-2-catalytic cycle, superoxide anion radicals have been repeatedly reported to play a critical role in COX-2-associated oxidative stress. To resolve the controversy, we characterized production of free radicals in PC12 cells in which COX-2 expression was manipulated either genetically or by direct protein transfection and compared them with those generated by a recombinant COX-2 in a cell-free system. Using spin-traps alpha-(4-pyridyl-1-oxide)-N-t-butylnitrone, 5,5-dimethyl-1-pyrroline-N-oxide and 4-((9-acridinecarbonyl) amino)-2,2,6,6- tetramethylpiperidine-1-oxyl (Ac-Tempo), we observed arachidonic acid (AA)-dependent production of carbon-centered radicals by heme-reconstituted recombinant COX-2. No oxygen radicals or thiyl radicals have been detected. COX-2 also catalyzed AA-dependent one-electron co-oxidation of ascorbate to ascorbate radicals. Next, we used two different approaches of COX-2 expression in cells, PCXII cells which express isopropyl-1-thio-beta-D-galactopyranoside inducible COX-2, and PC12 cells transfected with COX-2 using a protein delivery reagent, Chariot. In both models, COX-2-dependent AA-induced generation of carbon-centered radicals was documented using spin-traps and Ac-Tempo. No oxygen radical formation was detected in COX-2-transfected cells by either spin-traps or fluorogenic probe, dihydroethidium. In the presence of ascorbate, AA-induced COX-2-dependent ascorbate radicals were detected. AA caused a significant and selective oxidation of one of the major phospholipids, phosphatidylserine (PS). PS was not a direct substrate for COX-2 but was co-oxidized in the presence of AA. The radical generation and PS oxidation were inhibited by COX-2 inhibitors, niflumic acid, nimesulide, or NS-398. Thus, COX-2 generated carbon-centered radicals but not oxygen radicals or thiyl radicals are responsible for oxidative stress in AA-challenged PC12 cells overexpressing COX-2.  相似文献   

16.
The present study elucidated the effects of indoleamines (serotonin, melatonin, and tryptophan) on oxidative damage of brain mitochondria and synaptosomes induced either by 6-hydroxydopamine (6-OHDA) or by iron plus ascorbate and on viability loss in dopamine-treated PC12 cells. Serotonin (1-100 microM), melatonin (100 microM), and antioxidant enzymes attenuated the effects of 6-OHDA, iron plus ascorbate, or 1-methyl-4-phenylpyridinium on mitochondrial swelling and membrane potential formation. Serotonin and melatonin decreased the attenuation of synaptosomal Ca(2+) uptake induced by either 6-OHDA alone or iron plus ascorbate. Serotonin and melatonin inhibited the production of reactive oxygen species, formation of malondialdehyde and carbonyls, and thiol oxidation in mitochondria and synaptosomes and decreased degradation of 2-deoxy-D-ribose. Unlike serotonin, melatonin did not reduce the iron plus ascorbate-induced thiol oxidation. Tryptophan decreased thiol oxidation and 2-deoxy-D-ribose degradation but did not inhibit the production of reactive oxygen species and formation of oxidation products in the brain tissues. Serotonin and melatonin attenuated the dopamine-induced viability loss, including apoptosis, in PC12 cells. The results suggest that serotonin may attenuate the oxidative damage of mitochondria and synaptosomes and the dopamine-induced viability loss in PC12 cells by a decomposing action on reactive oxygen species and inhibition of thiol oxidation and shows the effect comparable to melatonin. Serotonin may show a prominent protective effect on the iron-mediated neuronal damage.  相似文献   

17.
N Kanaya 《Mutation research》1990,245(4):311-315
The induction of sister-chromatid exchanges (SCEs) and chromosome aberrations (CAs) by aniline hydrochloride (AH) and its C-hydroxylated metabolites, o-, m- and p-aminophenol, in the root cells of Vicia faba was examined. AH induced CAs, but not SCEs. All the C-hydroxylated metabolites of aniline induced both SCEs and CAs. However, the treatment of cells with these metabolites at concentrations that did not cause significant increases in CAs resulted in significant increases in SCEs. These results seem to suggest that the substance that induced CAs in root cells treated with AH was not the C-hydroxylated metabolites of aniline.  相似文献   

18.
G Speit  S Haupter 《Mutation research》1987,190(3):197-203
Penicillamine (PA), a drug used for the treatment of rheumatoid arthritis induces sister-chromatid exchanges (SCEs) and chromosome aberrations in cultivated mammalian cells. PA in concentrations from 400 micrograms/ml upward induced SCEs and proliferative delay in human blood cultures when added for the last 24 h of the culture period. In V79 Chinese hamster cells SCE induction was found after acute exposure to PA before the addition of BrdUrd and after chronic exposure during one cell cycle in the presence of BrdUrd. The effect of PA on SCE frequencies occurred both after treatment in complete medium and in serum-free medium and was not influenced by the application of an S9 mix. The simultaneous addition of peroxidase reduced the PA-induced SCEs whereas catalase did not show any effect. Chromosome analysis in the first mitosis after PA treatment revealed a significant increase in the incidence of chromosome aberrations and endoreduplication. The results are discussed with respect to the cause and the significance of the observed effects in connection with mutagenicity testing.  相似文献   

19.
Biologic markers in ethylene oxide-exposed workers and controls   总被引:2,自引:0,他引:2  
Ethylene oxide (EtO) is an alkylating agent and a model direct-acting mutagen and carcinogen. This study has evaluated a panel of biologic markers including EtO-hemoglobin adducts (EtO-Hb), sister-chromatid exchanges (SCEs), micronuclei, chromosomal aberrations (CAs), DNA single-strand breaks (SSB) and an index of DNA repair (ratio of UDS to NA-AAF-DNA binding) in the peripheral blood cells of 34 workers at a sterilization unit of a large university hospital and 23 controls working in the university library. Comprehensive environmental histories were obtained on each subject including detailed occupational and smoking histories. Industrial hygiene data obtained prior to the study and personal monitoring during the 8 years preceding the study showed that workers were subject to low-level exposure near or below the current Occupational Safety and Health Administration (OSHA) standard of 1 ppm (TWA). Personal monitoring data obtained during 2 weeks prior to blood sampling were uniformly less than 0.3 ppm (TWA). After adjusting for smoking, EtO workplace exposure was significantly (p less than 0.001) associated with EtO-Hb (a carcinogen-protein adduct) and 2 measures of SCEs [the average number of SCEs/cell (SCE50) and the number of high frequency cells (SCEHFC)]. There was an apparent suppression of DNA repair capacity in EtO-exposed individuals as measured by the DNA repair index; i.e., the ratio of unscheduled DNA synthesis (UDS) and NA-AAF-DNA binding (p less than 0.01). No association of DNA repair index with smoking was found. Another important finding of this study is the highly significant correlation between EtO-Hb adduct levels and SCEHFC (p less than 0.01) and SCEs (p less than 0.02) which provides evidence of a direct link between a marker of biologically effective dose and markers of genotoxic response. In contrast, micronuclei, CAs and SSBs were not significantly elevated in the workers. The activity of the u-isoenzyme of glutathione-S-transferase (GT) was measured as a possible genetic marker of susceptibility and a modulator of biomarker formation. However, possibly because of confounding by age, no significant relationships were found between GT and any of the exposure-related markers by ANOVA or among other independent variables by regression. This study demonstrates significant effects of low-level EtO exposure, independent of smoking history, near or below 1 ppm on multiple biomarkers and suggests that the current OSHA standard may not be adequately protective. Previously described effects of smoking on EtO-Hb adducts, SCEs and SCEHFC were also seen in this study.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
Hyperbaric Oxygen Therapy Increases Free Radical Levels in the Blood of Humans   总被引:10,自引:0,他引:10  
It has been postulated that exposure to high concentrations of oxygen results in increased oxygen radical production which may account for the toxic effects of excessive exposure to oxygen. Examination of blood from persons undergoing hyperbaric oxygen (HBO) exposure, by low temperature electron spin resonance (ESR) spectroscopy, demonstrated a marked increase in the magnitude of a signal with properties consistent with a free radical (g = 2.006). The signal diminished to baseline levels within 10 minutes of cessation of HBO exposure. Further in vitro studies of blood revealed an ESR signal generated in red blood cells by oxygen, and dependent on oxyhaemoglobin, which had characteristics indistinguishable from those of the ESR signal of ascorbate radical and the signal in blood from persons undergoing HBO exposure. It is postulated that HBO exposure increases ascorbate radical levels in blood, which is likely to reflect increased ascorbate turnover in human red blood cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号