首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study involves an investigation of various treated fungal biomasses of Aspergillus niger for the removal of thallium from aqueous solutions. Batch pH and kinetic studies were carried out to examine the effects of pH and contact time on the adsorption process. Among various pH values studied, the optimum pH was found to be between 4 and 5. The equilibrium time for Tl adsorption was found to be 6h and the rate of Tl adsorption was rapid in the initial hours. Both Lagergren's pseudo first-order model and Ho's pseudo second-order model well described the reaction kinetics. Batch adsorption experiments conducted at room temperature (22+/-1 degrees C) showed that the adsorption pattern followed the Freundlich isotherm model. Column studies using iron oxide-coated immobilized fungal biomass showed lower adsorption capacities compared to batch studies.  相似文献   

2.
A freshwater filamentous green alga Spirogyra sp. was used as an inexpensive and efficient biosorbent for the removal of C.I. Acid Orange 7 (AO7), C.I. Basic Red 46 (BR46) and C.I. Basic Blue 3 (BB3) dyes from contaminated water. The effects of various physico–chemical parameters on dye removal efficiency were investigated, e.g. contact time, pH, initial dyes concentration, the amount of alga, temperature and biosorbent particle size. Dyes biosorption was a quick process and reactions reached to equilibrium conditions within 60 min. The biosorption capacity of three dyes onto alga was found in the following order: BR46 > BB3> AO7. The values of thermodynamic parameters, including ΔG, ΔH and ΔS, indicated that the biosorption of the dyes on the dried Spirogyra sp. biomass was feasible, spontaneous and endothermic. The pseudo-first order, pseudo-second order and the intraparticle diffusion models were applied to the experimental data in order to kinetically describe the removal mechanism of dyes, with the second one showing the best fit with the experimental kinetic biosorption data (R2 = 0.99). It was also found that the adsorption process followed the Freundlich isotherm model with the highest value of correlation coefficients (0.99) and the biosorption capacity being estimated to be 13.2, 12.2 and 6.2 mg g−1 for BR46, BB3 and AO7, respectively.  相似文献   

3.
Biosorption is an eco-friendly and cost-effective method for treating the dye house effluents. Aspergillus niger and Trichoderma sp. were cultivated in bulk and biomasses used as biosorbents for the biosorption of an azo dye Orange G. Batch biosorption studies were performed for the removal of Orange G from aqueous solutions by varying the parameters like initial aqueous phase pH, biomass dosage, and initial dye concentration. It was found that the maximum biosorption was occurred at pH 2. Experimental data were analyzed by model equations such as Langmuir and Freundlich isotherms, and it was found that both the isotherm models best fitted the adsorption data. The monolayer saturation capacity was 0.48 mg/g for Aspergillus niger and 0.45 mg/g for Trichoderma sp. biomasses. The biosorption kinetic data were tested with pseudo first-order and pseudo second-order rate equations, and it was found that the pseudo second-order model fitted the data well for both the biomasses. The rate constant for the pseudo second-order model was found to be 10–0.8 (g/mg min−1) for Aspergillus niger and 8–0.4 (g/mg min−1) for Trichoderma sp. by varying the initial dye concentrations from 5 to 25 mg/l. It was found that the biomass obtained from Aspergillus niger was a better biosorbent for the biosorption of Orange G dye when compared to Trichoderma sp.  相似文献   

4.

Background

Bioflocculation has been developed as a cost-effective and environment-friendly method to harvest multiple microalgae. However, the high production cost of bioflocculants makes it difficult to scale up. In the current study, low-cost bioflocculants were produced from untreated corn stover by a biomass-degrading bacterium Pseudomonas sp. GO2.

Results

Pseudomonas sp. GO2 showed excellent production ability of bioflocculants through directly hydrolyzing various biomasses. The untreated corn stover was selected as carbon source for bioflocculants’ production due to its highest flocculating efficiency compared to that when using other biomasses as carbon source. The effects of fermentation parameters on bioflocculants’ production were optimized via response surface methodology. According to the optimal model, an ideal flocculating efficiency of 99.8% was obtained with the fermentation time of 130.46 h, initial pH of 7.46, and biomass content of 0.64%. The relative importance of carboxymethyl cellulase and xylanase accounted for 51.8% in the process of bioflocculants’ production by boosted regression tree analysis, further indicating that the bioflocculants were mainly from the hydrolysates of biomass. Biochemical analysis showed that it contained 59.0% polysaccharides with uronic acid (34.2%), 32.1% protein, and 6.1% nucleic acid in the bioflocculants, which had an average molecular weight as 1.33 × 106 Da. In addition, the bioflocculants showed the highest flocculating efficiency at a concentration of 12.5 mg L?1 and were stable over broad ranges of pH and temperature. The highest flocculating efficiencies obtained for Chlorella zofingiensis and Neochloris oleoabundans were 77.9 and 88.9%, respectively.

Conclusions

The results indicated that Pseudomonas sp. GO2 can directly utilize various untreated lignocellulolytic biomasses to produce low-cost bioflocculants, which showed the high efficiency to harvest two green microalgae in a low GO2 fermentation broth/algal culture ratio.
  相似文献   

5.
The adsorption potential of a nonliving alga Nostoc comminutum for the removal of hazardous dyes from aqueous solutions was assessed. The algal biomass in its native form exhibited the highest dye removal efficiency at a pH of 1 and at a contact time of 50 min. The effect of various chemical pretreatments was studied in order to assess the role of surface chemistry and the underlying mechanism. Combined with Fourier transform infrared (FTIR) studies, it was concluded that the carboxylic and amine groups played a dominant role in the dye binding process. pH studies further revealed that besides the electrostatic mechanism, other physical interactions might be operative, which is also revealed from the Dubinin-Radushkevich (D-R) isotherm model. Kinetic studies indicated that the adsorption process followed the second-order kinetics and particle diffusion mechanisms were operative. Thermodynamic studies revealed that the adsorption of two dyes onto the algal biomass was feasible, spontaneous, and exothermic under the studied conditions. Microwave irradiation was proposed as a green method for the regeneration and reuse of the biomass. A 16% loss in the regeneration efficiency of the biosorbent was observed, which reveals its stability and reuse potential. Column experiments with real textile wastewater established the practicality of the developed system. Finally, a comparative study revealed the efficacy of the biosorbent with other previously reported biosorbents for dye removal.  相似文献   

6.
The nonviable biomass of Aspergillus niger, Aspergillus japonica, Rhizopus nigricans, Rhizopus arrhizus, and Saccharomyces cerevisiae were screened for biosorption of textile dyes. The selected anionic reactive dyes were C.I. Reactive Black 8, C.I. Reactive Brown 9, C.I. Reactive Green 19, C.I. Reactive Blue 38, and C.I. Reactive Blue 3. Experiments were conducted at initial dye concentration of 50, 100, 150 and 200mg/L. The effect of initial dye concentration, dose of biosorbent loading, temperature, and pH on adsorption kinetics was studied. S. cerevisiae and R. nigricans were good biosorbents at initial dye concentration of 50mg/L, 1g% (w/v) biomass loading and 29+/-1 degrees C. R. nigricans adsorbed 90-96% dye in 15min, at 20 degrees C and pH 6.0. The data showed an optimal fit to the Langmuir and Freundlich isotherms. The maximum uptake capacity (Q(o)) for the selected dyes was in the range 112-204mg/g biomass.  相似文献   

7.
The efficiency of basic, direct and reactive dye removal from water by narrow-leaved cattail (NLC) powder treated with distilled water (DW-NLC), 37% formaldehyde+0.2 N sulfuric acid (FH-NLC), or 0.1 N sodium hydroxide (NaOH-NLC) at various pH levels (3, 5, 7, and 9) was tested. Desorption of the adsorbed dyes was also investigated. The type of NLC treatment and pH of the dye solution had little effect on removal of basic dyes, and efficiencies ranged from 97% to 99% over the range of pH used. Over a wide range of pH levels, all types of treated cattail powder had negative charges and probably attracted the basic dyes possessing positive charges. Efficiency of removal by the three NLC treatments ranged from 37% to 42% for direct dyes and from 22% to 54% for direct dyes at pH 7. The pH of the dye solution had substantial effects on the efficiency of removal in direct and reactive dyes. Dye removal was highest at pH 3, with 99% for a direct dye (Sirius Red Violet RL) and 96% for a reactive dye (Basilen Red M-5B). There was mutual attraction between negatively charged direct dye molecules and positively charged molecules on the surface of the FH-treated cattail. In tests of desorption of dyes from cattail in distilled water, the desorption percentage for FH-NLC after adsorbing basic, direct and reactive dyes was 6%, 10% and 35%, respectively, which indicated a chemisorption mechanism for basic and direct dyes and some physiosorption for reactive dyes.  相似文献   

8.
The present work is focused on efficient immobilization of polygalacturonase on polyethylene matrix, followed by its application in apple juice clarification. Immobilization of polygalacturonase on activated polyethylene and its use in apple juice clarification was not reported so far. Aspergillus niger Van Tieghem (MTCC 3323) produced polygalacturonase when grown in modified Riviere's medium containing pectin as single carbon source by fed-batch culture. The enzyme was precipitated with ethanol and purified by gel filtration chromatography (Sephacryl S-100) and immobilized onto glutaraldehyde-activated polyethylene. The method is very simple and time saving for enzyme immobilization. Various characteristics of immobilized enzyme such as optimum reaction temperature and pH, temperature and pH stability, binding kinetics, efficiency of binding, reusability and metal ion effect on immobilized enzymes were evaluated in comparison to the free enzyme. Both the free and immobilized enzyme showed maximum activity at a temperature of 45 degrees C and pH 4.8. Maximum binding efficiency was 38%. The immobilized enzyme was reusable for 3 cycles with 50% loss of activity after the third cycle. Twenty-four U of immobilized enzyme at 45 degrees C and 1 h incubation time increased the transmittance of the apple juice by about 55% at 650 nm. The immobilized enzyme can be of industrial advantage in terms of sturdiness, availability, inertness, low price, reusability and temperature stability.  相似文献   

9.
Biosorption is an innovative and alternative technology to remove heavy metal pollutants from aqueous solution using live, inactive and dead biomasses such as algae, bacteria and fungi. In this study, live and dried biomass of Phanerochaete chrysosporium and Funalia trogii was applied as heavy metal adsorbent material. Biosorption of copper(II) cations in aqueous solution by live and dried biomass of Phanerochaete chrysosporium and Funalia trogii was investigated to study the effects of initial heavy metal concentration, pH, temperature, contact time, agitation rate and amount of fungus. Copper(II) was taken up quickly by fungal biomass (live or dried) during the first 15 min and the most important factor which affected the copper adsorption by live and dried biomass was the pH value. An initial pH of around 5.0 allowed for an optimum adsorption performance. Live biomass of two white rot fungi showed a high copper adsorption capacity compared with dried biomass. Copper(II) uptake was found to be independent of temperature in the range of 20–45 °C. The initial metal ion concentration (10–300 mg/L) significantly influenced the biosorption capacity of these fungi. The results indicate that a biosorption as high as 40–60 % by live and dried biomass can be obtained under optimum conditions.  相似文献   

10.
Glucose oxidase (GO) is an enzyme that is used in many fields. In this study, ram horn peptone (RHP) was utilized as the nitrogen source and compared with other nitrogen sources in the production of GO by Aspergillus niger. To obtain higher GO activity, 14 A. niger strains were isolated from soil samples around Erzurum, Turkey. Among these strains, the isolate that was named A. niger OC-3 achieved the highest GO production. The production of GO was carried out in 100 mL scaled batch culture. The fermentation conditions such as initial pH, temperature, agitation speed, and time were investigated in order to improve GO production. The results showed that the cultivation conditions would significantly affect the formation of GO, and the utilization of the RHP achieved the highest enzyme production (48.6 U/mL) if compared to other nitrogen sources. On the other hand, the maximum biomass was obtained by using the fish peptone (7.2 g/L), while RHP yielded 6.4 g/L. These results suggest that RHP from waste ram horns could effectively be used in the production of GO by A. niger OC-3.  相似文献   

11.
Lian J  Guo J  Feng G  Liu G  Yang J  Liu C  Li Z  Yue L  Zhao L 《Bioresource technology》2011,102(24):11239-11243
The effect of redox mediator has been studied in details in the bio-decolorization processes, but there are little literatures about bioreactor systems with functional bio-carrier modified by redox mediator. Two different bioreactor configurations (bioreactor R1 with functional bio-carrier modified by disperse turquoise blue S-GL (as redox mediator) and bioreactor R2 with non-modified bio-carrier) were designed and tested for disperse scarlet S-BWFL decolorization by Halomonas sp. GYW (EF188281) in this study. Influencing factors such as co-substrate, temperature and pH were optimized through batch experiments. Compared to bioreactor R2, bioreactor R1 exhibited good decolorization efficiency and performance ability for the disperse scarlet S-BWFL decolorization, which showed higher decolorization efficiency (over 96% color removal with 0.8 g L(-1) dye concentration) and less hydraulic retention time to attain the same decolorization efficiency. The combinational technology of redox mediator and bio-carrier was a new bio-treatment concept and a great improvement for the application of redox mediator.  相似文献   

12.
In this present work, a kinetic model for biosorption of copper was developed considering the possibility of different forms of functional groups being present on the surface of the biomass prepared from Aspergillus niger. Results showed that metal uptake by A. niger was a mass transfer driven process, requiring only 30min to achieve 70% adsorption efficiency. Copper sorption by A. niger was influenced by the biomass dose, initial metal ion concentration, and pH of the solution. The Langmuir and Freundlich adsorption isotherms were used to describe the behavior of the system at different pH. The retention capacity of the biomass was determined at pH 6.0 to be equal to 23.62mg/g of biomass. The pretreatment with formalin improved the uptake of metal ion.  相似文献   

13.
Removal efficiency of gold from a solution of pure tetrachloroaurate ions was investigated using microbial fuel cell (MFC) technology. The effects of type of catholyte solution and initial gold concentration on the removal efficiency were considered. Due to its presence at high levels in the gold wastewater, the effect of copper ions on the removal efficiency of the gold ions was also studied. The effects of pH and initial biomass concentration on the gold removal efficiency was also determined. The results showed that after 5 h contact time, 95% of gold removal efficiency from a wastewater containing 250 ppm of initial gold ions at ambient temperature using 80 g/L yeast concentration was achieved. After 48 h of the cell''s operation under the same condition, 98.86% of AuCl4 ions were successfully removed from the solution. At initial gold concentration in the waste solution of 250 ppm, pH 2, and initial yeast concentration of 80 g/L, 100% removal efficiency of the gold was achieved. On the other hand, the most suitable condition for copper removal was found at a pH of 5.2, where 53% removal efficiency from the waste solution was accomplished.  相似文献   

14.
Abstract

The removal of Malathion, a moderately toxic organophosphate pesticide causing environmental pollution, from dilute aqueous solutions was studied. The experimental results showed that the dry cells of Bacillus sp. S14 were effective in removing Malathion from solution. Biosorption equilibrium was attained within 6h. Maximum biosorption of Malathion (81.4%) was observed under the following environmental conditions, pH 6.5, temperature 25°C, dry biomass concentration 1g L?1 at 6h. Both Langmuir and Freundlich isotherms were tested and the latter had a better fit with the data. The dried powdered cells of Bacillus sp. S14 can be safely stored for 60 days at room temperature without any loss of biosorption efficiency. The results suggest that the dry cells of the isolated Bacillus sp. S14 can be used as a biosorbent for an efficient removal of Malathion from aqueous solutions.  相似文献   

15.
In the present study we examined the performance of a thermoalkalophilic bacterial consortium, where the predominant strain was Bacillus sp. SF, in the degradation of Reactive Black 5 (RB5). We used a reactor working in continuous mode and investigated the effects of pH, hydraulic retention time (HRT) and several added salts on colour and chemical oxygen demand (COD) reductions. For the chosen operational conditions (pH 9, 55 degrees C and HRT of 12 h) the efficiencies achieved were 91.2 +/- 0.8 % for colour removal and 81.2% for COD removal. The system tolerated, with no significant decrease in colour removal efficiency, 30 g/L Na(2)SO(4), Na(2)CO(3) or NaCl. The latter two salts, however, led to a reduction in COD removal of 30% and 50%, respectively. The system proved to be very effective in the decolourisation of C.I. RB5 under alkaline conditions and at a comparatively high temperature.  相似文献   

16.
Dried biomass of Spirogyra neglecta rapidly sorbed the test metals and the process became saturated in 10-20min. Maximum sorption of Pb(II) [116.1mgg(-1)] and Cu(II) [115.3mgg(-1)] occurred at 0.1gl(-1) biomass and 100mgl(-1) metal concentration in the solution. Sorption of Cu(II) and Pb(II) occurred optimally at pH 4.5 and 5.0, respectively. Lead(II) and Cu(II) sorption were lesser from binary metal solution than from single metal solution. Lead(II) more severely inhibited Cu(II) sorption than vice versa thus reflecting greater affinity of Pb(II) for the biomass. NaOH pretreatment slightly enhanced the metal removal ability of the biomass. During repeated sorption/desorption cycles, Pb(II) and Cu(II) sorption decreased by 11% and 27%, respectively, at the end of the fifth cycle due inter alia to 10-15% loss of biomass. Nevertheless, Spirogyra appears to be a good sorbent for removing metals Cu(II) and Pb(II) from wastewaters.  相似文献   

17.
The effect of Spirogyra sp. incorporated into diet formulations on the growth and body composition of Indian major carp, catla (Catla catla) was investigated in a 45 days feeding trial. Spirogyra dry powder was mixed with different feed ingredients in different amounts (0%, 10%, 25%, 37% and 40% of the total feed). Carps fed with Spirogyra demonstrated higher feed conversion ratio. The study also revealed a direct relationship between the amount of Spirogyra in the diet, and muscle protein and fat contents in the fish. In general, this study demonstrated the benefits of incorporating Spirogyra into carp feeds.  相似文献   

18.
Phytoremediation potential of the aquatic plant Spirodela polyrrhiza was examined for direct blue 129 (DB129) azo dye. The dye removal efficiency was optimized under the variable conditions of the operational parameters including removal time, initial dye concentration, pH, temperature and amount of plant. The study reflected the significantly enhanced dye removal efficiency of S. polyrrhiza by increasing the temperature, initial dye concentration and amount of plant. Intriguingly, artificial neural network (ANN) predicted the removal time as the most dominant parameter on DB129 removal efficiency. Furthermore, the effect of dye treatment on some physiologic indices of S. polyrrhiza including growth rate, photosynthetic pigments content, lipid peroxidation and antioxidant enzymes were studied. The results revealed a reduction in photosynthetic pigments content and in multiplication of fronds after exposure to dye solution. In contrast, malondialdehyde content as well as catalase (CAT) and peroxidase (POD) activities significantly increased that was probably due to the ability of plant to overcome oxidative stress. As a result of DB129 biodegradation, a number of intermediate compounds were identified by gas chromatography–mass spectroscopy (GC–MS) analysis. Accordingly, the probable degradation pathway of DB129 in S. polyrrhiza was postulated.  相似文献   

19.
Potential of spent biomass of a cyanobacterium, Nostoc linckia HA 46, from a hydrogen bioreactor was studied for biosorption of a textile dye, reactive red 198. The waste biomass was immobilized in calcium alginate and used for biosorption of the dye from aqueous solution using response surface methodology (RSM). Kinetics of the dye in aqueous solution was studied in batch mode. Interactive effects of initial dye concentration (100-500 mg/L), pH (2-6) and temperature (25-45 °C) on dye removal were examined using Box-Behnken design. Maximum adsorption capacity of the immobilized biomass was 93.5 mg/g at pH 2.0, initial concentration of 100 mg/L and 35 °C temperature, when 94% of the dye was removed. Fourier transform infrared (FT-IR) studies revealed that biosorption was mainly mediated by functional groups like hydroxyl, amide, carboxylate, methyl and methylene groups present on the cell surface.  相似文献   

20.
Three kinds of filamentous fungi (Rhizopus arrhizus, Trametes versicolor, Aspergillus niger) were tested for their ability to adsorb Gryfalan Black RL metal-complex dye as a function of pH, temperature and dye concentration. R. arrhizus and T. versicolor exhibited the maximum dye uptake at pH 2.0 and at 25 degrees C while A. niger performed the highest dye biosorption at pH 1.0 and at 35 degrees C. Sorption capacity of each biosorbent increased with increasing initial dye concentration. Among the three fungi, R. arrhizus was the most effective biosorbent showing a maximum dye uptake of 666.7 mg g(-1). The Langmuir model described the equilibrium data of each dye-fungus system accurately in the concentration and temperature ranges studied. Kinetic analysis indicated that both adsorption kinetics and internal diffusion played an important role on controlling the overall adsorption rate for each fungus. Thermodynamic analysis verified that A. niger biosorption was endothermic while the others were exothermic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号