首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Assembly of human immunodeficiency virus type 1 (HIV-1) is directed by the viral core protein Pr55gag. Depending on the cell type, Pr55gag accumulates either at the plasma membrane or on late endosomes/multivesicular bodies. Intracellular localization of Pr55gag determines the site of virus assembly, but molecular mechanisms that define cell surface or endosomal targeting of Pr55gag are poorly characterized. We have analyzed targeting of newly synthesized Pr55gag in HeLa H1 cells by pulse-chase studies and subcellular fractionations. Our results indicated that Pr55gag was inserted into the plasma membrane and, when coexpressed with the viral accessory protein Vpu, Pr55gag remained at the plasma membrane and virions assembled at this site. In contrast, Pr55gag expressed in the absence of Vpu was initially inserted into the plasma membrane, but subsequently endocytosed, and virus assembly was partially shifted to internal membranes. This endocytosis of Pr55gag required the host protein Tsg101. These results identified a previously unknown role for Vpu and Tsg101 as regulators for the endocytic uptake of Pr55gag and suggested that the site of HIV-1 assembly is determined by factors that regulate the endocytosis of Pr55gag.  相似文献   

2.
3.
Myristoylation of the Pr65gag protein from Moloney murine leukemia virus has been shown to be essential for virus particle formation [Rein et al., Proc. Natl. Acad. Sci. USA 83 (1986) 7246-7250], and by analogy, myristoylation of the human immunodeficiency virus (HIV) Gag precursor could possibly play a similar role. We have investigated the expression and myristoylation of the complete HIV Gag precursor Pr55gag in yeast, the subcellular localization of that protein, and the contribution of the myristoyl-glycine residue to this localization. Immunogold labelling of myristoylated Pr55gage with antibodies directed against HIV Gag products was apparent in the vicinity of the plasma membrane. On the contrary, non-myristoylated derivatives of Pr55gag were only detected in relatively well-defined regions of the cytoplasm. These results show that targeting and accumulation of the HIV Gag precursor, Pr55gag, at the plasma membrane occurs in yeast in the absence of other viral components and requires the N-myristoyl-glycine residue.  相似文献   

4.
The human immunodeficiency virus type 1 gag gene product Pr55gag self-assembles when expressed on its own in a variety of eukaryotic systems. Assembly in T lymphocytes has not previously been studied, nor is it clear whether Pr55gag particles can package genomic RNA or if the Gag-Pol polyprotein is required. We have used a series of constructs that express Gag or Gag-Pol proteins with or without the viral protease in transient transfections in COS-1 cells and also expressed stably in CD4+ T cells to study this. Deletion of the p6 domain at the C terminus of protease-negative Pr55gag did not abolish particle release, while truncation of the nucleocapsid protein reduced it significantly, particularly in lymphocytes. Gag-Pol polyprotein was released from T cells in the absence of Pr55gag but did not encapsidate RNA. Pr55gag encapsidated human immunodeficiency virus type 1 RNA whether expressed in a protease-positive or protease-negative context. p6 was dispensable for RNA encapsidation. Marked differences in the level of RNA export were noted between the different cell lines.  相似文献   

5.
After entry of the human immunodeficiency virus type 1 (HIV-1) into T cells and the subsequent synthesis of viral products, viral proteins and RNA must somehow find each other in the host cells and assemble on the plasma membrane to form the budding viral particle. In this general review of HIV-1 assembly, we present a brief overview of the HIV life cycle and then discuss assembly of the HIV Gag polyprotein on RNA and membrane substrates from a biochemical perspective. The role of the domains of Gag in targeting to the plasma membrane and the role of the cellular host protein cyclophilin are also reviewed.  相似文献   

6.
Role of HIV-1 Gag domains in viral assembly   总被引:13,自引:0,他引:13  
After entry of the human immunodeficiency virus type 1 (HIV-1) into T cells and the subsequent synthesis of viral products, viral proteins and RNA must somehow find each other in the host cells and assemble on the plasma membrane to form the budding viral particle. In this general review of HIV-1 assembly, we present a brief overview of the HIV life cycle and then discuss assembly of the HIV Gag polyprotein on RNA and membrane substrates from a biochemical perspective. The role of the domains of Gag in targeting to the plasma membrane and the role of the cellular host protein cyclophilin are also reviewed.  相似文献   

7.
The unprocessed Gag precursor from HIV-1, when expressed in recombinant baculovirus-infected insect cells, is targeted to the plasma membrane and assembles in 100-120 nm particles budding from the cell surface. This process mimics HIV immature particle formation and is dependent on myristoylation of the N-terminal glycine, as deletion of the latter results in particle accumulation in the cytoplasm and, interestingly, in the nucleus, pointing to a potential role of this non-fatty-acid-acylated species in the viral life cycle. Inclusion of the pol gene in the construct results in efficient processing of Pr55gag and a pronounced decrease in particle formation. Deletion of the C terminus (p16) of the Gag precursor, including the finger domains, abolishes particle assembly, but membrane targeting and evagination still occur. Heterologous expression in insect cells may prove very useful for the study of the molecular events leading to retroviral particle morphogenesis.  相似文献   

8.
The Gag proteins of Rous sarcoma virus and human immunodeficiency virus (HIV) each contain a function involved in a late step in budding, defects in which result in the accumulation of these molecules at the plasma membrane. In the Rous sarcoma virus Gag protein (Pr76gag), this assembly domain is associated with a PPPY motif, which is located at an internal position between the MA and CA sequences. This motif is not contained anywhere within the HIV Gag protein (Pr55gag), and the MA sequence is linked directly to CA. Instead, a late assembly function of HIV has been associated with the p6 sequence situated at the C terminus of Gag. Here we demonstrate the remarkable finding that the late assembly domains from these two unrelated Gag proteins are exchangeable between retroviruses and can function in a positionally independent manner.  相似文献   

9.
10.
11.
The assembly and budding of human immunodeficiency virus type 1 (HIV-1) at the plasma membrane are directed by the viral core protein Pr55(gag). We have analyzed whether Pr55(gag) has intrinsic affinity for sphingolipid- and cholesterol-enriched raft microdomains at the plasma membrane. Pr55(gag) has previously been reported to associate with Triton X-100-resistant rafts, since both intracellular membranes and virus-like Pr55(gag) particles (VLPs) yield buoyant Pr55(gag) complexes upon Triton X-100 extraction at cold temperatures, a phenotype that is usually considered to indicate association of a protein with rafts. However, we show here that the buoyant density of Triton X-100-treated Pr55(gag) complexes cannot be taken as a proof for raft association of Pr55(gag), since lipid analyses of Triton X-100-treated VLPs demonstrated that the detergent readily solubilizes the bulk of membrane lipids from Pr55(gag). However, Pr55(gag) might nevertheless be a raft-associated protein, since confocal fluorescence microscopy indicated that coalescence of GM1-positive rafts at the cell surface led to copatching of membrane-bound Pr55(gag). Furthermore, extraction of intracellular membranes or VLPs with Brij98 yielded buoyant Pr55(gag) complexes of low density. Lipid analyses of Brij98-treated VLPs suggested that a large fraction of the envelope cholesterol and phospholipids was resistant to Brij98. Collectively, these results suggest that Pr55(gag) localizes to membrane microdomains that are largely resistant to Brij98 but sensitive to Triton X-100, and these membrane domains provide the platform for assembly and budding of Pr55(gag) VLPs.  相似文献   

12.
Assembly of type C retroviruses such as Moloney murine leukemia virus (M-MuLV) ordinarily occurs at the plasma membranes of infected cells and absolutely requires the particle core precursor protein, Pr65gag. Previously we have shown that Pr65gag is membrane associated and that at least a portion of intracellular Pr65gag protein appears to be routed to the plasma membrane by a vesicular transport pathway. Here we show that intracellular particle formation can occur in M-MuLV-infected cells. M-MuLV immature particles were observed by electron microscopy budding into and within rough endoplasmic reticulum, Golgi, and vacuolar compartments. Biochemical fractionation studies indicated that intracellular Pr65gag was present in nonionic detergent-resistant complexes of greater than 150S. Additionally, viral RNA and polymerase functions appeared to be associated with intracellular particles, as were Gag-beta-galactosidase fusion proteins which have the capacity to be incorporated into virions. Immature intracellular particles in postnuclear lysates could be proteolytically processed in vitro to mature forms, while extracellular immature M-MuLV particles remained immature as long as 10 h during incubations. The occurrence of M-MuLV-derived intracellular particles demonstrates that Pr65gag can associate with intracellular membranes and indicates that if a plasma membrane Pr65gag receptor exists, it also can be found in other membrane compartments. These results support the hypothesis that intracellular particles may serve as a virus reservoir during in vivo infections.  相似文献   

13.
The human immunodeficiency virus type 1 (HIV-1) Gag protein recruits Tsg101 to facilitate HIV-1 particle budding and release. In uninfected cells, the Hrs protein recruits the ESCRT-I complex to the endosome, also through an interaction with Tsg101, to promote the sorting of host proteins into endosomal vesicles and multivesicular bodies. Here, we show that the overexpression of the C-terminal fragment of Hrs (residues 391 to 777) or Hrs mutants lacking either the N-terminal FYVE domain (mutant dFYVE) or the PSAP (residues 348 to 351) motif (mutant ASAA) all efficiently inhibit HIV-1 Gag particle production. Expression of the dFYVE or ASAA mutants of Hrs had no effect on the release of Moloney murine leukemia virus. Coimmunoprecipitation analysis showed that the expression of Hrs mutant dFYVE or ASAA significantly reduced or abolished the HIV-1 Gag-Tsg101 interaction. Yeast-two hybrid assays were used to identify two new and independent Tsg101 binding sites, one in the Hrs coiled-coil domain and one in the proline/glutamic acid-rich domain. Scanning electron microscopy of HeLa cells expressing HIV-1 Gag and the Hrs ASAA mutant showed viral particles arrested in "lump-like" structures that remained attached to the cell surface. Together, these data indicate that fragments of Hrs containing the C-terminal portion of the protein can potently inhibit HIV-1 particle release by efficiently sequestering Tsg101 away from the Gag polyprotein.  相似文献   

14.
D Bonnet  P F Spahr 《Journal of virology》1990,64(11):5628-5632
In avian cells, the product of the gag gene of Rous sarcoma virus, Pr76gag, has been shown to be targeted to the plasma membrane, to form virus particles, and then to be processed into mature viral gag proteins. To explore how these phenomena may be dependent upon cellular (host) factors, we expressed the Rous sarcoma virus gag gene in a lower eucaryote, Saccharomyces cerevisiae, and studied the behavior of the gag gene product. We show here that Pr76gag is processed in yeast cells and that this processing is specific, since it is abolished in a mutant in which the active site of the gag protease has been destroyed. In this mutant, the uncleaved precursor is found associated with the yeast plasma membrane, yet no virus particles were detected in cells or in the culture medium. From our results, we can speculate either that in yeast cells, a host protease initiates Pr76gag processing in the cytosol or that in avian cells, an inhibitor prevents the processing until the viral particle is formed.  相似文献   

15.
Retroviral Gag proteins encode sequences, termed late domains, which facilitate the final stages of particle budding from the plasma membrane. We report here that interactions between Tsg101, a factor involved in endosomal protein sorting, and short peptide motifs in the HIV-1 Gag late domain and Ebola virus matrix (EbVp40) proteins are essential for efficient egress of HIV-1 virions and Ebola virus-like particles. EbVp40 recruits Tsg101 to sites of particle assembly and a short, EbVp40-derived Tsg101-binding peptide sequence can functionally substitute for the HIV-1 Gag late domain. Notably, recruitment of Tsg101 to assembling virions restores budding competence to a late-domain-defective HIV-1 in the complete absence of viral late domain. These studies define an essential virus-host interaction that is conserved in two unrelated viruses. Because the Tsg101 is recruited by small, conserved viral sequence motifs, agents that mimic these structures are potential inhibitors of the replication of these lethal human pathogens.  相似文献   

16.
All gammaretroviruses, including murine leukemia viruses (MuLVs), feline leukemia viruses, and gibbon-ape leukemia virus, encode an alternate, glycosylated form of Gag polyprotein (glyco-Gag or gPr80gag) in addition to the polyprotein precursor of the viral capsid proteins (Pr65gag). gPr80gag is translated from an upstream in-frame CUG initiation codon, in contrast to the AUG codon used for Pr65gag. The role of glyco-Gag in MuLV replication has been unclear, since gPr80gag-negative Moloney MuLV (M-MuLV) mutants are replication competent in vitro and pathogenic in vivo. However, reversion to the wild type is frequently observed in vivo. In these experiments, in vivo inoculation of a gPr80gag mutant, Ab-X-M-MuLV, showed substantially lower (2 log) initial infectivity in newborn NIH Swiss mice than that of wild-type virus, and revertants to the wild type could be detected by PCR cloning and DNA sequencing as early as 15 days postinfection. Atomic force microscopy of Ab-X-M-MuLV-infected producer cells or of the PA317 amphotropic MuLV-based vector packaging line (also gPr80gag negative) revealed the presence of tube-like viral structures on the cell surface. In contrast, wild-type virus-infected cells showed the typical spherical, 145-nm particles observed previously. Expression of gPr80gag in PA317 cells converted the tube-like structures to typical spherical particles. PA317 cells expressing gPr80gag produced 5- to 10-fold more infectious vector or viral particles as well. Metabolic labeling studies indicated that this reflected enhanced virus particle release rather than increased viral protein synthesis. These results indicate that gPr80gag is important for M-MuLV replication in vivo and in vitro and that the protein may be involved in a late step in viral budding or release.  相似文献   

17.
The structural precursor polyprotein of human immunodeficiency virus type 1, Pr55(gag), contains a proline-rich motif (PTAP) called the "late domain" in its C-terminal p6 region that directs release of mature virus-like particles (VLPs) from the plasma membranes of gag-transfected COS-1 cells. The motif binds Tsg101 (vacuolar protein-sorting protein 23, or Vps23), which functions in endocytic trafficking. Here, we show that accumulation of the wild-type (wt) Gag precursor in a fraction of COS-1 cytoplasm enriched in multivesicular bodies and small particulate components of the plasma membrane (P100) is p6 dependent. Cleavage intermediates and mature CA mainly partitioned with more rapidly sedimenting larger material enriched in components of lysosomes and early endosomes (P27), and this also was p6 dependent. Expression of truncated or full-length Tsg101 proteins interfered with VLP assembly and Gag accumulation in the P100 fraction. This correlated with reduced accumulation of Gag tagged with green fluorescent protein (Gag-GFP) at the plasma membrane and colocalization with the tagged Tsg101 in perinuclear early endosomes, as visualized by confocal microscopy. Fractionation analysis and confocal examination both indicated that the N-terminal region of Tsg101, which contains binding sites for PTAP and ubiquitin (Ub), was required for Gag trafficking to the plasma membrane. Expression of FLAG-tagged Tsg101 with a deletion in the Ub-binding pocket inhibited VLP release almost completely and to a significantly greater extent than expression of the wt tagged Tsg101 protein or Tsg101-FLAG containing a deletion in the PTAP-binding region. The results demonstrate that Gag associates with endosomal trafficking compartments and indicate that efficient release of virus particles from the plasma membrane requires both the PTAP- and Ub-binding functions of Tsg101 to recruit the cellular machinery required for budding.  相似文献   

18.
Incorporation of chimeric gag protein into retroviral particles.   总被引:2,自引:36,他引:2       下载免费PDF全文
The product of the Rous sarcoma virus (RSV) gag gene, Pr76gag, is a polyprotein precursor which is cleaved by the viral protease to yield the major structural proteins of the virion during particle assembly in avian host cells. We have recently shown that myristylated forms of the RSV Gag protein can induce particle formation with very high efficiency when expressed in mammalian cells (J. W. Wills, R. C. Craven, and J. A. Achacoso, J. Virol. 63:4331-4343, 1989). We made use of this mammalian system to examine the abilities of foreign antigens to be incorporated into particles when fused directly to the myristylated Gag protein. Our initial experiments showed that removal of various portions of the viral protease located at the carboxy terminus of the RSV Gag protein did not disrupt particle formation. We therefore chose this region for coupling of iso-1-cytochrome c from Saccharomyces cerevisiae to Gag. This was accomplished by constructing an in-frame fusion of the CYC1 and gag coding sequences at a common restriction endonuclease site. Expression of the chimeric gene resulted in synthesis of the Gag-cytochrome fusion protein and its release into the cell culture medium. The chimeric particles were readily purified by simple centrifugation, and transmission electron microscopy of cells that produced them revealed a morphology similar to that of immature type C retrovirions.  相似文献   

19.
The human immunodeficiency virus type 1 (HIV-1) Pr55gag precursors were previously shown to assemble and bud efficiently as noninfectious virus-like particles (VLPs) when expressed in baculovirus-infected insect cells. In this study, we examined the abilities of foreign antigens to be incorporated on the outer surface of HIV-1 Gag particles. We have used a dual recombinant baculovirus, expressing the HIV-1 Gag gene and gD gene under the control of the P10 and polyhedrin promoters, respectively, to obtain hybrid VLPs. Transmission electron microscopy of insect cells infected with the dual recombinant revealed very large aggregates of particles budding from the cell membrane. The release of VLPs into the culture medium was clearly different for a recombinant baculovirus producing solely HIV-1 Gag, for which particles were uniformly distributed all around the cell surface. Biochemical analysis of hybrid particles indicated that glycoprotein gD was packaged into HIV-1 Gag VLPs. Moreover, the carboxy-terminal p6 region of Gag polyprotein and the glycoprotein gD intracytoplasmic domain were not required for gD incorporation. The experiments described here clearly demonstrate that glycoprotein gD can be packaged with HIV-1 Gag particles and released from insect cells.  相似文献   

20.
Gag proteins of human immunodeficiency virus type 1 (HIV-1) play a pivotal role in the budding of the virion, in which the zinc finger motifs of the gag proteins recognize the packaging signal of genomic RNA. Nucleolin, an RNA-binding protein, is identified as a cellular protein that binds to murine leukemia virus (MuLV) gag proteins and regulates the viral budding, suggesting that HIV-1 gag proteins, the packaging signal, psi and nucleolin affect the budding of HIV-1. Here we report that nucleolin enhances the release of HIV-1 virions which contain psi. Furthermore, nucleolin and gag proteins form a complex incorporated into virions, and nucleolin promotes the infectivity of HIV-1. Our results suggest that an empty particle which contains neither nucleolin nor the genomic RNA is eliminated during the budding process, and this mechanism is beneficial for escape from the host immune response against HIV-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号