首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fructan is an important class of non-structural carbohydrates present in cool-season grasses. Sucrose: fructan 6-fructosyltransferase (6-SFT, EC 2.4.1.10), one of the enzymes thought to be involved in grass fructan biosynthesis, catalyzes the initiation and extension of 2,6-linked fructans.Myo-inositol is a central component in several metabolic pathways in higher plants.Myo-inositol 1-phosphate synthase (MIPS) (EC 5.5.1.4), the first enzyme in inositolde novo biosynthesis, catalyzes the formation ofmyo-inositol 1-phosphate (MIP) from glucose-6-phosphate. The expression of 6-SFT and MIPS genes is compared in barley (Hordeum vulgare L.) leaves under various conditions. In cool temperature treatments, both 6-SFT and MIPS mRNAs accumulate within two days and then decline after four days. Under warm temperatures and continuous illumination, the amount of 6-SFT and MIPS mRNA gradually accumulated in detached leaves and increased significantly by 8 h. In contrast, we observed no significant changes over time in attached (control) leaves. Treating detached leaves with glucose or sucrose in the dark resulted in accumulations of both 6-SFT and MIPS mRNA. Homologous expression patterns for 6-SFT and MIPS genes suggest that they may be similarly regulated in barley leaves. Although sucrose and glucose may play important roles in the expression of 6-SFT and MIPS genes, regulation likely involves multiple factors.  相似文献   

2.
Previous work has indicated that sugar sensing may be important in the regulation of fructan biosynthesis in grasses. We used primary leaves of barley (Hordeum vulgare cv Baraka) to study the mechanisms involved. Excised leaf blades were supplied in the dark with various carbohydrates. Fructan pool sizes and two key enzymes of fructan biosynthesis, sucrose (Suc):Suc-1-fructosyltransferase (1-SST; EC 2. 4.1.99) and Suc:fructan-6-fructosyltransferase (6-SFT; EC 2.4.1.10) were analyzed. Upon supply of Suc, fructan pool sizes increased markedly. Within 24 h, 1-SST activity was stimulated by a factor of three and 6-SFT-activity by a factor of more than 20, compared with control leaves supplemented with mannitol (Mit). At the same time, the level of mRNA encoding 6-SFT increased conspicuously. These effects were increased in the presence of the invertase inhibitor 2, 5-dideoxy-2,5-imino-D-mannitol. Compared with equimolar solutions of Suc, glucose (Glu) and fructose stimulated 6-SFT activity to a lesser extent. Remarkably, trehalose (Tre; Glc-alpha-1 and 1-alpha-Glc) had stimulatory effects on 6-SFT activity and, to a somewhat lesser extent, on 6-SFT mRNA, even in the presence of validoxylamine A, a potent trehalase inhibitor. Tre by itself, however, in the presence or absence of validoxylamine A, did not stimulate fructan accumulation. Monosaccharides phosphorylated by hexokinase but not or weakly metabolized, such as mannose (Man) or 2-deoxy-Glc, had no stimulatory effects on fructan synthesis. When fructose or Man were supplied together with Tre, fructan and starch biosynthesis were strongly stimulated. Concomitantly, phospho-Man isomerase (EC 5.3.1.8) activity was detected. These results indicate that the regulation of fructan synthesis in barley leaves occurs independently of hexokinase and is probably based on the sensing of Suc, and also that the structurally related disaccharide Tre can replace Suc as a regulatory compound.  相似文献   

3.
We have previously reported the molecular characterization of a putative sucrose:fructan 6-fructosyltransferase (6-SFT) of Bromus pictus, a graminean species from Patagonia, tolerant to cold and drought. Here, this enzyme was functionally characterized by heterologous expression in Pichia pastoris and Nicotiana tabacum. Recombinant P. pastoris Bp6-SFT showed comparable characteristics to barley 6-SFT and an evident fructosyltransferase activity synthesizing bifurcose from sucrose and 1-kestotriose. Transgenic tobacco plants expressing Bp6-SFT, showed fructosyltransferase activity and fructan accumulation in leaves. Bp6-SFT plants exposed to freezing conditions showed a significantly lower electrolyte leakage in leaves compared to control plants, indicating less membrane damage. Concomitantly these transgenic plants resumed growth more rapidly than control ones. These results indicate that Bp6-SFT transgenic tobacco plants that accumulate fructan showed enhanced freezing tolerance compared to control plants.  相似文献   

4.
5.
6.
Fructan (polyfructosylsucrose) is an important storage carbohydrate in many plant families. fructan:fructan 6G-fructosyltransferase (6G-FFT) is a key enzyme in the formation of the inulin neoseries, a type of fructan accumulated by members of the Liliales. We have cloned the 6G-FFT from onion by screening a cDNA library using barley sucrose:fructan 6-fructosyltransferase (6-SFT) as a probe. The deduced amino acid sequence showed a high homology with plant invertases and 6-SFT. Incubation of protein extracts from transgenic tobacco plants with the trisaccharide 1-kestose and sucrose resulted in the formation of neokestose and fructans of the inulin neoseries with a degree of polymerization up to six. Introduction of the onion 6G-FFT into chicory resulted in the synthesis of fructan of the inulin neoseries, in addition to the synthesis of linear inulin.  相似文献   

7.
 Hydroponically cultivated barley plants were exposed to nitrogen (N)-deficiency followed by N-resupply. Metabolic and genetic regulation of fructan accumulation in the leaves were investigated. Fructan accumulated in barley leaves under N-deficiency was mobilized during N-resupply. The enhanced total activity of fructan-synthesizing enzymes, sucrose:sucrose 1-fructosyltransferase (EC 2.4.1.99) and sucrose:fructan 6-fructosyltransferase (6-SFT; EC 2.4.1.10) caused by N-deficiency decreased with the mobilization of fructan during N-resupply. The activity of the barley fructan-degrading enzyme, fructan exohydrolyase (EC 3.2.1.80) was less affected by the N status. The low level of foliar soluble acid invertase activity under N-deficiency conditions was maintained during the commencement of N-resupply but increased subsequently. Further analyses by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, western blot and northern blot demonstrated that the fructan accumulation and the total activity of fructan-synthesizing enzymes correlated with the 6-SFT mRNA level. We suggest that the changes in fructan levels under N stress are intimately connected with the regulation of fructan synthetic rate which is mostly controlled by 6-SFT. Received: 25 October 1999 / Accepted: 15 February 2000  相似文献   

8.
The effects of three conditions likely to affect soluble carbohydrate pools, namely drought, expression of barley sucrose: fructan 6-fructosyl transferase (6-SFT, EC 2.4.1.10) and the establishment of the arbuscular mycorrhizal symbiosis with Glomus mosseae were studied in a multifactorial experiment using tobacco ( Nicotiana tabacum ). Tobacco, a plant naturally unable to form fructan, accumulated fructan in leaves, and to a larger extent in the roots, when transformed with 6-SFT. Under drought conditions, growth was considerably reduced, but neither expression of 6-SFT nor mycorrhiza formation had an effect on growth rate. However, in response to drought, carbon partitioning was significantly altered towards accumulation of soluble sugars. In plants exposed to drought, pools of sucrose were greater than those of unstressed plants, particularly in their roots. In the transgenic plants expressing 6-SFT, there were also increased contents of the products of 6-SFT, namely fructan, most probably because of the increased availability of the substrate, sucrose. These effects were the same in the presence or absence of mycorrhiza. Hexoses (glucose and fructose) also increased in response to drought, primarily in the leaves. This effect of drought was little affected by the expression of 6-SFT, except that it slightly enhanced drought-induced glucose accumulation in roots. However, the presence of mycorrhiza led to a considerable reduction in drought-induced accumulation of hexoses in the leaves. The content of the fungal disaccharide trehalose was greatly increased in the roots of all mycorrhizal plants upon exposure to drought, particularly in some of the transgenic plants expressing 6-SFT.  相似文献   

9.
We have recently cloned a cDNA encoding sucrose:fructan 6-fructosyltransferase (6-SFT), a key enzyme of fructan synthesis forming the β-2,6 linkages typical of the grass fructans, graminans and phleins [Sprenger et al. (1995) Proc. Natl. Acad. Sci. USA 92, 11652–11656]. Here we report functional expression of 6-SFT from barley in transgenic tobacco and chicory. Transformants of tobacco, a plant naturally unable to form fructans, synthesized the trisaccharide kestose and a series of unbranched fructans of the phlein type (β-2,6 linkages). Transformants of chicory, a plant naturally producing only unbranched fructans of the inulin type (β-2,1 linkages), synthesized in addition branched fructans of the graminan type, particularly the tetrasaccharide bifurcose which is also a main fructan in barley leaves.  相似文献   

10.
* Fructan is the major nonstructural carbohydrate reserve in temperate grasses. To understand regulatory mechanisms in fructan synthesis and adaptation to cold environments, the isolation, functional characterization and genetic mapping of fructosyltransferase (FT) genes in perennial ryegrass (Lolium perenne) are described. * Six cDNAs (prft1-prft6) encoding FTs were isolated from cold-treated ryegrass plants, and three were positioned on a perennial ryegrass linkage map. Recombinant proteins were produced in Pichia pastoris and enzymatic activity was characterized. Changes in carbohydrate levels and mRNA levels of FT genes during cold treatment were also analysed. * One gene encodes sucrose-sucrose 1-fructosyltransferase (1-SST), and two gene encode fructan-fructan 6G-fructosyltransferase (6G-FFT). Protein sequences for the other genes (prfts 1, 2 and 6) were similar to sucrose-fructan 6-fructosyltransferase (6-SFT). The 1-SST and prft1 genes were colocalized with an invertase gene on the ryegrass linkage map. The mRNA levels of prft1 and prft2 increased gradually during cold treatment, while those of the 1-SST and 6G-FFT genes first increased, but then decreased before increasing again during a longer period of cold treatment. * Thus at least two different patterns of gene expression have developed during the evolution of functionally diverse FT genes, which are associated in a coordinated way with fructan synthesis in a cold environment.  相似文献   

11.
Crested wheatgrass is an important cool-season grass that has become naturalized in many semiarid regions of the western U.S. It provides ground cover and reduces soil erosion caused by water and wind. Additionally, crested wheatgrass produces important forage for livestock and wildlife on 6 to 8 million hectars of western rangeland. It is well adapted to semiarid cold desert regions because of its cool temperature growth and drought tolerance. Understanding the biosynthesis of fructans in crested wheatgrass is important because of their likely role in both cool temperature growth and drought tolerance. Recent research described a major gene (6-SFT) in crested wheatgrass that is involved in fructan biosynthesis. 1-kestotriose, the major DP3 fructan in crested wheatgrass, serves as the substrate for the two major DP4 fructans, 1&6-kestotetraose and 1,1-kestotetraose. The three major DP5 fructans are 1&6,1-kestopentaose, 1,1&6-kestopentaose and 1,1,1-kestopentaose. The major DP6 fructan is 1&6, 1&6-kestohexaose. We postulate that 1&6,1&6-kestohexaose is synthesized from the addition of a fructose to 1&6, 1-kestopentaose. This paper provides structures of the various DP 3, 4, 5 and 6 fructan types produced by crested wheatgrass and provides suggested biosynthetic pathways for all major fructan linkage types present.  相似文献   

12.
13.
The active center of the glycoside hydrolase family 32 contains the three characteristic motifs (N/S)DPNG, RDP, and EC. We replaced the N-terminal region including the (N/S)DPNG motif of barley 6-SFT (sucrose:fructan 6-fructosyltransferase) by the corresponding region of Festuca 1-SST (sucrose:sucrose 1-fructosyltransferase). The chimeric enzyme, expressed in Pichia, retained the specificity of 6-SFT. Attempts to replace a larger piece at the N-terminus including also the RDP motif failed. A point mutation introduced in the RDP motif of 1-SST abolished enzymatic activity. Interestingly, point mutations of the EC-motif resulted in an enzyme which had lost the capability to form 1-kestose and glucose from sucrose but still accepted 1-kestose, producing fructose and sucrose as well as nystose.  相似文献   

14.
Plant fructosyltransferases are highly homologous in primary sequence and typically consist of two subunits but catalyze widely different reactions. Using functional expression in the yeast Pichia pastoris, we show that the substrate specificity of festuca sucrose:sucrose 1--beta-D-fructosyltransferase (1-SST) and barley sucrose:fructan 6--beta-D-fructosyltransferase (6-SFT) is entirely determined by the large subunit. Chimeric enzymes with the large subunit of festuca 1-SST (LSuB) and the small subunit of barley 6-SFT have the same catalytic specificity as the native festuca 1-SST and vice versa. If the LSuB is expressed alone, it does not yield a functionally active enzyme, indicating that the small subunit is nevertheless essential.  相似文献   

15.
16.
A genuine 1-SST (sucrose:sucrose 1-fructosy] transferase, EC 2.4.1.99) was purified and characterized from young chicory roots ( Cichorium intybus L. var. foliosum cv. Flash) by a combination of ammonium sulfate precipitation, concanavalin A affinity chromatography, anion and cation exchange chromatography. This protocol produced a 63-fold purification and a specific activity of 4.75 U (mg protein)−1. The mass of the enzyme was 69 kDa as estimated by gel filtration. On SDS-PAGE apparent molecular masses of 49 kDa (α-subunit) and 24 kDa (β-subunit) were found. Further specification was obtained by MALDI-TOF MS detecting molecular ions at m/z 40109 and 19 896. These two fragments were also found on a western blot using an SDS-boiled chicory root extract and chicken-raised polyclonal antibodies against the purified 1-SST, indicating that the enzyme is a heterodimer in vivo. The N-terminus of chicory root 1-SST α-subunit was shown to be highly homologous with the cDNA-derived amino acid sequences from barley 6-SFT and a number of β-fructosyl hydrolases (in-vertases and fructan hydrolases). However, chicory root 1-SST properties could be clearly differentiated from those of chicory root 1-FFT (EC 2.4.1.100), chicory root acid invertase (EC 3.2.1.26) and yeast invertase. The enzyme mainly produced 1-kes-tose and glucose from physiologically relevant sucrose concentrations, indicating that this 1-SST is the key enzyme initiating fructan biosynthesis in vivo. However, like chicory root 1-FFT and barley 6-SFT, the enzyme also showed some β-fructofuranosi-dase activity (fructosyl transfer to water) at very low sucrose concentrations. Although sucrose clearly is the best substrate for the enzyme, some transferase and β-fructofuranosidase activity were also detected using 1-kestose as the sole substrate.  相似文献   

17.
A genuine 1-SST (sucrose:sucrose 1-fructosy] transferase, EC 2.4.1.99) was purified and characterized from young chicory roots ( Cichorium intybus L. var. foliosum cv. Flash) by a combination of ammonium sulfate precipitation, concanavalin A affinity chromatography, anion and cation exchange chromatography. This protocol produced a 63-fold purification and a specific activity of 4.75 U (mg protein)−1. The mass of the enzyme was 69 kDa as estimated by gel filtration. On SDS-PAGE apparent molecular masses of 49 kDa (α-subunit) and 24 kDa (β-subunit) were found. Further specification was obtained by MALDI-TOF MS detecting molecular ions at m/z 40109 and 19 896. These two fragments were also found on a western blot using an SDS-boiled chicory root extract and chicken-raised polyclonal antibodies against the purified 1-SST, indicating that the enzyme is a heterodimer in vivo. The N-terminus of chicory root 1-SST α-subunit was shown to be highly homologous with the cDNA-derived amino acid sequences from barley 6-SFT and a number of β-fructosyl hydrolases (in-vertases and fructan hydrolases). However, chicory root 1-SST properties could be clearly differentiated from those of chicory root 1-FFT (EC 2.4.1.100), chicory root acid invertase (EC 3.2.1.26) and yeast invertase. The enzyme mainly produced 1-kes-tose and glucose from physiologically relevant sucrose concentrations, indicating that this 1-SST is the key enzyme initiating fructan biosynthesis in vivo. However, like chicory root 1-FFT and barley 6-SFT, the enzyme also showed some β-fructofuranosi-dase activity (fructosyl transfer to water) at very low sucrose concentrations. Although sucrose clearly is the best substrate for the enzyme, some transferase and β-fructofuranosidase activity were also detected using 1-kestose as the sole substrate.  相似文献   

18.
Many characterized plant disease resistance genes encode proteins which have conserved motifs such as the nucleotide binding site. Conservation extends across different species, therefore resistance genes from one species can be used to isolate homologous regions from another by employing DNA sequences encoding conserved protein motifs as probes. Here we report the isolation and characterization of a barley (Hordeum vulgare L.) resistance gene analog family consisting of nine members homologous to the maize rust resistance gene Rp1-D. Five barley Rp1-D homologues are clustered within approximately 400 kb on chromosome 1(7H), near, but not co-segregating with, the barley stem rust resistance gene Rpg1; while others are localized on chromosomes 3(3H), 5(1H), 6(6H) and 7(5H). Analyses of predicted amino-acid sequences of the barley Rp1-D homologues and comparison with known plant disease resistance genes are presented.  相似文献   

19.
Fructans play important roles as reserve carbohydrates and stress protectants in plants, and additionally serve as prebiotics with emerging antioxidant properties. Various fructan types are synthesized by an array of plant fructosyltransferases belonging to family 32 of the glycoside hydrolases (GH32), clustering together with GH68 in Clan-J. Here, the 3D structure of a plant fructosyltransferase from a native source, the Pachysandra terminalis 6-SST/6-SFT (Pt6-SST/6-SFT), is reported. In addition to its 1-SST (1-kestose-forming) and hydrolytic side activities, the enzyme uses sucrose to create graminan- and levan-type fructans, which are probably associated with cold tolerance in this species. Furthermore, a Pt6-SST/6-SFT complex with 6-kestose was generated, representing a genuine acceptor binding modus at the +1, +2 and +3 subsites in the active site. The enzyme shows a unique configuration in the vicinity of its active site, including a unique D/Q couple located at the +1 subsite that plays a dual role in donor and acceptor substrate binding. Furthermore, it shows a unique orientation of some hydrophobic residues, probably contributing to its specific functionality. A model is presented showing formation of a β(2-6) fructosyl linkage on 6-kestose to create 6,6-nystose, a mechanism that differs from the creation of a β(2-1) fructosyl linkage on sucrose to produce 1-kestose. The structures shed light on the evolution of plant fructosyltransferases from their vacuolar invertase ancestors, and contribute to further understanding of the complex structure-function relationships within plant GH32 members.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号