首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The increasing number of penicillin-resistant clinical strains of Streptococcus pneumoniae has raised questions about the mechanism involved. We have isolated a large number of independent, spontaneous laboratory mutants with increasing resistance against either piperacillin or cefotaxime. Both classes of mutants showed a different pathway of penicillin-binding protein (PBP) alterations, and within each group of mutants the individual PBPs appeared to have changed at different resistance levels and in different sequences. The mutations led to decreased beta-lactam affinity and possibly to a reduction in the amount of protein present in the cell, but differences in apparent molecular weight, like those reported in low- and high-level resistant pathogenic strains, were not found. Some mutants showed a high degree of cross-resistance to a variety of penicillins and cephalosporins independently of the acquired PBP alterations, indicating that different genotypes can be responsible for the same phenotypic expression of resistance.  相似文献   

2.
The increasing number of penicillin-resistant clinical strains of Strepfococcus pneumoniae has raised questions about the mechanism involved. We have isolated a large number of independent, spontaneous laboratory mutants with increasing resistance against either piperacillin or cefotaxime. Both classes of mutants showed a different pathway of penicillin-binding protein (PBP) alterations, and within each group of mutants the individual PBPs appeared to have changed at different resistance levels and in different sequences. The mutations led to decreased β-lactam affinity and possibly to a reduction in the amount of protein present in the cell, but differences in apparent molecular weight, like those reported in low- and high-level resistant pathogenic strains, were not found. Some mutants showed a high degree of cross-resistance to a variety of pencillins and cephaiosporins independently of the acquired PBP alterations, indicating that different genotypes can be responsible for the same phenotypic expression of resistance.  相似文献   

3.
In Streptococcus pneumoniae, alterations in penicillin-binding protein 2b (PBP 2b) that reduce the affinity for penicillin binding are observed during development of beta-lactam resistance. The development of resistance was now studied in three independently obtained piperacillin-resistant laboratory mutants isolated after several selection steps on increasing concentrations of the antibiotic. The mutants differed from the clinical isolates in major aspects: first-level resistance could not be correlated with alterations in the known PBP genes, and the first PBP altered was PBP 2b. The point mutations occurring in the PBP 2b genes were characterized. Each mutant contained one single point mutation in the PBP 2b gene. In one mutant, this resulted in a mutation of Gly-617 to Ala within one of the homology boxes common to all PBPs, and in the other two cases, the same Gly-to-Asp substitution at the end of the penicillin-binding domain had occurred. The sites affected were homologous to those determined previously in the S. pneumoniae PBP 2x of mutants resistant to cefotaxime, indicating that, in both PBPs, similar sites are important for interaction with the respective beta-lactams.  相似文献   

4.
5.
Group B streptococci (GBS) remain the most significant bacterial pathogen causing neonatal sepsis, pneumonia and meningitis in the USA despite CDC-recommended chemoprophylaxis strategies for preventing infection. To cause infection pathogens such as GBS must evade recognition and clearance by the host's immune system. Strategies for avoidance of opsonization and phagocytic killing include elaboration of antiopsonophagocytic capsules and surface proteins. During screening for mutants of GBS that were attenuated for virulence in a neonatal rat sepsis model, we identified a mutant with a transposon insertion in the ponA gene. ponA encodes an extra-cytoplasmic penicillin-binding protein PBP1a, a newly identified virulence trait for GBS that promotes resistance to phagocytic killing independent of capsular polysaccharide. Complementation analysis in vivo and in vitro confirmed that the altered phenotypes observed in the mutant were due to the transposon insertion in ponA. Deletion of PBP1a does not affect C3 deposition on GBS suggesting that mechanism by which PBP1a protects GBS from phagocytic killing is distinct from the antiopsonic activity of capsular polysaccharide. This is the first report describing expression of an antiphagocytic surface protein by GBS and represents a novel mechanism for evasion of immune recognition and clearance that may explain the decreased virulence observed in Gram-positive bacterial species for penicillin-binding protein mutants.  相似文献   

6.
High-temperature requirement A (HtrA), a highly conserved family of serine protease, plays crucial roles in protein quality control in prokaryotes and eukaryotes. The HtrA protein contains a C-terminal PDZ domain that mediates the proteolytic activity. Here we reported the solution structure of the HtrA PDZ domain from Streptococcus pneumoniae by NMR spectroscopy. Our results showed that the structure of HtrA PDZ domain, which contains three α-helices and five β-strands, illustrates conservation within the canonical PDZ domains. In addition, we demonstrated the interactions between S. pneumoniae HtrA PDZ domain and peptides with the motif XXX–YYF–COOH by surface plasmon resonance. Besides, we identified the ligand binding surface and the critical residues responsible for ligand binding of HtrA PDZ domain by chemical shift perturbation and site-directed mutagenesis.  相似文献   

7.
The penicillin-binding protein (PBP) profiles of 33Clostridium perfringens and sixClostridium species isolated from clinically significant infections were analyzed. Three new PBPs—PBPs 2B, 4B, and 5B (84, 70, and 49 kDa respectively)—and a high-molecular-weight PBP 6 (45 kDa) were demonstrated in theC. perfringens isolates. In addition to PBPs 1 and 2, PBPs 2B and 4B were seen to show low binding affinities for penicillin, although further studies are required to determine their possible roles in the development of penicillin resistance. The PBP profiles of theC. perfringens isolates were complex. Variations in apparent molecular weights (M r s) of all PBPs, with the exception of PBP 5 and the presence or absence of PBPs 2, 3, and 4B, gave rise to nine different PBP patterns. The high-M rPBPs 5 and 6, which exhibited high-penicillin-binding affinities, were with only one exception consistent within theC. perfringens isolates. These PBPs 5 and 6 of theC. perfringens isolates and independent PBPs found in the otherClostridium species studied indicate that PBP analysis may assist in the differentiation ofClostridium spacies.  相似文献   

8.
Streptococcus pneumoniae is among the most common pathogens associated with chronic otitis media with effusion, which has been hypothesized to be a biofilm disease. S. pneumoniae has been shown to form biofilms, however, little is known about the developmental process, the architecture, and the changes that occur upon biofilm development. In the current study we made use of a continuous-culture biofilm system to characterize biofilm development of 14 different S. pneumoniae strains representing at least 10 unique serotypes. The biofilm development process was found to occur in three distinct stages, including initial attachment, cluster formation, and biofilm maturation. While all 14 pneumococcal strains displayed similar developmental stages, the mature biofilm architecture differed significantly among the serotypes tested. Overall, three biofilm architectural groups were detected based on biomass, biofilm thickness, and cluster size. The biofilm viable cell counts and total protein concentration increased steadily over the course of biofilm development, reaching approximately 8 x 10(8) cells and approximately 15 mg of protein per biofilm after 9 days of biofilm growth. Proteomic analysis confirmed the presence of distinct biofilm developmental stages by the detection of multiple phenotypes over the course of biofilm development. The biofilm development process was found to correlate not only with differential production of proteins but also with a dramatic increase in the number of detectable proteins, indicating that biofilm formation by S. pneumoniae may be a far more complex process than previously anticipated. Protein identification revealed that proteins involved in virulence, adhesion, and resistance were more abundant under biofilm growth conditions. A possible role of the identified proteins in biofilm formation is discussed.  相似文献   

9.
Protective efficacy of secreted proteins of Streptococcus pneumoniae and Klebsiella pneumoniae cultivated on cardiocerebral broth and semisynthetic growth medium respectively was studied in vivo. Fraction with molecular weight 30 - 50 kDa obtained by the method of membrane fractionation had high protective efficacy. Two-dose immunization of mice with this fraction provided 80 - 100% protection from infection by homologous strains of S. pneumoniae and K. pneumoniae. Cross-protective activity of the fraction was revealed when infecting immunized mice by different K-types of K. pneumoniae. Blood sera of mice immunized with 30 - 50 kDa fraction possessed preventive features protecting from infection 90% of animals while 100% of death in the control group. It was determined that protective efficacy of the mentioned fraction was determined by protein-containing antigens because proteolytic disruption of the protein component resulted in loss of protective properties of the preparation.  相似文献   

10.
11.
The cytoplasmic membrane of Thiobacillus versutus was found to contain at least nine penicillin-binding proteins (PBPs) with apparent molecular weights as judged by sodium dodecyl sulphate polyacrylamide slab gel electrophoresis of 87000 (PBP1), 81000 (PBP2), 68000 (PBP3), 63000 (PBP4), 57000 (PBP5), 40000 (PBP6), 37000 (PBP70, 33000 (PBP8) and 31000 (PBP9). The PBP pattern of T. versutus was thus quite different from that of the Enterobacteria and the Pseudomonads. Also the properties of the PBPs of T. versutus such as affinity for various beta-lactam antibiotics, heat stability and release of bound penicillin were different from similar properties of Escherichia coli, Pseudomonas aeruginosa and other gram-negative bacteria.  相似文献   

12.
Genetic identification of exported proteins in Streptococcus pneumoniae   总被引:18,自引:3,他引:15  
A strategy was developed to mutate and genetically identify exported proteins in Streptococcus pneumoniae. Vectors were created and used to screen pneumococcal DNA in Escherichia coli and S. pneumoniae for translational gene fusions to alkaline phosphatase (PhoA), Twenty five PhoA+ pneumococcal mutants were isolated and the loci from eight of these mutants showed similarity to known exported or membrane-associated proteins. Homologues were found to: (i) protein-dependent peptide permeases, (ii) penicillin-binding proteins, (iii) Cip proteases, (iv) two-component sensor regulators, (v) the phospho-enolpyruvate:carbohydrate phosphotransferase permeases, (vi) membrane-associated dehydrogenases, (vii) P-type (E1E2-type) cation transport ATPases, (viii) ABC transporters responsible for the translocation of the RTX class of bacterial toxins. Unexpectedly one PhoA+ mutant contained a fusion to a member of the DEAD protein family of ATP-dependent RNA helicases suggesting export of these proteins.  相似文献   

13.
The chromosome of the pathogenic Gram-positive bacterium Streptococcus pneumoniae contains between six to 10 operons encoding toxin-antitoxin systems (TAS). TAS are widespread and redundant in bacteria and archaea and their role, albeit still obscure, may be related to important aspects of bacteria lifestyle like response to stress. One of the most abundant TAS is the relBE family, being present in the chromosome of many bacteria and archaea. Because of the high rates of morbility and mortality caused by S. pneumoniae, it has been interesting to gain knowledge on the pneumococcal TAS, among them the RelBE2Spn proteins. Here, we have analyzed the DNA binding capacity of the RelB2Spn antitoxin and the RelB2Spn-RelE2Spn proteins by band-shift assays. Thus, a DNA region encompassing the operator region of the proteins was identified. In addition, we have used analytical ultracentrifugation and native mass spectrometry to measure the oligomerization state of the antitoxin alone and the RelBE2Spn complex in solution bound or unbound to its DNA substrate. Using native mass spectrometry allowed us to unambiguously determine the stoichiometry of the RelB2Spn and of the RelBE2Spn complex alone or associated to its DNA target.  相似文献   

14.
15.
Intracellular locations of 11 proteins associated with the development of competence in Streptococcus pneumoniae were examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of subcellular fractions prepared from protoplasts. Controls showed that the competence-induced proteins were stable during the formation of protoplasts at 25 degrees C even though some had a half-life of only 8 min at 37 degrees C. Five competence-induced proteins p38, p27, p19.5, p16, and p14.5, were found in the cytoplasm. Two, p52 and p41, were associated with the membrane, and one, p10, was extracellular. Three others, p50, p36, and p29, were recovered in both cytoplasmic and membrane fractions. No competence-induced protein was detected in the periplasmic fraction except under conditions where leakage of all components was occurring, a phenomenon that was seen in many preparations. Similar fractionation of competent cells soon after uptake of [3H]DNA showed the "eclipse complex" of single-stranded DNA and p19.5 was associated approximately one-third with membranes and two-thirds with cytoplasmic fractions, with almost none in the periplasm. This result suggests strongly that at the time the donor DNA entered the cytosol it was in single-stranded form and it had not yet paired with the recipient DNA.  相似文献   

16.
17.
18.
We examined the predacious gram-negative bacterium Bdellovibrio bacteriovorous 109J and free-living strains 109J-A1 and 109J-KA1 derived therefrom for penicillin-binding proteins (PBPs). We compared their PBPs with those of the host bacterium, Escherichia coli, and with those of a facultatively predacious bdellovibrio, B. stolpii UKi2, grown axenically. The multiple PBPs of the 109J strains and of UKi2 differed from each other and from those of E. coli, which suggests that screening for PBPs may be a convenient way to determine to what extent the bdellovibrios may represent a diverse group of organisms. A method for labeling furazlocillin and cefaperizone with iodine-125 is also described.  相似文献   

19.
Lee KJ  Bae SM  Lee MR  Yeon SM  Lee YH  Kim KS 《Proteomics》2006,6(4):1274-1282
Streptococcus pneumoniae is an important human pathogen that causes a variety of diseases, such as pneumonia, bacteremia, meningitis, otitis media, and sinusitis, in both adults and children. The global pattern of growth phase-dependent protein expression of S. pneumoniae during in vitro culture was analyzed using 2-DE combined with MALDI-TOF MS and LC/ESI-MS/MS. Several protein production patterns were observed at four time points throughout the growth stage, although some protein levels did not change significantly. We focused on the switch in protein expression at the transition from log growth phase to stationary phase. Proteins that were significantly induced or repressed at this point are likely to be involved in central intermediary metabolism, amino acid synthesis, nucleotide, and fatty acid metabolism, cell wall synthesis, protein degradation, and stress responses. This global expression profiling approach has revealed previously unrecognized relationships between proteins in the life of this pathogen.  相似文献   

20.
Streptococcus pneumoniae is a naturally transformable bacterium that is able to take up single-stranded DNA from its environment and incorporate the exogenous DNA into its genome. This process, known as transformational recombination, is dependent upon the presence of the recA gene, which encodes an ATP-dependent DNA recombinase whose sequence is 60% identical to that of the RecA protein from Escherichia coli. We have developed an overexpression system for the S. pneumoniae RecA protein and have purified the protein to greater than 99% homogeneity. The S. pneumoniae RecA protein has ssDNA-dependent NTP hydrolysis and NTP-dependent DNA strand exchange activities that are generally similar to those of the E. coli RecA protein. In addition to its role as a DNA recombinase, the E. coli RecA protein also acts as a coprotease, which facilitates the cleavage and inactivation of the E. coli LexA repressor during the SOS response to DNA damage. Interestingly, the S. pneumoniae RecA protein is also able to promote the cleavage of the E. coli LexA protein, even though a protein analogous to the LexA protein does not appear to be present in S. pneumoniae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号