首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
R Wu  J L Wu    Y C Yeh 《Journal of virology》1975,16(1):5-16
Nonsense mutants in gene 59 (amC5, amHL628) were used to study the role of this gene in the repair of UV-damaged and alkylated DNA of bacteriophage T4 in vivo. The higher sensitivity to UV irradiation and alkylation of gene 59 mutants after exposure to these agents was established by a comparison of the survival fractions with wild type. Zonal centrifugal analysis of both parental and nascent mutant intracellular DNA molecules after UV irradiation showed that immediately after exposure the size of single-stranded DNA fragments was the same as the wild-type intracellular DNA. However, the capability of rejoining fragmented intracellular DNA was greatly reduced in the mutant. In contrast, the wild-type-infected cells under the same condition resumed DNA replication and repaired its DNA to normal size. Methyl methanesulfonate induced more randomly fragmented intracellular DNA, when compared to UV irradiation. The rate of rejoining under these conditions as judged from their sedimentation profiles was also greatly reduced in mutant-infected cells. Further evidence is presented that UV repair is not a simple consequence of arrested DNA replication, which is a phenotype of the mutant when infected in a nonpermissive host, Escherichia coli B (su minus), but rather that the DNA repair function of gene 59 is independent of the replication function. These and other data presented indicate that a product(s) of gene 59 is essential for both repair of UV lesions and repair of alkylation damage of DNA in vivo. It is suggested that gene 59 may have two functions during viral development: DNA replication and replication repair of DNA molecules.  相似文献   

3.
T4 DNA structural requirements for encapsidation in vivo were investigated, using thin-section electron microscopy to quantitate the kinetics and yields of head intermediates after synchronous DNA packaging into accumulated processed proheads. UV irradiation (254 nm) of T4-infected bacteria just before initiation of encapsidation resulted in a reduction in the rate of DNA packaged measured by electron microscopy and in the yield of viable phage progeny. In UV-irradiated infections with excision-deficient mutants (denV-), the extent of packaging decline was proportional to the UV dose and phage yields were lower than expected based on the packaging levels observed by microscopy. Rescue analysis of progeny from such infections revealed elevated levels of nonviable virions. Pyrimidine dimers were encapsidated in denV- infections, but in excision-competent infections (denV+) dimers were not packaged. A UV-independent, 15 to 20% packaging arrest was also observed when denV endonuclease was inactive during encapsidation, indicating a denV requirement to achieve normal T4 packaging levels. Pyrimidine dimers apparently represent or induce transient blockage of DNA encapsidation or both, causing a decline in the rate. This is in contrast to other DNA structural blocks to packaging induced by mutations in T4 genes 30 and 49, which appear to arrest the process.  相似文献   

4.
5.
6.
7.
Role of gene 2 in bacteriophage T7 DNA synthesis.   总被引:8,自引:5,他引:3       下载免费PDF全文
Studies have been carried out to elucidate the in vivo function of gene 2 in T7 DNA synthesis. In gene 2-infected cells the rate of incorporation of (3-H)thymidine into acid-insoluble material is about 60% that of cells infected with T7 wild type. Gene 2 mutants do not however produce viable phage after infection of the nonpermissive host. In T7 wild type-infected cells, a major portion of the newly alkaline sucrose gradients. The concatemers serve as precursors for the formation of mature T7 DNA as demonstrated in pulse-chase experiments. In similar studies carried out with gene 2-infected cells, concatemers are not detected when the intracellular DNA is analyzed at several different times during the infection process. The DNA made during a gene 2 infection is present as duplex structures with a sedimentation rate close to mature T7 DNA.  相似文献   

8.
Bacteriophage T4 DNA topoisomerase has been isolated and shown to contain the proteins coded by the DNA-delay genes 39 and 52 (Liu, L. F., Liu, C.-C., and Alberts, B. M. (1979) Nature (Lond.) 281, 456-461 and Stetler, G. L., King, G. J., and Huang, W. M. (1979) Proc. Natl. Acad. Sci. U. S. A. 76, 3737-3741). From complementation measurements in vitro and from earlier genetic evidence, these workers suggested that the product of gene 60 (p60) was also a component of the DNA topoisomerase complex. This paper now establishes the identity of p60 and unequivocally shows that this protein is a component of the enzyme complex. T4 DNA topoisomerase was purified by a simplified two-column procedure and found to be a stable complex of p39, p52, and a protein with a relative molecular weight of 18,000. The 18,000-dalton chain has been unambiguously shown to be the product of gene 60 through the use of an amber mutant of gene 60 with Sup+ and Sup- hosts and analyses by two-dimensional gel electrophoresis. While p39 and p52 were tightly associated in the wild type enzyme complex, they were readily separated on a hydroxylapatite column from extracts of cells infected by an amber mutant of gene 60. These findings suggest that p60 plays a structural/functional role in the enzyme complex by holding the larger p39 and p52 in juxtaposition.  相似文献   

9.
A helix destabilizing protein, the product of gene 32 (gp32) of bacteriophage T4, was subjected to limited proteolysis to produce three types of products with differing affinities for DNA. Previous work has suggested that the 18 amino acids at the N-terminus are required for tight binding to single-stranded DNA (Hosoda &; Moise, 1978). This paper reports the sequence of the N-terminal region and predicts the amino acid residues responsible for DNA binding.  相似文献   

10.
11.
One primase (gp61) and six helicase (gp41) subunits interact to form the bacteriophage T4-coded primosome at the DNA replication fork. In order to map some of the detailed interactions of the primase within the primosome, we have constructed and characterized variants of the gp61 primase that carry kinase tags at either the N or the C terminus of the polypeptide chain. These tagged gp61 constructs have been probed using several analytical methods. Proteolytic digestion and protein kinase protection experiments show that specific interactions with single-stranded DNA and the T4 helicase hexamer significantly protect both the N- and the C-terminal regions of the T4 primase polypeptide chain against modification by these procedures and that this protection becomes more pronounced when the primase is assembled within the complete ternary primosome complex. Additional discrete sites of both protection and apparent hypersensitivity along the gp61 polypeptide chain have also been mapped by proteolytic footprinting reactions for the binary helicase-primase complex and in the three component primosome. These studies provide a detailed map of a number of gp61 contact positions within the primosome and reveal interactions that may be important in the structure and function of this central component of the T4 DNA replication complex.  相似文献   

12.
Many bacteriophages, such as T4, T7, RB49, and phi29, have complex, sometimes multilayered, tails that facilitate an almost 100% success rate for the viral particles to infect host cells. In bacteriophage T4, there is a baseplate, which is a multiprotein assembly, at the distal end of the contractile tail. The baseplate communicates to the tail that the phage fibers have attached to the host cell, thereby initiating the infection process. Gene product 8 (gp8), whose amino acid sequence consists of 334 residues, is one of at least 16 different structural proteins that constitute the T4 baseplate and is the sixth baseplate protein whose structure has been determined. A 2.0A resolution X-ray structure of gp8 shows that the two-domain protein forms a dimer, in which each monomer consists of a three-layered beta-sandwich with two loops, each containing an alpha-helix at the opposite sides of the sandwich. The crystals of gp8 were produced in the presence of concentrated chloride and bromide ions, resulting in at least 11 halide-binding sites per monomer. Five halide sites, situated at the N termini of alpha-helices, have a protein environment observed in other halide-containing protein crystal structures. The computer programs EMfit and SITUS were used to determine the positions of six gp8 dimers within the 12A resolution cryo-electron microscopy image reconstruction of the baseplate-tail tube complex. The gp8 dimers were found to be located in the upper part of the baseplate outer rim. About 20% of the gp8 surface is involved in contacts with other baseplate proteins, presumed to be gp6, gp7, and gp10. With the structure determination of gp8, a total of 53% of the volume of the baseplate has now been interpreted in terms of its atomic structure.  相似文献   

13.
J Chao  M Leach    J Karam 《Journal of virology》1977,24(2):557-563
Some mutations in the structural gene for T4 DNA polymerase (gene 43) behave as suppressors of a deficiency in T4 dCMP-hydroxymethylase (gene 42). The suppression appears to involve a functional interaction between the two enzymes at the level of DNA replication. The hydroxymethylase deficiency caused DNA structural abnormalities in replication, and DNA polymerase lesions appeared to partially reverse these abnormalities. The results do not necessarily imply protein-protein interactions between the two enzymes, although both enzymes appear to play roles in controlling the fidelity of phage DNA replication.  相似文献   

14.
T Noguchi  H Takahashi  H Saito 《Gene》1986,44(1):133-138
We have developed an efficient method for transferring foreign genes into the T4 phage genome. Any foreign genes inserted into the T4 uvsY gene cloned on plasmids can be transferred into a cytosine-substituted T4dC(delta NB5060) phage genome by a replacement type of recombination. To achieve this, we constructed chimeric plasmids which had a chloramphenicol acetyltransferase gene (cat) derived from transposon Tn9 inserted into the Bg/II site within the T4 uvsY gene on pBR322. The cat gene was then transferred by in vivo recombination into the T4dC(delta NB5060) phage genome. Moreover, it was demonstrated that the cat gene in the hybrid T4dC phage was expressed upon phage infection and development.  相似文献   

15.
16.
Cloning and DNA sequence of the 5'-exonuclease gene of bacteriophage T5   总被引:4,自引:0,他引:4  
The nucleotide sequence of the BalI-PstI fragment of T5 DNA, 1347 bp in length, coding for 5'-exonuclease (D15 gene), has been determined. A coding region of the gene contains 873 bp and is preceded by a typical Shine-Dalgarno sequence. The D15 gene belongs to a cluster, consisting of at least 3 genes, in which a termination codon of a preceding gene overlaps an initiation codon of the following one. The sequence contains an open reading frame for 291 amino acid residues. The molecular mass of the 5'-exonuclease calculated from the predicted amino acid sequence is 33 400 Da.  相似文献   

17.
18.
Characterization of the bacteriophage T4 gene 41 DNA helicase   总被引:5,自引:0,他引:5  
The T4 gene 41 protein and the gene 61 protein function together as a primase-helicase within the seven protein bacteriophage T4 multienzyme complex that replicates duplex DNA in vitro. We have previously shown that the 41 protein is a 5' to 3' helicase that requires a single-stranded region on the 5' side of the duplex to be unwound and is stimulated by the 61 protein (Venkatesan, M., Silver L. L., and Nossal, N. G. (1982) J. biol. Chem. 257, 12426-12434). The 41 protein, in turn, is required for pentamer primer synthesis by the 61 protein. We now show that the 41 protein helicase unwinds a partially duplex DNA molecule containing a performed fork more efficiently than a DNA molecule without a fork. Optimal helicase activity requires greater than 29 nucleotides of single-stranded DNA on the 3' side of the duplex (analogous to the leading strand template). This result suggests the 41 protein helicase interacts with the leading strand template as well as the lagging strand template as it unwinds the duplex region at the replication fork. As the single-stranded DNA on the 3' side of a short duplex (51 base pairs) is lengthened, the stimulation of the 41 protein helicase by the 61 protein is diminished. However, both the 61 protein and a preformed fork are essential for efficient unwinding of longer duplex regions (650 base pairs). These findings suggest that the 61 protein promotes both the initial unwinding of the duplex to form a fork and subsequent unwinding of longer duplexes by the 41 protein. A stable protein-DNA complex, detected by a gel mobility shift of phi X174 single-stranded DNA, requires both the 41 and 61 proteins and a rNTP (preferably rATP or rGTP, the nucleotides with the greatest effect on the helicase activity). In the accompanying paper, we report the altered properties of a proteolytic fragment of the 41 protein helicase and its effect on in vitro DNA synthesis in the T4 multienzyme replication system.  相似文献   

19.
A recombinant strain (D41) between phage T2 and T4 was isolated which possessed the T2 region of the genome between genes 32 and 39 and both the T4 genesgt + andgt + for glucosyltransferase. D41 was crossed with T4amber mutants in the genes for early functions and in some genes for late funcitions. The progeny of the crosses was examined for the frequency of theam + markers from D41. Genes 32, 60 and 39 in the T2 region of the recombinant strain were as sensitive to exclusion as those in standard-type T2. The T4 glucosylation of the DNA of these T2 genes did not protect them against partial exclusion by T4. However, genes in the region from gene 56 to 55 in the recombinant were resistent to exclusion. In standard-type T2 this region of the genome is sensitive to partial exclusion by T4. There are at least four exclusion sensitive sites in T2: one near gene 32, one near gene 60, one linked to gene 56 and one between genes 42 and 55.This investigation was carried out partially within the frame of the Association between Euratom and the University of Leiden, contract nr. 052-64-1-BIAN.  相似文献   

20.
The success of tailed bacteriophages to infect cells far exceeds that of most other viruses on account of their specialized tail and associated baseplate structures. The baseplate protein gene product (gp) 10 of bacteriophage T4, whose structure was determined to 1.2 A resolution, was fitted into the cryo-electron microscopy structures of the pre and post-infection conformations of the virus. gp10 functions as a molecular lever that rotates and extends the hinged short tail fibers to facilitate cell attachment. The central folding motif of the gp10 trimer is similar to that of the baseplate protein gp11 and to the receptor-binding domain of the short tail fiber, gp12. The three proteins comprise the periphery of the baseplate and interact with each other. The structural and functional similarities of gp10, gp11, and gp12 and their sequential order in the T4 genome suggest that they evolved separately, subsequent to gene triplication from a common ancestor. Such events are usual in the evolution of complex organelles from a common primordial molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号