首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mangueira Lagoon, located in the extreme south of Brazil, has water with physicochemical characteristics such as alkaline pH and carbonate levels propitious for the growth of the cyanobacterium Spirulina platensis. Previously published studies have shown that Mangueira Lagoon water supplemented with small quantities of carbon and nitrogen is suitable for S. platensis cultivation and can significantly reduce production costs. We studied mixed cultures of Spirulina platensis and the toxic cyanobacterium Microcystis aeruginosa using a 2(3) factorial design in which the three factors were the initial biomass concentration of S. platensis and M. aeruginosa and the type of culture medium (100% Zarrouk's medium or 80% Mangueira Lagoon water plus 20% Zarrouk's medium). The highest S. platensis maximum specific growth rate (mu(max)) occurred in the culture with the highest M. aeruginosa biomass concentration and when undiluted culture medium was used (micro(max) = 0.283 d(-1)). The highest M. aeruginosa specific death rate (k) was obtained in the presence of S. platensis (k = 0.555 d(-1)) and was independent of the initial M. aeruginosa biomass concentration and culture medium, demonstrating that S. platensis cultures are not susceptible to contamination by M. aeruginosa. The culture medium had no significant influence (p > 0.05) on S. platensis micro(max) values, indicating that production costs could be reduced by using a medium consisting of 80% Mangueira Lagoon water plus 20% Zarrouk's medium.  相似文献   

2.
Logarithmic growth rates, maximal biomass, specific glucose utilization rates, and ethanol accumulation were measured in aerobic cultures of wild type and extrachromosomal mutants of Neurospora crassa. Maximal biomass and ethanol accumulation of wild type and [mi-1] were proportional to the initial glucose concentration in the range of 2 to 10%. The specific rates of glucose utilization by the mutants were 13- to 20-fold greater than those of wild type in young cultures. The specific rates of glucose utilization by wild type, however, were increased threefold by increasing the ammonium ion concentration in the preculture medium. The suppressor gene f(+) suppressed the excessive glucose utilization and enhanced the growth rate and maximal biomass of [mi-1]. When the mutants were utilizing glucose at excessive rates, ethanol did not appear in the culture medium. Ethanol accumulation was maximum at stationary phase or thereafter, but there was little difference between the maxima of the mutants and wild type. The molar efficiency of the conversion of glucose to ethanol during the entire culture period of wild type and mutants was about 50% and, in the latter stages of fermentation, approached 100%. Replacement of ammonium ion by nitrate in the culture medium suppressed ethanol accumulation by wild type. The relationship of these results to previous observations on respiratory adaptation are discussed. We suggest that the Pasteur effect, the inhibition of fermentation by respiration, may be operative in N. crassa. Factors such as nitrogen source and concentration and oxygen tension, which may serve primarily to regulate the amount and form of respiration would, therefore, indirectly regulate fermentation. The mutants, although transiently deficient in terminal respiratory activity, do not accumulate more ethanol than wild type and, therefore, apparently do not ferment in excess to obtain additional adenosine 5'-triphosphate. We suggest that the excess activity of the alternate form of respiration of the mutants may be related to their excessive rate of glucose utilization by way of the pentose phosphate pathway and the oxidation of excess reduced nicotinamide adenine dinucleotide.  相似文献   

3.
Single cell growth and division was measured via flow cytometry in order to characterize the metabolic variability of Taxus cuspidata suspension cultures, which produce the valuable secondary metabolite Taxol. Good agreement was observed between the cell cycle distribution and biomass accumulation over the batch culture period. Specific growth rates of 0.13 days(-1) by fresh weight and 0.15 days(-1) by dry weight were measured. Elicitation with methyl jasmonate (MJ) significantly decreased both cell cycle progression and biomass accumulation, as the specific growth rate decreased to 0.027 days(-1) by fresh and dry weight. Despite the decrease in biomass accumulation for MJ elicited cultures, sucrose utilization was not significantly different from control cultures. MJ elicitation also increased the accumulation of paclitaxel and other taxanes. The accumulation of upstream taxanes (baccatin III and 10-deactylbaccatin III) increased during exponential growth, reached a maximum around day 12, and then declined throughout the stationary phase. The paclitaxel concentration increased during both exponential growth and stationary phase, reaching a maximum around days 20-25. Throughout the culture period, greater than 70% of the cells were in G(0)/G(1) phase of the cell cycle. Studies using bromodeoxyuridine (BrdU) incorporation showed that approximately 65% of the Taxus cells are noncycling, even during exponential growth. Although the role of these cells is currently unknown, the presence of a large, noncycling subpopulation can have a significant impact on the utilization of plant cell culture technology for the large-scale production of paclitaxel. These results demonstrate that there is a high degree of metabolic heterogeneity in Taxus cuspidata suspension cultures. Understanding this heterogeneity is important for the optimization of plant cell cultures, particularly the reduction of production variability.  相似文献   

4.
Steady-state chemostat cultures of Azotobacter vinelandii strain CA11, carrying a deletion of genes encoding the structural polypeptides of nitrogenase nifHDK, were established in a simple defined medium chemically purified to minimize contamination by Mo. The medium contained no utilizable N source. Growth was dependent on N2 (1.1 X 10(8) viable cells X ml-1 at D = 0.176 h-1), and was inhibited by Mo (20 nM). DNA hybridization showed the deletion to be stable during prolonged (55 days) growth in the chemostat (132 doublings). Since batch cultures, using unsupplemented 'spent' chemostat medium, showed good growth (1.9 X 10(8) cells X ml-1), no requirement for subnanomolar concentrations of Mo was found. The biomass yield, as the dilution rate (D) was varied, showed that the N content of the culture, protein and dry wt. increased as D was decreased, indicating that neither N2 nor O2 were limiting growth. The limiting nutrient was not identified. Substantial amounts of H2 were evolved by the chemostat cultures, probably as the result of inhibition of O2-dependent hydrogenase activity by nitrilotriacetic acid present in the medium. Over a range of D values approx. 50% of the electron flux through the alternative system was allocated to H+ reduction. C2H2 was a poor substrate, being reduced at 0.14-0.1 times the rate of N2 fixation, calculated from the N content of the cells. SO4(2-)-limited steady-state continuous cultures of strain UW136 (wild-type for nifHDK) had a 2-fold greater biomass in the presence of MoO4(2-) (1 microM). The significance of this finding for 'Mo-limited' continuous cultures [Eady & Robson (1984) Biochem. J. 224, 853-862] is discussed.  相似文献   

5.
A methylomonad culture was isolated from pond water and examined as a potential source of single-cell protein. A medium containing magnesium sulfate, ammonium hydroxide, sodium phosphate, tap water, and methanol supported the growth of the isolate. Optimal growth conditions in batch cultures for the organism were: temperature, 30 to 33 degrees C; pH 7.1; and phosphate concentration, 0.015 M. The minimum doubling time obtained was 1.6 h. The specific growth rate in batch culture was dependent on the methanol concentration, reaching a maximum around 0.2% (wt/vol). Growth inhibition was apparent above 0.3% (wt/vol), and growth was completely inhibited above 4.6% (wt/vol) methanol. Although the inhibitory effect of formaldehyde on the specific growth rate was much greater than that of formate, the organism utilized formaldehyde, but not formate, as a sole carbon and energy source in batch cultures. The isolate was identified primarily by its inability to utilize any carbon source other than methanol and formaldehyde for growth. Although it is capable of rapid growth on methanol, the organism showed a very weak catalase activity. The amino acid content of the cells compared favorably with the reference levels for the essential amino acids specific by the Food and Agricultural Organization of the United Nations.  相似文献   

6.
Growth characteristics of a new methylomonad.   总被引:1,自引:1,他引:0       下载免费PDF全文
B J Chen  W Hirt  H C Lim    G T Tsao 《Applied microbiology》1977,33(2):269-274
A methylomonad culture was isolated from pond water and examined as a potential source of single-cell protein. A medium containing magnesium sulfate, ammonium hydroxide, sodium phosphate, tap water, and methanol supported the growth of the isolate. Optimal growth conditions in batch cultures for the organism were: temperature, 30 to 33 degrees C; pH 7.1; and phosphate concentration, 0.015 M. The minimum doubling time obtained was 1.6 h. The specific growth rate in batch culture was dependent on the methanol concentration, reaching a maximum around 0.2% (wt/vol). Growth inhibition was apparent above 0.3% (wt/vol), and growth was completely inhibited above 4.6% (wt/vol) methanol. Although the inhibitory effect of formaldehyde on the specific growth rate was much greater than that of formate, the organism utilized formaldehyde, but not formate, as a sole carbon and energy source in batch cultures. The isolate was identified primarily by its inability to utilize any carbon source other than methanol and formaldehyde for growth. Although it is capable of rapid growth on methanol, the organism showed a very weak catalase activity. The amino acid content of the cells compared favorably with the reference levels for the essential amino acids specific by the Food and Agricultural Organization of the United Nations.  相似文献   

7.
Mucor circinelloides is being investigated as a possible host for the production of heterologous proteins. Thus, the environmental conditions defining the physiology and morphology of this dimorphic fungus have been investigated in submerged batch cultivation. The optimal conditions for growth of each form have been defined. Pure cultures of the multi-polar budding yeast form could be obtained under anaerobic conditions (with 70% N2/30% CO2 or 100% N2 as the sparge gas and without aeration). The highest maximum specific growth rate (0.30 h(-1)) was obtained in anaerobic cultivation, the yield of biomass on glucose (Y(SX)) was 0.12 (c-mole basis). A high maximum specific growth rate was obtained when the organism grew as the filamentous form under aerobic conditions (0.25 h(-1)), with a Y(SX) of 0.24 (c-mole basis). The maximum specific growth rates achieved are comparable to most industrial filamentous fungi under similar growth conditions. High levels of ethanol were observed with all growth conditions. The overriding effector of morphological development was found to be oxygen. In batch cultures it was therefore possible to induce the dimorphic shift by controlling the influent gas atmosphere. A specific growth rate of 0.19 h(-1) was maintained during the shift from the yeast to the filamentous form.  相似文献   

8.
为了优化岩黄连细胞悬浮培养的条件,研究了在放大培养过程中,岩黄连细胞生长与主要营养成分的代谢动力学,以及生物碱的产生情况。结果表明,在不同培养体系下,细胞生长曲线均呈现"S"型。随着培养体积从50、100 mL放大到500 mL和1 L,培养液中碳源、氮源和磷源的消耗减慢,细胞生物量减少,生物碱产量降低。其中100 mL培养体系所获生物量最高,达到15.2 g/L,生物碱产量也最高,脱氢卡维丁为8.35 mg/mL,小檗碱为4.58 mg/mL。根据本文结果,提出了岩黄连细胞培养条件的优化和大规模细胞培养生产岩黄连生物碱应采取的策略。  相似文献   

9.
Nostoc flagelliforme is a terrestrial cyanobacterium with high economic value. Dissociated cells separated from a natural colony of N. flagelliforme were cultivated for 7 days under either phototrophic, mixotrophic or heterotrophic culture conditions. The highest biomass, 1.67 g L−1 cell concentration, was obtained under mixotrophic culture, representing 4.98 and 2.28 times the biomass obtained in phototrophic and heterotrophic cultures, respectively. The biomass in mixotrophic culture was not the sum as that in photoautotrophic and heterotrophic cultures. During the first 4 days of culture, the cell concentration in mixotrophic culture was lower than the sum of those in photoautotrophic and heterotrophic cultures. However, from the 5th day, the cell concentration in mixotrophic culture surpassed the sum of those obtained from the other two trophic modes. Although the inhibitor of photosynthetic electron transport DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea] efficiently inhibited autotrophic growth of N. flagelliforme cells, under mixotrophic culture they could grow by using glucose. The addition of glucose changed the response of N.flagelliforme cells to light. The maximal photosynthetic rate, dark respiration rate and light compensation point in mixotrophic culture were higher than those in photoautotrophic cultures. These results suggest that photoautotrophic (photosynthesis) and heterotrophic (oxidative metabolism of glucose) growth interact in mixotrophic growth of N. flagelliforme cells.  相似文献   

10.
The kinetics of Lagenidium giganteum growth in liquid and solid cultures   总被引:1,自引:0,他引:1  
AIMS: Production of the mosquito biolarvacide Lagenidium giganteum in solid culture has been proposed as an economic alternative to production in liquid culture because of observations of improved shelf life and efficacy upon storage. Understanding the differences between these production systems and estimating growth rate in solid culture are important for commercialization. In order to address these needs a logistic model was developed to describe the growth kinetics of L. giganteum produced in solid and liquid cultures. METHODS AND RESULTS: Kinetic parameters in the logistic model were estimated by nonlinear regression of CO2 evolution rate (CER) and biomass data from solid and liquid cultivation experiments. Lagenidium giganteum biomass was measured using DNA extracted directly from samples. The logistic model was fit to experimental biomass and CER data with low standard errors for parameter estimates. The model was validated in two independent experiments by examining prediction of biomass using on-line CER measurements. CONCLUSIONS: There were significant differences between maximum biomass density, maintenance coefficients, and specific growth rates for liquid and solid cultures. The maximum biomass density (mg dw ml-1) was 11 times greater for solid cultivation compared with liquid cultivation of L. giganteum; however, the maintenance coefficient (mg CO2 h-1 (mg dw)-1) was six times greater for liquid cultivation than in solid cultivation. The specific growth rate at 30 degrees C was approximately 30% greater in liquid cultivation compared with solid cultivation. Slower depletion of substrate and lower endogenous metabolism may explain the longer shelf life of L. giganteum produced in solid culture. SIGNIFICANCE AND IMPACT OF THE STUDY: A simple logistic model was developed which allows real-time estimation of L. giganteum biomass from on-line CER measurements. Parameter estimates for liquid and solid cultivation models also elucidated observations of longer shelf life for production in solid culture.  相似文献   

11.
12.
The microalga incorporated photobioreactor is a highly efficient biological system for converting CO2 into biomass. Using microalgal photobioreactor as CO2 mitigation system is a practical approach for elimination of waste gas from the CO2 emission. In this study, the marine microalga Chlorella sp. was cultured in a photobioreactor to assess biomass, lipid productivity and CO2 reduction. We also determined the effects of cell density and CO2 concentration on the growth of Chlorella sp. During an 8-day interval cultures in the semicontinuous cultivation, the specific growth rate and biomass of Chlorella sp. cultures in the conditions aerated 2-15% CO2 were 0.58-0.66 d(-1) and 0.76-0.87 gL(-1), respectively. At CO2 concentrations of 2%, 5%, 10% and 15%, the rate of CO2 reduction was 0.261, 0.316, 0.466 and 0.573 gh(-1), and efficiency of CO2 removal was 58%, 27%, 20% and 16%, respectively. The efficiency of CO2 removal was similar in the single photobioreactor and in the six-parallel photobioreactor. However, CO2 reduction, production of biomass, and production of lipid were six times greater in the six-parallel photobioreactor than those in the single photobioreactor. In conclusion, inhibition of microalgal growth cultured in the system with high CO2 (10-15%) aeration could be overcome via a high-density culture of microalgal inoculum that was adapted to 2% CO2. Moreover, biological reduction of CO2 in the established system could be parallely increased using the photobioreactor consisting of multiple units.  相似文献   

13.
Nitrogen and phosphorus concentration in the effluent of a wastewater treatment plant can vary significantly, which could affect the growth kinetic and chemical composition of microalgae when cultivated in this medium. The aim of this work was to study the rate of growth, nutrient removal and carbon dioxide biofixation as well as biomass composition of Scenedesmus obliquus (S. obliquus) when it is cultivated in wastewater at different nitrogen and phosphorus ratio, from 1:1 to 35:1. A more homogeneous method for calculating productivities in batch reactors was proposed. The proper N:P ratio for achieving optimum batch biomass productivity ranged between 9 and 13 (263 and 322 mg L?1 d?1 respectively). This was also the ratio range for achieving a total N and P removal. Above and below this range (9–13) the maximum biomass concentration changed, instead of the specific growth rate.The maximum carbon dioxide biofixation rate was achieved at N:P ratio between 13 and 22 (553 and 557 mg CO2 L?1 d?1 respectively). Lipid and crude protein content, both depend on the aging culture, reaching the maximum lipid content (34%) at the lowest N:P (1:1) and the maximum crude protein content (34.2%) at the highest N:P (35:1).  相似文献   

14.
The rotifer Brachionus plicatilis was cultured using the microalga Isochrysis aff. galbana clone T-ISO as feed. T-ISO was cultured semi-continuously with daily renewal rates of 10%, 20%, 30%, 40%, and 50% of the volume of cultures. The increase of renewal rate led to increasing nutrient and light availability in microalgal cultures, which caused differences in the biochemical composition of microalgal biomass. Growth rate, individual dry weight, organic content, and biomass productivity of rotifer cultures increased in response to higher growth rate in T-ISO cultures. Rotifer growth rate showed a strong negative correlation (R 2 = 0.90) with the C/N ratio of microalgal biomass. Rotifer dry weight was also affected by nutrient availability of T-ISO cultures, increasing up to 50% from nutrient-limited to nutrient-sufficient conditions. Consequently, biomass productivity of rotifer cultures increased more than twofold with the increase of renewal rate of T-ISO cultures. Rotifer organic content underwent the same trend of total dry weight. Maximum content of polyunsaturated fatty acids was reached in rotifers fed T-ISO from the renewal rate of 40%, with percentages of docosahexaenoic acid (22:6ω-3, DHA) and eicosapentaenoic acid (20:5ω-3, EPA) of 11% and 5% of total fatty acids, respectively. Selecting the most appropriate conditions for microalgal culture can therefore enhance the nutritive quality of microalgal biomass, resulting in a better performance of filter feeders and their nutrient content, and may constitute a useful tool to improve the rearing of fish larvae and other aquaculture organisms that require live feed in some or all the stages of their life cycle.  相似文献   

15.
The final concentration of 6-pentyl-a-pyrone (6PP) produced in cultures of Trichoderma spp. is limited by the fact that inhibition of biomass growth occurs at 6PP concentrations as low as 100 mg/l. The aim of this work was to evaluate liquid-liquid extractive fermentation systems as an alternative to overcome the toxicity problems and to increase the production of 6PP by this fungus. Two alkanes (n-decane and n-hexadecane) and two dicarboxylic esters (dibutyl phthalate and dioctyl phthalate) were evaluated in shake flask cultures. The highest 6PP production (173 ppm) was achieved when n-hexadecane was used, being 3.5-fold the maximum 6PP concentration of a culture without the solvent. Cultivation of Trichoderma harzianum in a 10-1 bioreactor with n-hexadecane yielded 6PP production ninefold higher than that from control cultures. However, 6PP production in the bioreactor (83 ppm) was lower than in shake flasks. Differences in the power drawn to the fluid at each scale could account for such behavior. Even in the presence of the solvent, 6PP content decreased after reaching its maximal concentration.  相似文献   

16.
Summary Absidia repens (CBS 102.32) was grown in a fermentor and the effects of growth morphology (due to different agitation) and harvest timing on chitosan yield were evaluated. The use of the titration rate as an on-line measure of growth rate was studied. Small pellets, 0.5 mm o.d. allowed the most efficient growth (highest growth rate and highest biomass yields from carbon and nitrogen sources) whereas growth as large pellets, 2–3 mm o.d., or as a viscous pulp exhibited limited growth. The differences were most pronounced during the later part of the cultivations. The chitosan content of the biomass remained essentially constant during active growth, irrespective of morphology, but during the stationary phase, this content continued to increase from 18% to 23% of the biomass, reaching 2.8 g/l. The titration rate of NaOH, in order to maintain constant pH, exceeded the growth rate in all cultures, and this was pronounced when growth was limited. Correspondence to: A. Persson  相似文献   

17.
A microalgae biomass growth model was developed for screening novel strains for their potential to exhibit high biomass productivities under nutrient‐replete conditions in photobioreactors or outdoor ponds. Growth is modeled by first estimating the light attenuation by biomass according to Beer‐Lambert's Law, and then calculating the specific growth rate in discretized culture volume slices that receive declining light intensities due to attenuation. The model uses only two physical and two species‐specific biological input parameters, all of which are relatively easy to determine: incident light intensity, culture depth, as well as the biomass light absorption coefficient and the specific growth rate as a function of light intensity. Roux bottle culture experiments were performed with Nannochloropsis salina at constant temperature (23°C) at six different incident light intensities (10, 25, 50, 100, 250, and 850 µmol/m2 s) to determine both the specific growth rate under non‐shading conditions and the biomass light absorption coefficient as a function of light intensity. The model was successful in predicting the biomass growth rate in these Roux bottle batch cultures during the light‐limited linear phase at different incident light intensities. Model predictions were moderately sensitive to minor variations in the values of input parameters. The model was also successful in predicting the growth performance of Chlorella sp. cultured in LED‐lighted 800 L raceway ponds operated in batch mode at constant temperature (30°C) and constant light intensity (1,650 µmol/m2 s). Measurements of oxygen concentrations as a function of time demonstrated that following exposure to darkness, it takes at least 5 s for cells to initiate dark respiration. As a result, biomass loss due to dark respiration in the aphotic zone of a culture is unlikely to occur in highly mixed small‐scale photobioreactors where cells move rapidly in and out of the light. By contrast, as supported also by the growth model, biomass loss due to dark respiration occurs in the dark zones of the relatively less well‐mixed pond cultures. In addition to screening novel microalgae strains for high biomass productivities, the model can also be used for optimizing the pond design and operation. Additional research is needed to validate the biomass growth model for other microalgae species and for the more realistic case of fluctuating temperatures and light intensities observed in outdoor pond cultures. Biotechnol. Bioeng. 2013; 110: 1583–1594. © 2012 Wiley Periodicals, Inc.  相似文献   

18.
The performance of Haematococcus pluvialis in continuous photoautotrophic culture has been analyzed, especially from the viewpoint of astaxanthin production. To this end, chemostat cultures of Haematococcus pluvialis were carried out at constant light irradiance, 1,220 microE/m2.s, and dilution rate, 0.9/d, but varying the nitrate concentration in the feed medium reaching the reactor, from 1.7 to 20.7 mM. Both growth and biomass composition were affected by the nitrate supply. With saturating nitrate, the biomass productivity was high, 1.2 g/L.d, but astaxanthin accumulation did not take place, the C/N ratio of the biomass being 5.7. Under moderate nitrate limitation, biomass productivity was decreased, as also did biomass concentration at steady state, whereas accumulation of astaxanthin developed and the C/N ratio of the biomass increased markedly. Astaxanthin accumulation took place in cells growing and dividing actively, and its extent was enhanced in response to the limitation in nitrate availability, with a recorded maximum for astaxanthin cellular level of 0.8% of dry biomass and of 5.6 mg/L.d for astaxanthin productivity. The viability of a significant continued generation of astaxanthin-rich H. pluvialis cells becomes thus demonstrated, as also does the continuous culture option as an alternative to current procedures for the production of astaxanthin using this microalga. The intensive variable controlling the behavior of the system has been identified as the specific nitrate input, and a mathematical model developed that links growth rate with both irradiance and specific nitrate input. Moreover, a second model for astaxanthin accumulation, also as a function of irradiance and specific nitrate input, was derived. The latter model takes into account that accumulation of astaxanthin is only partially linked to growth, being besides inhibited by excess nitrate. Simulations performed fit experimental data and emphasize the contention that astaxanthin can be efficiently produced under continuous mode by adjustment of the specific nitrate input, predicting even higher values for astaxanthin productivity. The developed models represent a powerful tool for management of such an astaxanthin-generating continuous process, and could allow the development of improved systems for the production of astaxanthin-rich Haematococcus cells.  相似文献   

19.
The effects of nitrate, ammonium, and urea as nitrogen sources on the heterotrophic growth of Chlorella protothecoides were investigated using flask cultures. No appreciable inhibitory effect on the algal growth was observed over a nitrogen concentration range of 0.85-1.7 g l(-)(1). In contrast, differences in specific growth rate and biomass production were found among the cultures with the various nitrogen compounds. The influence of different nitrogen sources at a concentration equivalent to 1.7 g l(-)(1) nitrogen on the heterotrophic production of biomass and lutein by C. protothecoides was investigated using the culture medium containing 40 g l(-)(1) glucose as the sole carbon and energy source in fermentors. The maximum biomass concentrations in the three cultures with nitrate, ammonium, and urea were 18.4, 18.9, and 19.6 g l(-)(1) dry cells, respectively. The maximum lutein yields in these cultures were between 68.42 and 83.81 mg l(-)(1). The highest yields of both biomass and lutein were achieved in the culture with urea. It was therefore concluded that urea was the best nitrogen source for the production of biomass and lutein. Based on the experimental results, a group of kinetic models describing cell growth, lutein production, and glucose and nitrogen consumption were proposed and a satisfactory fit was found between the experimental results and predicted values. Dynamic analysis of models demonstrated that enhancing initial nitrogen concentration in fermentor cultures, which correspondingly enhances cell growth and lutein formation, may shorten the fermentation cycle by 25-46%.  相似文献   

20.
AIMS: To study the effect of sugars and sugar mixtures on the growth kinetics of Oenococcus oeni NCIMB 11648 in batch culture with the aim of producing a high cell productivity system for starter cultures. METHODS AND RESULTS: The growth of O. oeni was investigated on single sugars (glucose, fructose or sucrose) and their mixtures (glucose-fructose, glucose-sucrose or fructose-sucrose). Better growth was obtained on sugar mixtures compared with growth on a single sugar. The production system of O. oeni biomass was investigated in batch culture with or without pH control with respect to kinetics, specific growth rate and biomass yield. The effect of pH and substrate concentration on fermentation balances and ATP yield were determined. The optimal growth of O. oeni was achieved on the glucose-fructose mixture (9 g l(-1), 1 : 1) at pH 4.5 and 25 degrees C with pH control, with highest cell volumetric productivity (7.9 mg cell l(-1) h(-1)), biomass yield (0.041 g cell g(-1) sugar) and specific growth rate (0.066 h(-1)). CONCLUSIONS: The limitations to the growth of O. oeni were pH and inhibition by end product resulting in poor utilization of the medium with low cell yields. The cell productivity of the system can be improved by the appropriate use of mixed sugar growth medium. SIGNIFICANCE AND IMPACT OF THE STUDY: This study uniquely showed that appropriate sugar mixtures with the correct environmental conditions can significantly improve the productivity of O. oeni cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号