首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N-acyl-homoserine lactones (AHLs) are the main quorum-sensing (QS) signals in gram-negative bacteria. AHLs trigger the expression of genes for particular biological functions when their density reaches a threshold. In this study, we identified and cloned the qsdH gene by screening a genomic library of Pseudoalteromonas byunsanensis strain 1A01261, which has AHL-degrading activity. The qsdH gene encoded a GDSL hydrolase found to be located in the N-terminus of a multidrug efflux transporter protein of the resistance-nodulation-cell division (RND) family. We further confirmed that the GDSL hydrolase, QsdH, exhibited similar AHL-degrading activity to the full-length ORF protein. QsdH was expressed and purified to process the N-terminal signal peptide yielding a 27-kDa mature protein. QsdH was capable of inactivating AHLs with an acyl chain ranging from C4 to C14 with or without 3-oxo substitution. High-performance liquid chromatography (HPLC) and electrospray ionization-mass spectrometry (ESI-MS) analyses showed that QsdH functioned as an AHL lactonase to hydrolyze the ester bond of the homoserine lactone ring of AHLs. In addition, site-directed mutagenesis demonstrated that QsdH contained oxyanion holes (Ser-Gly-Asn) in conserved blocks (I, II, and III), which had important roles in its AHL-degrading activity. Furthermore, the lactonase activity of QsdH was slightly promoted by several divalent ions. Using in silico prediction, we concluded that QsdH was located at the first periplasmic loop of the multidrug efflux transporter protein, which is essential to substrate selectivity for these efflux pumps. These findings led us to assume that the QsdH lactonase and C-terminal efflux pump might be effective in quenching QS of the P. byunsanensis strain 1A01261. Moreover, it was observed that recombinant Escherichia coli producing QsdH proteins attenuated the plant pathogenicity of Erwinia carotovora, which might have potential to control of gram-negative pathogenic bacteria.  相似文献   

2.
Geobacillus caldoxylosilyticus YS-8, which was isolated from volcanic soil in Indonesia, was found to degrade various N-acylhomoserine lactones (AHLs) with different lengths and acyl side-chain substitutions over a wide temperature range of 30-70 °C. The purified AHL-degrading enzyme showed a single band of 32 kDa, and its N-terminal amino acid sequence was determined to be ANVIKARPKLYVMDN, tentatively suggesting that the AHL-degrading enzyme was AHL lactonase. The AHL-degrading activity of the purified enzyme was maximized at pH 7.5 and 50 °C, and it retained about 50% of its activity even after a heat treatment at 60 °C for 3 h, exhibiting properties consistent with a thermostable enzyme. The mass spectrometric analysis demonstrated that the AHL-degrading enzyme catalyzed lactone ring opening of N-3-oxohexanoyl-L-homoserine lactone and N-hexanoyl-L-homoserine lactone by hydrolyzing the lactones and working as an AHL lactonase.  相似文献   

3.
Many Gram-negative bacteria use N-acyl-l-homoserine lactones (AHLs) as quorum-sensing signal molecules. We have reported that Acinetobacter strains isolated from activated sludge have AHL-degrading activity. In this study, we cloned the amiE gene as an AHL-degradative gene from the genomic library of Acinetobacter sp. strain Ooi24. High-performance liquid chromatography analysis revealed that AmiE functions as an AHL acylase, which hydrolyzes the amide bond of AHL. AmiE showed a high level of degrading activity against AHLs with long acyl chains but no activity against AHLs with acyl chains shorter than eight carbons. AmiE showed homology with a member of the amidases (EC 3.5.1.4) but not with any known AHL acylase enzymes. An amino acid sequence of AmiE from Ooi24 showed greater than 99% identities with uncharacterized proteins from Acinetobacter ursingii CIP 107286 and Acinetobacter sp. strain CIP 102129, but it was not found in the draft or complete genome sequences of other Acinetobacter strains. The presence of transposase-like genes around the amiE genes of these three Acinetobacter strains suggests that amiE is transferred by a putative transposon. Furthermore, the expression of AmiE in Pseudomonas aeruginosa PAO1 reduced AHL accumulation and elastase activity, which were regulated by AHL-mediated quorum sensing.  相似文献   

4.
Quorum sensing plays a role in the regulation of soft rot diseases caused by the plant pathogenic bacterium Pectobacterium carotovorum subsp. carotovorum. The signal molecules involved in quorum sensing in P. carotovorum subsp. carotovorum belong to the group of N-acyl homoserine lactones (AHLs). In our study, we screened bacteria isolated from the potato rhizosphere for the ability to degrade AHLs produced by P. carotovorum subsp. carotovorum. Six isolates able to degrade AHLs were selected for further studies. According to 16S rDNA sequence analysis and fatty acid methyl ester profiling, the isolates belonged to the genera Ochrobactrum, Rhodococcus, Pseudomonas, Bacillus, and Delftia. For the genera Ochrobactrum and Delftia, for the first time AHL-degrading isolates were found. Data presented in this study revealed for the first time that Ochrobactrum sp. strain A44 showed the capacity to inactivate various synthetic AHL molecules; the substituted AHLs were inactivated with a lower efficiency than the unsubstituted AHLs. Compared with the other isolates, A44 was very effective in the degradation of AHLs produced by P. carotovorum subsp. carotovorum. It was verified by polymerase chain reaction, DNA-DNA hybridization, and a lactone ring reconstruction assay that Ochrobactrum sp. strain A44 did not possess AHL lactonase activity. AHL degradation in Ochrobactrum sp. strain A44 occurred intracellularly; it was not found in the culture supernatant. AHL-degrading activity of A44 was thermo sensitive. Experiments in planta revealed that Ochrobactrum sp. strain A44 significantly inhibited the maceration of potato tuber tissue. Since A44 did not produce antibiotics, the attenuation of the decay might be due to the quenching of quorum- sensing-regulated production of pectinolytic enzymes. The strain can potentially serve to control P. carotovorum subsp. carotovorum in potato.  相似文献   

5.
N-Acylhomoserine lactones (AHLs) are used as quorum-sensing signal molecules by many Gram-negative bacteria. We have reported that Microbacterium testaceum StLB037, which was isolated from the leaf surface of potato, has AHL-degrading activity. In this study, we cloned the aiiM gene from the genomic library of StLB037, which has AHL-degrading activity and shows high homology with the α/β hydrolase fold family from Actinobacteria. Purified AiiM as a maltose binding fusion protein showed high degrading activity of AHLs with both short- and long-chain AHLs with or without substitution at carbon 3. High-performance liquid chromatography analysis revealed that AiiM works as an AHL lactonase that catalyzes AHL ring opening by hydrolyzing lactones. In addition, expression of AiiM in the plant pathogen Pectobacterium carotovorum subsp. carotovorum reduced pectinase activity markedly and attenuated soft rot symptoms on potato slices. In conclusion, this study indicated that AiiM might be effective in quenching quorum sensing of P. carotovorum subsp. carotovorum.Quorum sensing is a cell-cell communication mechanism that depends on cell population density in bacteria (3, 7). In many Gram-negative bacteria, several kinds of N-acyl-l-homoserine lactones (AHLs) have been identified as signal compounds involved in this mechanism, and these are termed autoinducers (3, 7). AHL-mediated quorum sensing regulates the expression of many genes, including those responsible for bioluminescence, the production of pigments and antibiotics, and other processes (7). Many Gram-negative plant pathogens produce AHLs and regulate their virulence by AHL-mediated quorum sensing (31). For instance, Pectobacterium carotovorum subsp. carotovorum (formerly Erwinia carotovora), which causes soft rot diseases in many plant species, induces the production of various exoenzymes and plant tissue maceration by AHLs (1). Pantoea stewartii and Pantoea ananatis produce AHLs and regulate exopolysaccharide biosynthesis and the infection of plants (15, 32). In general, AHL-negative mutants show defects in pathogenicity, so it is expected that disrupting or manipulating quorum-sensing signals could inhibit the expression of virulence and infection of host cells.Recently, many AHL-degrading genes have been cloned and characterized from various bacteria. Genes encoding AHL lactonase, which catalyzes AHL ring opening by hydrolyzing lactones, have been cloned from Bacillus sp., Arthrobacter sp., Agrobacterium tumefaciens, and Rhodococcus erythropolis (5, 23, 30, 34). Genes encoding AHL acylase, which hydrolyze the amide bond of AHL, have been cloned from Ralstonia sp., Anabaena sp., Streptomyces sp., Shewanella sp., and Pseudomonas aeruginosa (11, 12, 16, 22, 25). Human and murine paraoxonase degrades AHL by hydrolyzing its lactone ring (21). Novel AHL lactonase genes have been isolated from a metagenomic library which was constructed from environmental soil samples (24, 27). AHL-degrading genes have also been utilized in the biocontrol of plant diseases. Expression of aiiA in transformed P. carotovorum subsp. carotovorum significantly attenuates pathogenicity on some crops (5). Transgenic plants expressing AHL lactonase exhibited significantly enhanced resistance to the infection of P. carotovorum subsp. carotovorum (4).We have reported the isolation of AHL-degrading Microbacterium testaceum StLB037 from the leaf surface of potato (Solanum tuberosum) (17). In coinfections, we found that StLB037 interrupted quorum-sensing-dependent bacterial infection by the plant pathogen P. carotovorum subsp. carotovorum. In this study, we report the cloning and characterization of a novel AHL lactonase gene (aiiM) from the chromosome of StLB037. In addition, we evaluated the potential use of heterologous aiiM gene expression in quenching quorum sensing in the plant pathogen P. carotovorum subsp. carotovorum.  相似文献   

6.
Acyl-homoserine lactones (AHLs) are employed by several Proteobacteria as quorum-sensing signals. Past studies have established that these compounds are subject to biochemical decay and can be used as growth nutrients. Here we describe the isolation of a soil bacterium, Pseudomonas strain PAI-A, that degrades 3-oxododecanoyl-homoserine lactone (3OC12HSL) and other long-acyl, but not short-acyl, AHLs as sole energy sources for growth. The small-subunit rRNA gene from strain PAI-A was 98.4% identical to that of Pseudomonas aeruginosa, but the soil isolate did not produce obvious pigments or AHLs or grow under denitrifying conditions or at 42°C. The quorum-sensing bacterium P. aeruginosa, which produces both 3OC12HSL and C4HSL, was examined for the ability to utilize AHLs for growth. It did so with a specificity similar to that of strain PAI-A, i.e., degrading long-acyl but not short-acyl AHLs. In contrast to the growth observed with strain PAI-A, P. aeruginosa strain PAO1 growth on AHLs commenced only after extremely long lag phases. Liquid-chromatography-atmospheric pressure chemical ionization-mass spectrometry analyses indicate that strain PAO1 degrades long-acyl AHLs via an AHL acylase and a homoserine-generating HSL lactonase. A P. aeruginosa gene, pvdQ (PA2385), has previously been identified as being a homologue of the AHL acylase described as occurring in a Ralstonia species. Escherichia coli expressing pvdQ catalyzed the rapid inactivation of long-acyl AHLs and the release of HSL. P. aeruginosa engineered to constitutively express pvdQ did not accumulate its 3OC12HSL quorum signal when grown in rich media. However, pvdQ knockout mutants of P. aeruginosa were still able to grow by utilizing 3OC12HSL. To our knowledge, this is the first report of the degradation of AHLs by pseudomonads or other γ-Proteobacteria, of AHL acylase activity in a quorum-sensing bacterium, of HSL lactonase activity in any bacterium, and of AHL degradation with specificity only towards AHLs with long side chains.  相似文献   

7.
N-Acylhomoserine lactones (AHLs) play an important role in regulating virulence factors in pathogenic bacteria. Recently, the enzymatic inactivation of AHLs, which can be used as antibacterial targets, has been identified in several soil bacteria. In this study, strain M664, identified as a Streptomyces sp., was found to secrete an AHL-degrading enzyme into a culture medium. The ahlM gene for AHL degradation from Streptomyces sp. strain M664 was cloned, expressed heterologously in Streptomyces lividans, and purified. The enzyme was found to be a heterodimeric protein with subunits of approximately 60 kDa and 23 kDa. A comparison of AhlM with known AHL-acylases, Ralstonia strain XJ12B AiiD and Pseudomonas aeruginosa PAO1 PvdQ, revealed 35% and 32% identities in the deduced amino acid sequences, respectively. However, AhlM was most similar to the cyclic lipopeptide acylase from Streptomyces sp. strain FERM BP-5809, exhibiting 93% identity. A mass spectrometry analysis demonstrated that AhlM hydrolyzed the amide bond of AHL, releasing homoserine lactone. AhlM exhibited a higher deacylation activity toward AHLs with long acyl chains rather than short acyl chains. Interestingly, AhlM was also found to be capable of degrading penicillin G by deacylation, showing that AhlM has a broad substrate specificity. The addition of AhlM to the growth medium reduced the accumulation of AHLs and decreased the production of virulence factors, including elastase, total protease, and LasA, in P. aeruginosa. Accordingly, these results suggest that AHL-acylase, AhlM could be effectively applied to the control of AHL-mediated pathogenicity.  相似文献   

8.
Gram-negative bacteria use N-acyl homoserine lactones (AHLs) as quorum sensing (QS) signaling molecules for interspecies communication, and AHL-dependent QS is related with virulence factor production in many bacterial pathogens. Quorum quenching, the enzymatic degradation of the signaling molecule, would attenuate virulence rather than kill the pathogens, and thereby reduce the potential for evolution of drug resistance. In a previous study, we showed that Muricauda olearia Th120, belonging to the class Flavobacteriia, has strong AHL degradative activity. In this study, an AHL lactonase (designated MomL), which could degrade both short- and long-chain AHLs with or without a substitution of oxo-group at the C-3 position, was identified from Th120. Liquid chromatography-mass spectrometry analysis demonstrated that MomL functions as an AHL lactonase catalyzing AHL degradation through lactone hydrolysis. MomL is an AHL lactonase belonging to the metallo-β-lactamase superfamily that harbors an N-terminal signal peptide. The overall catalytic efficiency of MomL for C6-HSL is ∼2.9 × 105 s−1 M−1. Metal analysis and site-directed mutagenesis showed that, compared to AiiA, MomL has a different metal-binding capability and requires the histidine and aspartic acid residues for activity, while it shares the “HXHXDH” motif with other AHL lactonases belonging to the metallo-β-lactamase superfamily. This suggests that MomL is a representative of a novel type of secretory AHL lactonase. Furthermore, MomL significantly attenuated the virulence of Pseudomonas aeruginosa in a Caenorhabditis elegans infection model, which suggests that MomL has the potential to be used as a therapeutic agent.  相似文献   

9.
N -acylhomoserine lactone (AHL) quorum-sensing molecules modulate the swimming behaviour of zoospores of the macroalga Ulva to facilitate the location of bacterial biofilms. Here we show that the intertidal surfaces colonized by Ulva are dominated by Alphaproteobacteria , particularly the Rhodobacteraceae family, and the Bacteroidetes family Flavobacteriaceae , and that this diverse assemblage both produces and degrades AHLs. N -acylhomoserine lactones could also be extracted from the surfaces of pebbles recovered from intertidal rock-pools. Bacteria representative of this assemblage were isolated and tested for the production and degradation of AHLs, and for their ability to modulate zoospore settlement at different biofilm densities. Of particular interest was a Shewanella sp. This strain produced three major AHLs (OC4, OC10 and OC12) in the late exponential phase, but the longer-chain AHLs were rapidly degraded in the stationary phase. Degradation occurred via both lactonase and amidase activity. A close relationship was found between AHL synthesis and Ulva zoospore settlement. The Shewanella isolate also interfered with AHL production by a Sulfitobacter isolate and its ability to enhance zoospore settlement in a polymicrobial biofilm. This influence on the attachment of Ulva zoospores suggests that AHL-degrading strains can affect bacterial community behaviour by interfering with quorum sensing between neighbouring bacteria. More importantly, these interactions may exert wider ecological effects across different kingdoms.  相似文献   

10.
A range of gram-negative bacterial species use N-acyl homoserine lactone (AHL) molecules as quorum-sensing signals to regulate different biological functions, including production of virulence factors. AHL is also known as an autoinducer. An autoinducer inactivation gene, aiiA, coding for an AHL lactonase, was cloned from a bacterial isolate, Bacillus sp. strain 240B1. Here we report identification of more than 20 bacterial isolates capable of enzymatic inactivation of AHLs from different sources. Eight isolates showing strong AHL-inactivating enzyme activity were selected for a preliminary taxonomic analysis. Morphological phenotypes and 16S ribosomal DNA sequence analysis indicated that these isolates probably belong to the species Bacillus thuringiensis. Enzymatic analysis with known Bacillus strains confirmed that all of the strains of B. thuringiensis and the closely related species B. cereus and B. mycoides tested produced AHL-inactivating enzymes but B. fusiformis and B. sphaericus strains did not. Nine genes coding for AHL inactivation were cloned either by functional cloning or by a PCR procedure from selected bacterial isolates and strains. Sequence comparison of the gene products and motif analysis showed that the gene products belong to the same family of AHL lactonases.  相似文献   

11.
It has been reported that an indigenous quorum quenching bacterium, Rhodococcus sp. BH4, which was isolated from a real plant of membrane bioreactor (MBR) has promising potential to control biofouling in MBR. However, little is known about quorum quenching mechanisms by the strain BH4. In this study, various characteristics of strain BH4 were investigated to elucidate its behavior in more detail in the mixed liquor of MBR. The N-acyl homoserine lactone hydrolase (AHL–lactonase) gene of strain BH4 showed a high degree of identity to qsdA in Rhodococcus erythropolis W2. The LC-ESI-MS analysis of the degradation product by strain BH4 confirmed that it inactivated AHL activity by hydrolyzing the lactone bond of AHL. It degraded a wide range of N-acyl homoserine lactones (AHLs), but there was a large difference in the degradation rate of each AHL compared to other reported AHL–lactonase-producing strains belonging to Rhodococcus genus. Its quorum quenching activity was confirmed not only in the Luria-Bertani medium, but also in the synthetic wastewater. Furthermore, the amount of strain BH4 encapsulated in the vessel as well as the material of the vessel substantially affected the quorum quenching activity of strain BH4, which provides useful information, particularly for the biofouling control in a real MBR plant from an engineering point of view.  相似文献   

12.
Acyl-homoserine lactones (AHLs) are employed by several Proteobacteria as quorum-sensing signals. Past studies have established that these compounds are subject to biochemical decay and can be used as growth nutrients. Here we describe the isolation of a soil bacterium, Pseudomonas strain PAI-A, that degrades 3-oxododecanoyl-homoserine lactone (3OC12HSL) and other long-acyl, but not short-acyl, AHLs as sole energy sources for growth. The small-subunit rRNA gene from strain PAI-A was 98.4% identical to that of Pseudomonas aeruginosa, but the soil isolate did not produce obvious pigments or AHLs or grow under denitrifying conditions or at 42 degrees C. The quorum-sensing bacterium P. aeruginosa, which produces both 3OC12HSL and C4HSL, was examined for the ability to utilize AHLs for growth. It did so with a specificity similar to that of strain PAI-A, i.e., degrading long-acyl but not short-acyl AHLs. In contrast to the growth observed with strain PAI-A, P. aeruginosa strain PAO1 growth on AHLs commenced only after extremely long lag phases. Liquid-chromatography-atmospheric pressure chemical ionization-mass spectrometry analyses indicate that strain PAO1 degrades long-acyl AHLs via an AHL acylase and a homoserine-generating HSL lactonase. A P. aeruginosa gene, pvdQ (PA2385), has previously been identified as being a homologue of the AHL acylase described as occurring in a Ralstonia species. Escherichia coli expressing pvdQ catalyzed the rapid inactivation of long-acyl AHLs and the release of HSL. P. aeruginosa engineered to constitutively express pvdQ did not accumulate its 3OC12HSL quorum signal when grown in rich media. However, pvdQ knockout mutants of P. aeruginosa were still able to grow by utilizing 3OC12HSL. To our knowledge, this is the first report of the degradation of AHLs by pseudomonads or other gamma-Proteobacteria, of AHL acylase activity in a quorum-sensing bacterium, of HSL lactonase activity in any bacterium, and of AHL degradation with specificity only towards AHLs with long side chains.  相似文献   

13.
A thermostable quorum-quenching lactonase from Geobacillus kaustophilus HTA426 (GI: 56420041) was used as an initial template for in vitro directed evolution experiments. This enzyme belongs to the phosphotriesterase-like lactonase (PLL) group of enzymes within the amidohydrolase superfamily that hydrolyze N-acylhomoserine lactones (AHLs) that are involved in virulence pathways of quorum-sensing pathogenic bacteria. Here we have determined the N-butyryl-l-homoserine lactone-liganded structure of the catalytically inactive D266N mutant of this enzyme to a resolution of 1.6 Å. Using a tunable, bioluminescence-based quorum-quenching molecular circuit, the catalytic efficiency was enhanced, and the AHL substrate range increased through two point mutations on the loops at the C-terminal ends of the third and seventh β-strands. This E101N/R230I mutant had an increased value of kcat/Km of 72-fold toward 3-oxo-N-dodecanoyl-l-homoserine lactone. The evolved mutant also exhibited lactonase activity toward N-butyryl-l-homoserine lactone, an AHL that was previously not hydrolyzed by the wild-type enzyme. Both the purified wild-type and mutant enzymes contain a mixture of zinc and iron and are colored purple and brown, respectively, at high concentrations. The origin of this coloration is suggested to be because of a charge transfer complex involving the β-cation and Tyr-99 within the enzyme active site. Modulation of the charge transfer complex alters the lactonase activity of the mutant enzymes and is reflected in enzyme coloration changes. We attribute the observed enhancement in catalytic reactivity of the evolved enzyme to favorable modulations of the active site architecture toward productive geometries required for chemical catalysis.  相似文献   

14.
群体感应(Quorum sensing,QS)是细菌在进化过程中形成的依赖于群体密度的细菌间交流方式。许多革兰氏阴性细菌以N-酰基高丝氨酸内酯(AHL)为信号分子,感应自身群体密度并调控致病基因表达。因此,淬灭AHLs信号分子可防治此类细菌引起的植物病害。本实验室前期已筛选得到了一株具有AHLs信号降解能力的不动杆菌菌株Acinetobacter sp.77,本研究通过基因组文库筛选,自菌株77中克隆得到具有AHLs降解活性的基因aidE。该基因编码268个氨基酸。序列一致性比较发现aidE的氨基酸序列与吉伦伯不动杆菌Acinetobacter gyllenbergii CIP110306中β-内酰胺酶一致性高达95%,但与已知的AHLs降解酶序列一致性较低,最高为缓黄分支杆菌Mycobacterium lentiflavum中AHL内酯酶Att M/Aii B家族蛋白(CQD23908.1),一致性仅为33%。通过高压液相色谱(HPLC)分析Aid E蛋白处理N-己酰基高丝氨酸内酯(C6-HSL)的反应产物,证明aidE为AHL内酯酶。序列比对研究发现,aidE基因在不动杆菌属中并不保守,其在菌株77基因组中的上下游的基因排列存在菌株水平的特异性,且aidE基因下游存在疑似IS插入序列,上述证据表明aidE基因有可能是通过水平转移进入Acinetobacter sp.77基因组中,或其在基因组中的位置发生过重排。表达aidE的软腐果胶杆菌Z3-3中完全检测不到AHLs信号产生,且致病力明显降低。综上所述,aidE为新发现的AHL内酯酶。在防治依赖QS系统表达致病性的细菌病害中具有应用潜力。  相似文献   

15.
Gram-negative bacteria most often use N-acyl homoserine lactones (AHLs) as intercellular quorum-sensing signal molecules. In this study, it was demonstrated that rice plants contain AHL mimic molecules that are very sensitive to the highly specific AiiA lactonase enzyme and can activate three different AHL bacterial biosensors, indicating that the compounds have a homoserine lactone structure and could be AHLs. The possible source and biological significance of this finding are discussed.  相似文献   

16.
17.
The rhizosphere-associated bacterium Serratia plymuthica HRO-C48 is not only able to suppress symptoms caused by soil-borne pathogens but is also able to stimulate growth of plants. Detailed knowledge about the underlying mechanisms and regulation are crucial for the application in biocontrol strategies. To analyse the influence of N -acyl homoserine lactone (AHL)-mediated communication on the biocontrol activity, the AHL-degrading lactonase AiiA was heterologously expressed in the strain, resulting in abolished AHL production. The comparative analysis of the wild type and AHL negative mutants led to the identification of new AHL-regulated phenotypes. In the pathosystem Verticillium dahliae –oilseed rape, the essential role of AHL-mediated signaling for disease suppression was demonstrated. In vitro , the regulatory function of AHLs in the synthesis of the plant growth hormone indole-3-acetic acid is shown for the first time. Additionally, swimming motility was found to be negatively AHL regulated. In contrast, production of extracellular hydrolytic enzymes is shown to be positively AHL-regulated. HRO-C48 emits a broad spectrum of volatile organic compounds that are involved in antifungal activity and, interestingly, whose relative abundances are influenced by quorum sensing (QS). This study shows that QS is crucial for biocontrol activity of S. plymuthica and discusses the impact for the application of the strain as a biocontrol agent.  相似文献   

18.
N-acylhomoserine lactones (AHLs) play an important role in regulating virulence factors in pathogenic bacteria. Recently, the enzymatic inactivation of AHLs, which can be used as antibacterial targets, has been identified in several soil bacteria. In this study, strain M664, identified as a Streptomyces sp., was found to secrete an AHL-degrading enzyme into a culture medium. The ahlM gene for AHL degradation from Streptomyces sp. strain M664 was cloned, expressed heterologously in Streptomyces lividans, and purified. The enzyme was found to be a heterodimeric protein with subunits of approximately 60 kDa and 23 kDa. A comparison of AhlM with known AHL-acylases, Ralstonia strain XJ12B AiiD and Pseudomonas aeruginosa PAO1 PvdQ, revealed 35% and 32% identities in the deduced amino acid sequences, respectively. However, AhlM was most similar to the cyclic lipopeptide acylase from Streptomyces sp. strain FERM BP-5809, exhibiting 93% identity. A mass spectrometry analysis demonstrated that AhlM hydrolyzed the amide bond of AHL, releasing homoserine lactone. AhlM exhibited a higher deacylation activity toward AHLs with long acyl chains rather than short acyl chains. Interestingly, AhlM was also found to be capable of degrading penicillin G by deacylation, showing that AhlM has a broad substrate specificity. The addition of AhlM to the growth medium reduced the accumulation of AHLs and decreased the production of virulence factors, including elastase, total protease, and LasA, in P. aeruginosa. Accordingly, these results suggest that AHL-acylase, AhlM could be effectively applied to the control of AHL-mediated pathogenicity.  相似文献   

19.
N-Acylhomoserine lactones (AHLs) are used as quorum-sensing signal molecules by many gram-negative bacteria. We have reported that Shewanella sp. strain MIB015 degrades AHLs. In the present study, we cloned the aac gene from MIB015 by PCR with specific primers based on the aac gene in Shewanella oneidensis strain MR-1, which showed high homology with the known AHL-acylases. Escherichia coli expressing Aac showed high degrading activity of AHLs with long acyl chains. HPLC analysis revealed that Aac worked as AHL-acylase, which hydrolyzed the amide bond of AHL. In addition, expression of Aac in fish pathogen Vibrio anguillarum markedly reduced AHL production and biofilm formation. In conclusion, this study indicates that Aac might be effective in quenching quorum sensing of fish pathogens.  相似文献   

20.
Enzymatic disruption of quorum-sensing (QS) pathways in pathogenic organisms is a promising anti-infection therapeutic strategy. AHL-lactonase, a potent tool for biocontrol, can hydrolyze QS signal molecule N-acyl-homoserine lactones (AHLs) into inactive products, thereby blocking the QS systems. A marine bacterial isolate Y2, identified as a Bacillus cereus subsp., was found capable of inactivating AHLs. The aiiA gene encoding the AHL-degrading enzyme from bacterial strain Y2 was cloned and expressed in Escherichia coli. The 28-kDa recombinant Y2-AiiA protein was purified and showed strong AHL-degrading activity. Sequence comparisons of Y2-aiiA with known AHL-lactonases revealed high identities in the deduced amino-acid sequences. Functional determination of a potential catalytic residue Tyr-194 of AHL-lactonases was performed by site-directed mutagenesis. As judged by AHL-degrading bioassay, substitution of Tyr-194 with Ala resulted in a dramatic decrease of activity compared with wild-type (WT) recombinant Y2-AiiA, although the expression level of the mutated Y2-AiiA protein was equivalent to that of WT Y2-AiiA. These results suggested that the conserved residue Tyr-194 is critical for catalytic function of the novel AHL-lactonase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号