首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.

Background

Much effort is being devoted for developing new indicators to evaluate the human exposure to Aedes mosquito bites and the risk of arbovirus transmission. Human antibody (Ab) responses to mosquito salivary components could represent a promising tool for evaluating the human-vector contact.

Methodology/Principal findings

To develop a specific biomarker of human exposure to Aedes aegypti bites, we measured IgG Ab response to Ae. aegypti Nterm-34 kDa salivary peptide in exposed children in 7 villages of Southern Benin (West Africa). Results showed that specific IgG response presented high inter-individual heterogeneity between villages. IgG response was associated with rainfall and IgG level increased from dry (low exposure) to rainy (high exposure) seasons. These findings indicate that IgG Ab to Nterm-34 kDa salivary peptide may represent a reliable biomarker to detect variation in human exposure to Ae. aegypti bites.

Conclusion/Significance

This preliminary study highlights the potential use of Ab response to this salivary peptide for evaluating human exposure to Ae. aegypti. This biomarker could represent a new promising tool for assessing the risk of arbovirus transmission and for evaluating the efficacy of vector control interventions.  相似文献   

2.

Background

Cross-sectional serosurveys using IgG antibody to pertussis toxin (IgG-PT) are increasingly being used to estimate trends in recent infection independent of reporting biases.

Methods/Principal Findings

We compared the age-specific seroprevalence of various levels of IgG-PT in cross-sectional surveys using systematic collections of residual sera from Australian diagnostic laboratories in 1997/8, 2002 and 2007 with reference to both changes in the pertussis vaccine schedule and the epidemic cycle, as measured by disease notifications. A progressive decline in high-level (≥62.5 EU/ml) IgG-PT prevalence from 19% (95% CI 16–22%) in 1997/98 to 12% (95% CI 11–14%) in 2002 and 5% (95% CI 4–6%) in 2007 was consistent with patterns of pertussis notifications in the year prior to each collection. Concomitantly, the overall prevalence of undetectable (<5 EU/ml) levels increased from 17% (95% CI 14–20%) in 1997/98 to 38% (95% CI 36–40%) in 2007 but among children aged 1–4 years, from 25% (95% CI 17–34%) in 1997/98 to 62% (95% CI 56–68%) in 2007. This change followed withdrawal of the 18-month booster dose in 2003 and preceded record pertussis notifications from 2008 onwards.

Conclusions/Significance

Population seroprevalence of high levels of IgG-PT is accepted as a reliable indicator of pertussis disease activity over time within and between countries with varying diagnostic practices, especially in unimmunised age groups. Our novel findings suggest that increased prevalence of undetectable IgG-PT is an indicator of waning immunity useful for population level monitoring following introduction of acellular vaccines and/or schedule changes.  相似文献   

3.

Background

Despite large-scale vaccination programmes, pertussis has remained endemic in all European countries and has been on the rise in many countries in the last decade. One of the reasons that have been discussed for the failure of vaccination to eliminate the disease is continued circulation of the pathogen Bordetella pertussis by mostly asymptomatic and mild infections in adolescents and adults. To understand the impact of asymptomatic and undiagnosed infection on the transmission dynamics of pertussis we analysed serological data from five European countries in combination with information about social contact patterns from five of those countries to estimate incidence and reproduction numbers.

Methods and Findings

We compared two different methods for estimating incidence from individual data on IgG pertussis toxin (PT) titres. One method combines the cross-sectional surveys of titres with longitudinal information about the distribution of amplitude and decay rate of titres in a back-calculation approach. The second method uses age-dependent contact matrices and cross-sectional surveys of IgG PT titres to estimate a next generation matrix for pertussis transmission among age groups. The next generation approach allows for computation of basic reproduction numbers for five European countries. Our main findings are that the seroincidence of infections as estimated with the first method in all countries lies between 1% and 6% per annum with a peak in the adolescent age groups and a second lower peak in young adults. The incidence of infections as estimated by the second method lies slightly lower with ranges between 1% and 4% per annum. There is a remarkably good agreement of the results obtained with the two methods. The basic reproduction numbers are similar across countries at around 5.5.

Conclusions

Vaccination with currently used vaccines cannot prevent continued circulation and reinfection with pertussis, but has shifted the bulk of infections to adolescents and adults. If a vaccine conferring lifelong protection against clinical and subclinical infection were available pertussis could be eliminated. Currently, continuing circulation of the pathogen at a subclinical level provides a refuge for the pathogen in which it can evolve and adjust to infect vaccinated populations. Please see later in the article for the Editors'' Summary  相似文献   

4.

Background

In many countries, the reported pertussis has increased despite high vaccination coverage. However, accurate determination of the burden of disease is hampered by reporting artifacts. The infection frequency is more reliably estimated on the basis of the prevalence of high IgG concentrations against pertussis toxin (IgG-Ptx). We determined whether the increase in reported pertussis in the last decade is associated with an increase in the number of infections.

Methodology/Principal Findings

In a cross-sectional population-based serosurveillance study conducted in 2006-07, from a randomly selected age-stratified sample of 7,903 persons, serum IgG-Ptx concentrations were analyzed using a fluorescent bead-based multiplex immuno assay. In 2006-07, 9.3% (95%CI 8.5-10.1) of the population above 9 years of age had an IgG-Ptx concentration above 62.5 EU/ml (suggestive for pertussis infection in the past year), which was more than double compared to 1995-96 (4.0%; 95%CI 3.3-4.7). The reported incidence showed a similar increase as the seroprevalence between both periods.

Conclusions

Although changes in the vaccination program have reduced pertussis morbidity in childhood, they have not affected the increased infection rate in adolescent and adult pertussis. Indeed, the high circulation of B. pertussis in the latter age-categories may limit the effectiveness of pediatric vaccination.  相似文献   

5.
Zhu YZ  Cai CS  Zhang W  Guo HX  Zhang JP  Ji YY  Ma GY  Wu JL  Li QT  Lu CP  Guo XK 《PloS one》2010,5(11):e13915

Background

Pertussis (whooping cough) caused by Bordetella pertussis (B.p), continues to be a serious public health threat. Vaccination is the most economical and effective strategy for preventing and controlling pertussis. However, few systematic investigations of actual human immune responses to pertussis vaccines have been performed. Therefore, we utilized a combination of two-dimensional electrophoresis (2-DE), immunoblotting, and mass spectrometry to reveal the entire antigenic proteome of whole-cell pertussis vaccine (WCV) targeted by the human immune system as a first step toward evaluating the repertoire of human humoral immune responses against WCV.

Methodology/Principal Findings

Immunoproteomic profiling of total membrane enriched proteins and extracellular proteins of Chinese WCV strain 58003 identified a total of 30 immunoreactive proteins. Seven are known pertussis antigens including Pertactin, Serum resistance protein, chaperonin GroEL and two OMP porins. Sixteen have been documented to be immunogenic in other pathogens but not in B.p, and the immunogenicity of the last seven proteins was found for the first time. Furthermore, by comparison of the human and murine immunoproteomes of B.p, with the exception of four human immunoreactive proteins that were also reactive with mouse immune sera, a unique group of antigens including more than 20 novel immunoreactive proteins that uniquely reacted with human immune serum was confirmed.

Conclusions/Significance

This study is the first time that the repertoire of human serum antibody responses against WCV was comprehensively investigated, and a small number of previously unidentified antigens of WCV were also found by means of the classic immunoproteomic strategy. Further research on these newly identified predominant antigens of B.p exclusively against humans will not only remarkably accelerate the development of diagnostic biomarkers and subunit vaccines but also provide detailed insight into human immunity mechanisms against WCV. In particular, this work highlights the heterogeneity of the B.p immunoreactivity patterns of the mouse model and the human host.  相似文献   

6.
7.

Background

Acellular pertussis vaccines do not control pertussis. A new approach to offer protection to infants is necessary. BPZE1, a genetically modified Bordetella pertussis strain, was developed as a live attenuated nasal pertussis vaccine by genetically eliminating or detoxifying 3 toxins.

Methods

We performed a double-blind, placebo-controlled, dose-escalating study of BPZE1 given intranasally for the first time to human volunteers, the first trial of a live attenuated bacterial vaccine specifically designed for the respiratory tract. 12 subjects per dose group received 103, 105 or 107 colony-forming units as droplets with half of the dose in each nostril. 12 controls received the diluent. Local and systemic safety and immune responses were assessed during 6 months, and nasopharyngeal colonization with BPZE1 was determined with repeated cultures during the first 4 weeks after vaccination.

Results

Colonization was seen in one subject in the low dose, one in the medium dose and five in the high dose group. Significant increases in immune responses against pertussis antigens were seen in all colonized subjects. There was one serious adverse event not related to the vaccine. Other adverse events were trivial and occurred with similar frequency in the placebo and vaccine groups.

Conclusions

BPZE1 is safe in healthy adults and able to transiently colonize the nasopharynx. It induces immune responses in all colonized individuals. BPZE1 can thus undergo further clinical development, including dose optimization and trials in younger age groups.

Trial Registration

ClinicalTrials.gov NCT01188512  相似文献   

8.

Background

Despite the extensive use of efficacious vaccines, pertussis still ranks among the major causes of childhood mortality worldwide. Two types of pertussis vaccines are currently available, whole-cell, and the more recent acellular vaccines. Because of reduced reactogenicity and comparable efficacy acellular vaccines progressively replace whole-cell vaccines. However, both types require repeated administrations for optimal efficacy. We have recently developed a live attenuated vaccine candidate, named BPZE1, able to protect infant mice after a single nasal administration.

Methodology/Principal Findings

We determined the protective mechanism of BPZE1-mediated immunity by using passive transfer of T cells and antibodies from BPZE1-immunized mice to SCID mice. Clearance of Bordetella pertussis from the lungs was mediated by both BPZE1-induced antibodies and CD4+, but not by CD8+ T cells. The protective CD4+ T cells comprised IFN-γ-producing and IL-17-producing subsets, indicating that BPZE1 induces both Th1 and Th17 CD4+ T cells. In addition, and in contrast to acellular pertussis vaccines, BPZE1 also cross-protected against Bordetella parapertussis infection, but in this case only the transfer of CD4+ T cells conferred protection. Serum from BPZE1-immunized mice was not able to kill B. parapertussis and did not protect SCID mice against B. parapertussis infection.

Conclusions/Significance

The novel live attenuated pertussis vaccine BPZE1 protects in a pre-clinical mouse model against B. pertussis challenge by both BPZE1-induced antibodies and CD4+ T cell responses. It also protects against B. parapertussis infection. However, in this case protection is only T cell mediated.  相似文献   

9.

Background

The spread of Aedes albopictus, a vector for re-emergent arbovirus diseases like chikungunya and dengue, points up the need for better control strategies and new tools to evaluate transmission risk. Human antibody (Ab) responses to mosquito salivary proteins could represent a reliable biomarker for evaluating human-vector contact and the efficacy of control programs.

Methodology/Principal Findings

We used ELISA tests to evaluate specific immunoglobulin G (IgG) responses to salivary gland extracts (SGE) in adults exposed to Aedes albopictus in Reunion Island. The percentage of immune responders (88%) and levels of anti-SGE IgG Abs were high in exposed individuals. At an individual level, our results indicate heterogeneity of the exposure to Aedes albopictus bites. In addition, low-level immune cross-reactivity between Aedes albopictus and Aedes aegypti SGEs was observed, mainly in the highest responders.

Conclusion/Significance

Ab responses to saliva could be used as an immuno-epidemiological tool for evaluating exposure to Aedes albopictus bites. Combined with entomological and epidemiological methods, a “salivary” biomarker of exposure to Aedes albopictus could enhance surveillance of its spread and the risk of arbovirus transmission, and could be used as a direct tool for the evaluation of Aedes albopictus control strategies.  相似文献   

10.

Background

Inflammatory bowel disease (IBD) is associated with a defective intestinal barrier and enhanced adaptive immune responses against commensal microbiota. Immune responses against food antigens in IBD patients remain poorly defined.

Methods

IgG and IgA specific for food and microfloral antigens (wheat and milk extracts; purified ovalbumin; Escherichia coli and Bacteroides fragilis lysates; mannan from Saccharomyces cerevisiae) were analyzed by ELISA in the serum and feces of patients with Crohn''s disease (CD; n = 52 for serum and n = 20 for feces), ulcerative colitis (UC; n = 29; n = 17), acute gastroenteritis/colitis (AGE; n = 12; n = 9) as well as non-inflammatory controls (n = 61; n = 39).

Results

Serum anti-Saccharomyces cerevisiae antibodies (ASCA) and anti-B. fragilis IgG and IgA levels were increased in CD patients whereas antibody (Ab) levels against E. coli and food antigens were not significantly different within the patient groups and controls. Subgroup analysis revealed that CD patients with severe diseases defined by stricturing and penetrating lesions have slightly higher anti-food and anti-microbial IgA levels whereas CD and UC patients with arthropathy have decreased anti-food IgG levels. Treatment with anti-TNF-α Abs in CD patients was associated with significantly decreased ASCA IgG and IgA and anti-E. coli IgG. In the feces specific IgG levels against all antigens were higher in CD and AGE patients while specific IgA levels were higher in non-IBD patients. Anti-food IgG and IgA levels did not correlate with food intolerance.

Summary

In contrast to anti-microbial Abs, we found only minor changes in serum anti-food Ab levels in specific subgroups of IBD patients. Fecal Ab levels towards microbial and food antigens show distinct patterns in controls, CD and UC patients.  相似文献   

11.

Background

Activation of the Toll-like receptor (TLR) signaling pathway through TLR4 may be important in the induction of protective immunity against Bordetella pertussis with TLR4-mediated activation of dendritic and B cells, induction of cytokine expression, and reversal of tolerance as crucial steps. We examined whether single nucleotide polymorphisms (SNPs) in genes of the TLR4 pathway and their interaction are associated with the response to whole-cell vaccine (WCV) pertussis vaccination in 490 one-year-old children.

Methodology/Principal Findings

We analyzed associations of 75 haplotype-tagging SNPs in genes in the TLR4 signaling pathway with pertussis toxin (PT)-IgG titers. We found significant associations between the PT-IgG titer and SNPs in CD14, TLR4, TOLLIP, TIRAP, IRAK3, IRAK4, TICAM1, and TNFRSF4 in one or more of the analyses. The strongest evidence for association was found for two SNPs (rs5744034 and rs5743894) in TOLLIP that were almost completely in linkage disequilibrium, provided statistically significant associations in all tests with the lowest p-values, and displayed a dominant mode of inheritance. However, none of these single gene associations would withstand correction for multiple testing. In addition, Multifactor Dimensionality Reduction Analysis, an approach that does not need correction for multiple testing, showed significant and strong two and three locus interactions between SNPs in TOLLIP (rs4963060), TLR4 (rs6478317) and IRAK1 (rs1059703).

Conclusions/Significance

We have identified significant interactions between genes in the TLR pathway in the induction of vaccine-induced immunity. These interactions underline that these genes are functionally related and together form a true biological relationship in a protein-protein interaction network. Practically all our findings may be explained by genetic variation in directly or indirectly interacting proteins at the extra- and intracytoplasmic sites of the cell membrane of antigen-presenting cells, B cells, or both. Fine tuning of interacting proteins in the TLR pathway appears important for the induction of an optimal vaccine response.  相似文献   

12.

Background

Plasmodium falciparum merozoite surface protein 5 (PfMSP5) is an attractive blood stage vaccine candidate because it is both exposed to the immune system and well conserved. To evaluate its interest, we investigated the association of anti-PfMSP5 IgG levels, in the context of responses to two other conserved Ags PfMSP1p19 and R23, with protection from clinical episodes of malaria in cross-sectional prospective studies in two different transmission settings.

Methods

Ndiop (mesoendemic) and Dielmo (holoendemic) are two Senegalese villages participating in an on-going long-term observational study of natural immunity to malaria. Blood samples were taken before the transmission season (Ndiop) or before peak transmission (Dielmo) and active clinical surveillance was carried out during the ensuing 5.5-month follow-up. IgG responses to recombinant PfMSP5, PfMSP1p19 and R23 were quantified by ELISA in samples from surveys carried out in Dielmo (186 subjects) and Ndiop (221 subjects) in 2002, and Ndiop in 2000 (204 subjects). In addition, 236 sera from the Dielmo and Ndiop-2002 surveys were analyzed for relationships between the magnitude of anti-PfMSP5 response and neutrophil antibody dependent respiratory burst (ADRB) activity.

Results

Anti-PfMSP5 antibodies predominantly IgG1 were detected in 60–74% of villagers, with generally higher levels in older age groups. PfMSP5 IgG responses were relatively stable for Ndiop subjects sampled both in 2000 and 2002. ADRB activity correlated with age and anti-PfMSP5 IgG levels. Importantly, PfMSP5 antibody levels were significantly associated with reduced incidence of clinical malaria in all three cohorts. Inclusion of IgG to PfMSP1p19 in the poisson regression model did not substantially modify results.

Conclusion

These results indicate that MSP5 is recognized by naturally acquired Ab. The large seroprevalence and association with protection against clinical malaria in two settings with differing transmission conditions and stability over time demonstrated in Ndiop argue for further evaluation of baculovirus PfMSP5 as a vaccine candidate.  相似文献   

13.

Background

Severe unconjugated hyperbilirubinemia carries the risk of neurotoxicity. Phototherapy (PT) and exchange transfusion (ET) are cornerstones in the treatment of unconjugated hyperbilirubinemia. Studies to improve ET efficacy have been hampered by the low application of ET in humans and by the lack of an in vivo model. The absence of an appropriate animal model has also prevented to determine the efficacy of adjunct or alternative treatment options such as albumin (Alb) administration.

Aim

To establish an in vivo model for ET and to determine the most effective treatment (combination) of ET, PT and Alb administration.

Methods

Gunn rats received either PT, PT+Alb, ET, ET+PT, ET+PT+Alb or sham operation (each n = 7). ET was performed via the right jugular vein in ∼20 min. PT (18 µW/cm2/nm) was started after ET or at T0. Albumin i.p. injections (2.5 g/kg) were given after ET or before starting PT. Plasma unconjugated bilirubin (UCB), plasma free bilirubin (Bf), and brain bilirubin concentrations were determined.

Results

We performed ET in 21 Gunn rats with 100% survival. At T1, ET was profoundly more effective in decreasing both UCB −44%, p<0.01) and Bf −81%, p<0.05) than either PT or PT+Alb. After 48 h, the combination of ET+PT+Alb showed the strongest hypobilirubinemic effect (−54% compared to ET).

Conclusions

We optimized ET for severe unconjugated hyperbilirubinemia in the Gunn rat model. Our data indicate that ET is the most effective treatment option, in the acute as well as the follow-up situation.  相似文献   

14.

Background

MSP3 has been shown to induce protection against malaria in African children. The characterization of a family of Plasmodium falciparum merozoite surface protein 3 (MSP3) antigens sharing a similar structural organization, simultaneously expressed on the merozoite surface and targeted by a cross-reactive network of protective antibodies, is intriguing and offers new perspectives for the development of subunit vaccines against malaria.

Methods

Eight recombinant polyproteins containing carefully selected regions of this family covalently linked in different combinations were all efficiently produced in Escherichia coli. The polyproteins consisted of one monovalent, one bivalent, one trivalent, two tetravalents, one hexavalent construct, and two tetravalents incorporating coiled-coil repeats regions from LSA3 and p27 vaccine candidates.

Results

All eight polyproteins induced a strong and homogeneous antibody response in mice of three distinct genotypes, with a dominance of cytophilic IgG subclasses, lasting up to six months after the last immunization. Vaccine-induced antibodies exerted a strong monocyte-mediated in vitro inhibition of P. falciparum growth. Naturally acquired antibodies from individuals living in an endemic area of Senegal recognized the polyproteins with a reactivity mainly constituted of cytophilic IgG subclasses.

Conclusions

Combination of genetically conserved and antigenically related MSP3 proteins provides promising subunit vaccine constructs, with improved features as compared to the first generation construct employed in clinical trials (MSP3-LSP). These multivalent MSP3 vaccine constructs expand the epitope display of MSP3 family proteins, and lead to the efficient induction of a wider range of antibody subclasses, even in genetically different mice. These findings are promising for future immunization of genetically diverse human populations.  相似文献   

15.

Background

Respiratory syncytial virus (RSV) is the major cause of lower respiratory tract infection in infants. The rate of decay of RSV-specific maternal antibodies (RSV-matAb), the factors affecting cord blood levels, and the relationship between these levels and protection from infection are poorly defined.

Methods

A birth cohort (n = 635) in rural Kenya, was studied intensively to monitor infections and describe age-related serological characteristics. RSV specific IgG antibody (Ab) in serum was measured by the enzyme linked immunosorbent assay (ELISA) in cord blood, consecutive samples taken 3 monthly, and in paired acute and convalescent samples. A linear regression model was used to calculate the rate of RSV-matAb decline. The effect of risk factors on cord blood titres was investigated.

Results

The half-life of matAb in the Kenyan cohort was calculated to be 79 days (95% confidence limits (CL): 76–81 days). Ninety seven percent of infants were born with RSV-matAb. Infants who subsequently experienced an infection in early life had significantly lower cord titres of anti-RSV Ab in comparison to infants who did not have any incident infection in the first 6 months (P = 0.011). RSV infections were shown to have no effect on the rate of decay of RSV-matAb.

Conclusion

Maternal-specific RSV Ab decline rapidly following birth. However, we provide evidence of protection against severe disease by RSV-matAb during the first 6–7 months. This suggests that boosting maternal-specific Ab by RSV vaccination may be a useful strategy to consider.  相似文献   

16.

Background

Pertussis is highly contagious; thus, prompt identification of cases is essential to control outbreaks. Clinicians experienced with the disease can easily identify classic cases, where patients have bursts of rapid coughing followed by gasps, and a characteristic whooping sound. However, many clinicians have never seen a case, and thus may miss initial cases during an outbreak. The purpose of this project was to use voice-recognition software to distinguish pertussis coughs from croup and other coughs.

Methods

We collected a series of recordings representing pertussis, croup and miscellaneous coughing by children. We manually categorized coughs as either pertussis or non-pertussis, and extracted features for each category. We used Mel-frequency cepstral coefficients (MFCC), a sampling rate of 16 KHz, a frame Duration of 25 msec, and a frame rate of 10 msec. The coughs were filtered. Each cough was divided into 3 sections of proportion 3-4-3. The average of the 13 MFCCs for each section was computed and made into a 39-element feature vector used for the classification. We used the following machine learning algorithms: Neural Networks, K-Nearest Neighbor (KNN), and a 200 tree Random Forest (RF). Data were reserved for cross-validation of the KNN and RF. The Neural Network was trained 100 times, and the averaged results are presented.

Results

After categorization, we had 16 examples of non-pertussis coughs and 31 examples of pertussis coughs. Over 90% of all pertussis coughs were properly classified as pertussis. The error rates were: Type I errors of 7%, 12%, and 25% and Type II errors of 8%, 0%, and 0%, using the Neural Network, Random Forest, and KNN, respectively.

Conclusion

Our results suggest that we can build a robust classifier to assist clinicians and the public to help identify pertussis cases in children presenting with typical symptoms.  相似文献   

17.

Background

Q fever is a worldwide zoonotic disease caused by Coxiella burnetii. Epidemiologically, animals are considered reservoirs and humans incidental hosts.

Methodology/Principal Findings

We investigated Q fever in rural Senegal. Human samples (e.g., sera, saliva, breast milk, feces) were screened in the generally healthy population of two villages of the Sine-Saloum region. Ticks were collected in four regions. Seroprevalence was studied by immunofluorescence, and all other samples were tested by two qPCR systems for detection of C. burnetii. Positive samples were genotyped (multispacer typing) by amplification and sequencing of three spacers. Strains were isolated by cell culture. We found that the seroprevalence may be as high as 24.5% (59 of 238 studied) in Dielmo village. We identified spontaneous excretion of C. burnetii by humans through faeces and milk. Hard and soft ticks (8 species) were infected in 0–37.6%. We identified three genotypes of C. burnetii. The previously identified genotype 6 was the most common in ticks in all studied regions and the only one found in human samples. Three strains of genotype 6 of C. burnetii were also recovered from soft tick Ornithodoros sonrai. Two other genotypes found in ticks, 35 and 36, were identified for the first time.

Conclusions/Significance

Q fever should be considered a significant public health threat in Senegal. Humans, similar to other mammals, may continuously excrete C. burnetii.  相似文献   

18.

Background

Although Dengue virus (DENV) circulation had been documented in neighbouring South-western Indian Ocean Islands, its presence in Mayotte is poorly characterised. To address this issue, we aimed to assess the seroprevalence of dengue IgG antibodies (DENV-IgG Ab) among the population and to investigate potential associations with individual and household characteristics.

Methods/Principal Findings

In November–December 2006 we conducted a cross-sectional serologic survey in Mayotte among 1,154 inhabitants aged ≥2 years by using a multistage cluster random sampling method. The overall prevalence of DENV-specific IgG antibodies (ELISA) was 22.73% (95% CI, 18.16–27.31). The age-specific seroprevalence increased with age (χ2 for trend = 11.86, P<0.0006), and was linked with previous known outbreaks in this region. In multivariate analysis, older age, being born in the Comoros and living in a household with a low socioeconomic index were positively associated with DENV IgG antibody positivity.

Conclusions

These findings document substantial prior exposure of the population of Mayotte to DENV and highlight the risk of severe illness due to the possibility of sequential DENV infections. Further investigations characterizing current DENV circulation patterns and associated serotypes are needed.  相似文献   

19.

Introduction

In a subset of patients with limited cutaneous (lc) systemic sclerosis (SSc), anti-CENP-A antibodies (Ab) cross-react with a peptide (FOXE3p53-62) that presents striking homology with one of the two immunodominant epitopes of CENP-A (Ap17-30). We searched for clinical correlates of anti-FOXE3p53-62 Ab by measuring their levels along with those of Ab to Ap17-30 and to the second immunodominant epitope of CENP-A, namely Ap1-17.

Methods

Serum samples were obtained from 121 patients with SSc, 46 patients with systemic lupus erythematosus (SLE) and 25 healthy blood donors (HBD). The reactivity of serum IgG to Ap1-17, Ap17-30 and FOXE3p53-62 was measured by ELISA. The corresponding anti-peptide Ab were affinity-purified from pooled SSc sera and used to establish standard curves for quantifying these Ab in patients and HBD. Receiver operating characteristics (ROC) analysis, comparing SSc patients who were positive for anti-CENP Ab (ACA+) to those who were negative, was used to find cut-off points for dichotomizing the anti-peptide Ab levels into positive and negative. Clinical records were reviewed to extract demographic data and information about organ involvement and disease activity.

Results

Of 121 SSc sera, 75 were ACA+; 88.0% of these samples reacted with Ap1-17, 82.6% with Ap17-30 and 53.3% with FOXE3p53-62. Among the 46 ACA- SSc sera, 2.2% reacted with Ap1-17, 4.3% with Ap17-30 and 11% with FOXE3p53-62. The levels of these Ab were low in ACA-, SLE and HBD groups and not significantly different among them. When ACA+ SSc patients were divided into subgroups positive or negative for anti-FOXE3p53-62 Ab, the only variables that were significantly different between groups were the levels of anti-Ap17-30 Ab and disease activity index (DAI). There was a significant association between negativity for anti-FOXE3p53-62 Ab and active disease defined as either DAI ≥3 (Fisher exact test, P = 0.045) or less restrictive DAI≥2.5 (P = 0.009).

Conclusions

ACA+-Anti-FOXE3p53-62+Ab identifies a subgroup of patients with lcSSc who are less likely to develop active disease. In lc SSc patients at presentation, anti-FOXE3p53-62+ can be a marker with prognostic significance.  相似文献   

20.

Background

Zika virus (ZIKV; genus Flavivirus, family Flaviviridae) is maintained in a zoonotic cycle between arboreal Aedes spp. mosquitoes and nonhuman primates in African and Asian forests. Spillover into humans has been documented in both regions and the virus is currently responsible for a large outbreak in French Polynesia. ZIKV amplifications are frequent in southeastern Senegal but little is known about their seasonal and spatial dynamics. The aim of this paper is to describe the spatio-temporal patterns of the 2011 ZIKV amplification in southeastern Senegal.

Methodology/Findings

Mosquitoes were collected monthly from April to December 2011 except during July. Each evening from 18∶00 to 21∶00 hrs landing collections were performed by teams of 3 persons working simultaneously in forest (canopy and ground), savannah, agriculture, village (indoor and outdoor) and barren land cover sites. Mosquitoes were tested for virus infection by virus isolation and RT-PCR. ZIKV was detected in 31 of the 1,700 mosquito pools (11,247 mosquitoes) tested: Ae. furcifer (5), Ae. luteocephalus (5), Ae. africanus (5), Ae. vittatus (3), Ae. taylori, Ae. dalzieli, Ae. hirsutus and Ae. metallicus (2 each) and Ae. aegypti, Ae. unilinaetus, Ma. uniformis, Cx. perfuscus and An. coustani (1 pool each) collected in June (3), September (10), October (11), November (6) and December (1). ZIKV was detected from mosquitoes collected in all land cover classes except indoor locations within villages. The virus was detected in only one of the ten villages investigated.

Conclusions/Significance

This ZIKV amplification was widespread in the Kédougou area, involved several mosquito species as probable vectors, and encompassed all investigated land cover classes except indoor locations within villages. Aedes furcifer males and Aedes vittatus were found infected within a village, thus these species are probably involved in the transmission of Zika virus to humans in this environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号