首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Macrophage infiltration is a critical determinant of high-fat diet induced adipose tissue inflammation and insulin resistance. The precise mechanisms underpinning the initiation of macrophage recruitment and activation are unclear. Macrophage migration inhibitory factor (MIF), a pro-inflammatory cytokine, displays chemokine-like properties. Circulating MIF levels are elevated during obesity however its role in high-fat diet induced adipose inflammation and insulin resistance remains elusive. Wildtype and MIF−/− C57Bl\6J mice were fed chow or high-fat diet. Body weight and food intake was assessed. Glucose homeostasis was monitored by glucose and insulin tolerance tests. Adipose tissue macrophage recruitment and adipose tissue insulin sensitivity was evaluated. Cytokine secretion from stromal vascular fraction, adipose explants and bone marrow macrophages was measured. Inflammatory signature and insulin sensitivity of 3T3-L1-adipocytes co-cultured with wildtype and MIF−/− macrophage was quantified. Hepatic triacylglyceride levels were assessed. MIF−/− exhibited reduced weight gain. Age and weight-matched obese MIF−/− mice exhibited improved glucose homeostasis coincident with reduced adipose tissue M1 macrophage infiltration. Obese MIF−/− stromal vascular fraction secreted less TNFα and greater IL-10 compared to wildtype. Activation of JNK was impaired in obese MIF−/−adipose, concomitant with pAKT expression. 3T3-L1-adipocytes cultured with MIF−/− macrophages had reduced pro-inflammatory cytokine secretion and improved insulin sensitivity, effects which were also attained with MIF inhibitor ISO-1. MIF−/− liver exhibited reduced hepatic triacyglyceride accumulation, enhanced pAKT expression and reduced NFκB activation. MIF deficiency partially protects from high-fat diet induced insulin resistance by attenuating macrophage infiltration, ameliorating adipose inflammation, which improved adipocyte insulin resistance ex vivo. MIF represents a potential therapeutic target for treatment of high-fat diet induced insulin resistance.  相似文献   

2.
González F 《Steroids》2012,77(4):300-305
Chronic low-grade inflammation has emerged as a key contributor to the pathogenesis of Polycystic Ovary Syndrome (PCOS). A dietary trigger such as glucose is capable of inciting oxidative stress and an inflammatory response from mononuclear cells (MNC) of women with PCOS, and this phenomenon is independent of obesity. This is important because MNC-derived macrophages are the primary source of cytokine production in excess adipose tissue, and also promote adipocyte cytokine production in a paracrine fashion. The proinflammatory cytokine tumor necrosis factor-α (TNFα) is a known mediator of insulin resistance. Glucose-stimulated TNFα release from MNC along with molecular markers of inflammation are associated with insulin resistance in PCOS. Hyperandrogenism is capable of activating MNC in the fasting state, thereby increasing MNC sensitivity to glucose; and this may be a potential mechanism for promoting diet-induced inflammation in PCOS. Increased abdominal adiposity is prevalent across all weight classes in PCOS, and this inflamed adipose tissue contributes to the inflammatory load in the disorder. Nevertheless, glucose ingestion incites oxidative stress in normal weight women with PCOS even in the absence of increased abdominal adiposity. In PCOS, markers of oxidative stress and inflammation are highly correlated with circulating androgens. Chronic suppression of ovarian androgen production does not ameliorate inflammation in normal weight women with the disorder. Furthermore, in vitro studies have demonstrated the ability of pro-inflammatory stimuli to upregulate the ovarian theca cell steroidogenic enzyme responsible for androgen production. These findings support the contention that inflammation directly stimulates the polycystic ovary to produce androgens.  相似文献   

3.
Obesity is associated with a low-grade inflammation including moderately increased serum levels of the acute phase protein serum amyloid A (SAA). In obesity, SAA is mainly produced from adipose tissue and serum levels of SAA are associated with insulin resistance. SAA has been described as a chemoattractant for inflammatory cells and adipose tissue from obese individuals contains increased numbers of macrophages. However, whether adipose tissue-derived SAA can have a direct impact on macrophage infiltration in adipose tissue or the development of insulin resistance is unknown. The aim of this study was to investigate the effects of adipose tissue-derived SAA1 on the development of insulin resistance and obesity-related inflammation. We have previously established a transgenic mouse model expressing human SAA1 in the adipose tissue. For this report, hSAA1+/− transgenic mice and wild type mice were fed with a high fat diet or normal chow. Effects of hSAA1 on glucose metabolism were assessed using an oral glucose tolerance test. Real-time PCR was used to measure the mRNA levels of macrophage markers and genes related to insulin sensitivity in adipose tissue. Cytokines during inflammation were analyzed using a Proinflammatory 7-plex Assay. We found similar insulin and glucose levels in hSAA1 mice and wt controls during an oral glucose tolerance test and no decrease in mRNA levels of genes related to insulin sensitivity in adipose tissue in neither male nor female hSAA1 animals. Furthermore, serum levels of proinflammatory cytokines and mRNA levels of macrophage markers in adipose tissue were not increased in hSAA1 mice. Hence, in this model we find no evidence that adipose tissue-derived hSAA1 influences the development of insulin resistance or obesity-related inflammation.  相似文献   

4.
Li Y  Tong X  Rumala C  Clemons K  Wang S 《PloS one》2011,6(10):e26656

Background

Obesity is prevalent worldwide and is associated with insulin resistance. Advanced studies suggest that obesity-associated low-grade chronic inflammation contributes to the development of insulin resistance and other metabolic complications. Thrombospondin 1 (TSP1) is a multifunctional extracellular matrix protein that is up-regulated in inflamed adipose tissue. A recent study suggests a positive correlation of TSP1 with obesity, adipose inflammation, and insulin resistance. However, the direct effect of TSP1 on obesity and insulin resistance is not known. Therefore, we investigated the role of TSP1 in mediating obesity-associated inflammation and insulin resistance by using TSP1 knockout mice.

Methodology/Principal Findings

Male TSP1-/- mice and wild type littermate controls were fed a low-fat (LF) or a high-fat (HF) diet for 16 weeks. Throughout the study, body weight and fat mass increased similarly between the TSP1-/- mice and WT mice under HF feeding conditions, suggesting that TSP1 deficiency does not affect the development of obesity. However, obese TSP1-/- mice had improved glucose tolerance and increased insulin sensitivity compared to the obese wild type mice. Macrophage accumulation and inflammatory cytokine expression in adipose tissue were reduced in obese TSP1-/- mice. Consistent with the local decrease in pro-inflammatory cytokine levels, systemic inflammation was also decreased in the obese TSP1-/- mice. Furthermore, in vitro data demonstrated that TSP1 deficient macrophages had decreased mobility and a reduced inflammatory phenotype.

Conclusion

TSP1 deficiency did not affect the development of high-fat diet induced obesity. However, TSP1 deficiency reduced macrophage accumulation in adipose tissue and protected against obesity related inflammation and insulin resistance. Our data demonstrate that TSP1 may play an important role in regulating macrophage function and mediating obesity-induced inflammation and insulin resistance. These data suggest that TSP1 may serve as a potential therapeutic target to improve the inflammatory and metabolic complications of obesity.  相似文献   

5.
6.
Obesity-associated inflammation in white adipose tissue (WAT) is a causal factor of systemic insulin resistance. To better understand how adipocytes regulate WAT inflammation, the present study generated chimeric mice in which inducible 6-phosphofructo-2-kinase was low, normal, or high in WAT while the expression of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (Pfkfb3) was normal in hematopoietic cells, and analyzed changes in high-fat diet (HFD)-induced WAT inflammation and systemic insulin resistance in the mice. Indicated by proinflammatory signaling and cytokine expression, the severity of HFD-induced WAT inflammation in WT → Pfkfb3+/– mice, whose Pfkfb3 was disrupted in WAT adipocytes but not hematopoietic cells, was comparable with that in WT → WT mice, whose Pfkfb3 was normal in all cells. In contrast, the severity of HFD-induced WAT inflammation in WT → Adi-Tg mice, whose Pfkfb3 was over-expressed in WAT adipocytes but not hematopoietic cells, remained much lower than that in WT → WT mice. Additionally, HFD-induced insulin resistance was correlated with the status of WAT inflammation and comparable between WT → Pfkfb3+/– mice and WT → WT mice, but was significantly lower in WT → Adi-Tg mice than in WT → WT mice. In vitro, palmitoleate decreased macrophage phosphorylation states of Jnk p46 and Nfkb p65 and potentiated the effect of interleukin 4 on suppressing macrophage proinflammatory activation. Taken together, these results suggest that the Pfkfb3 in adipocytes functions to suppress WAT inflammation. Moreover, the role played by adipocyte Pfkfb3 is attributable to, at least in part, palmitoleate promotion of macrophage anti-inflammatory activation.  相似文献   

7.
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a proinflammatory cytokine that has a central action to reduce food intake and body weight. Consistent with this, GM-CSF knockout mice are more obese and hyperphagic than wild-type mice. However, in lung, GM-CSF is an important determinant of macrophage infiltration. Consequently, we sought to determine if GM-CSF might contribute to adipose tissue macrophage accumulation, insulin resistance, and low-grade inflammation that occurs when animals gain weight on a high-fat diet (HFD). We therefore determined how targeted genetic disruption of GM-CSF can affect adipose tissue macrophage and cytokine gene expression as well as glucose homeostasis by performing hyperinsulinemic-euglycemic clamps. The number of macrophages and CCR2 gene expression in adipose tissue of GM-CSF knockout mice was decreased relative to those in wild-type mice, and the adipocyte size of mesenteric fat was increased in GM-CSF knockout mice on a HFD compared with wild-type mice. The level of mRNA of the proinflammatory cytokines interleukin-1beta, tumor necrosis factor-alpha, and macrophage inflammatory protein-1alpha was significantly lower in mesenteric fat of GM-CSF knockout mice on the HFD than in wild-type mice. Using the hyperinsulinemic-euglycemic clamp technique, GM-CSF knockout mice had greater overall insulin sensitivity. This increase was due to enhanced peripheral uptake and utilization of glucose rather than to increased hepatic insulin sensitivity. Collectively, the data suggest that the GM-CSF knockout mutation ameliorates peripheral insulin resistance in spite of increased adiposity by reducing inflammation in adipose tissue in response to a HFD.  相似文献   

8.
The development of a chronic, low-grade inflammation originating from adipose tissue in obese subjects is widely recognized to induce insulin resistance, leading to the development of type 2 diabetes. The adipose tissue microenvironment drives specific metabolic reprogramming of adipose tissue macrophages, contributing to the induction of tissue inflammation. Uncoupling protein 2 (UCP2), a mitochondrial anion carrier, is thought to separately modulate inflammatory and metabolic processes in macrophages and is up-regulated in macrophages in the context of obesity and diabetes. Here, we investigate the role of UCP2 in macrophage activation in the context of obesity-induced adipose tissue inflammation and insulin resistance. Using a myeloid-specific knockout of UCP2 (Ucp2ΔLysM), we found that UCP2 deficiency significantly increases glycolysis and oxidative respiration, both unstimulated and after inflammatory conditions. Strikingly, fatty acid loading abolished the metabolic differences between Ucp2ΔLysM macrophages and their floxed controls. Furthermore, Ucp2ΔLysM macrophages show attenuated pro-inflammatory responses toward Toll-like receptor-2 and -4 stimulation. To test the relevance of macrophage-specific Ucp2 deletion in vivo, Ucp2ΔLysM and Ucp2fl/fl mice were rendered obese and insulin resistant through high-fat feeding. Although no differences in adipose tissue inflammation or insulin resistance was found between the two genotypes, adipose tissue macrophages isolated from diet-induced obese Ucp2ΔLysM mice showed decreased TNFα secretion after ex vivo lipopolysaccharide stimulation compared with their Ucp2fl/fl littermates. Together, these results demonstrate that although UCP2 regulates both metabolism and the inflammatory response of macrophages, its activity is not crucial in shaping macrophage activation in the adipose tissue during obesity-induced insulin resistance.  相似文献   

9.
Adipose tissue inflammation is considered an important contributor to insulin resistance. Mitogen-activated protein kinase-activated protein kinase 2 (MK2) is a major downstream target of p38 MAPK and enhances inflammatory processes. In line with the role of MK2 as contributor to inflammation, MK2−/− mice are protected against inflammation in different disease models. Therefore, MK2 is considered an attractive therapeutic target for the treatment of chronic inflammatory diseases. This study tested the impact of MK2-deficiency on high-fat diet (HFD)-induced adipose tissue inflammation and insulin resistance. After feeding MK2−/− and WT control mice a HFD (60% energy from fat) for 24 weeks, body weight was not different between groups. Also, liver weight and the amount of abdominal fat remained unchanged. However, in MK2−/− mice plasma cholesterol levels were significantly increased. Surprisingly, macrophage infiltration in adipose tissue was not altered. However, adipose tissue macrophages were more skewed to the inflammatory M1 phenotype in MK2−/− mice. This differerence in macrophage polarization did however not translate in significantly altered expression levels of Mcp-1, Tnfα and Il6. Glucose and insulin tolerance tests demonstrated that MK2−/− mice had a significantly reduced glucose tolerance and increased insulin resistance. Noteworthy, the expression of the insulin-responsive glucose transporter type 4 (GLUT4) in adipose tissue of MK2−/− mice was reduced by 55% (p<0.05) and 33% (p<0.05) on the mRNA and protein level, respectively, compared to WT mice. In conclusion, HFD-fed MK2−/− display decreased glucose tolerance and increased insulin resistance compared to WT controls. Decreased adipose tissue expression of GLUT4 might contribute to this phenotype. The data obtained in this study indicate that clinical use of MK2 inhibitors has to be evaluated with caution, taking potential metabolic adverse effects into account.  相似文献   

10.
Macrophage infiltration into adipose tissue during obesity and their phenotypic conversion from anti-inflammatory M2 to proinflammatory M1 subtype significantly contributes to develop a link between inflammation and insulin resistance; signaling molecule(s) for these events, however, remains poorly understood. We demonstrate here that excess lipid in the adipose tissue environment may trigger one such signal. Adipose tissue from obese diabetic db/db mice, high fat diet-fed mice, and obese diabetic patients showed significantly elevated fetuin-A (FetA) levels in respect to their controls; partially hepatectomized high fat diet mice did not show noticeable alteration, indicating adipose tissue to be the source of this alteration. In adipocytes, fatty acid induces FetA gene and protein expressions, resulting in its copious release. We found that FetA could act as a chemoattractant for macrophages. To simulate lipid-induced inflammatory conditions when proinflammatory adipose tissue and macrophages create a niche of an altered microenvironment, we set up a transculture system of macrophages and adipocytes; the addition of fatty acid to adipocytes released FetA into the medium, which polarized M2 macrophages to M1. This was further confirmed by direct FetA addition to macrophages. Taken together, lipid-induced FetA from adipocytes is an efficient chemokine for macrophage migration and polarization. These findings open a new dimension for understanding obesity-induced inflammation.  相似文献   

11.
12.
STAMP2 is a counterregulator of inflammation and insulin resistance. The aim of this study is to investigate whether activation of STAMP2 improves insulin resistance by regulating macrophage polarization in adipose tissues. The diabetic ApoE−/−/LDLR−/− mouse model was induced by high-fat diet and low-dose streptozotocin. Samples were obtained from epididymal, subcutaneous and brown adipose tissues. Infiltration of M1/M2 macrophages and inflammatory cytokines were investigated by immunohistochemistry. We then used gene overexpression to investigate the effect of STAMP2 on macrophages infiltration and polarization and inflammatory cytokines expression. Our results showed that infiltration of macrophages, the ratio of M1/M2 macrophages and the expression of pro-inflammatory cytokines were enhanced and STAMP2 was downregulated in adipose tissues of diabetic ApoE−/−/LDLR−/− mice compared with control mice. STAMP2 gene overexpression could significantly reduce macrophages infiltration, the ratio of M1/M2 macrophages and the expression of pro-inflammatory cytokines in epididymal and brown adipose tissues, improving insulin resistance. Our results suggested that STAMP2 gene overexpression may improve insulin resistance via regulating macrophage polarization in visceral and brown adipose tissues.  相似文献   

13.
14.
15.

Background

Adipose tissue inflammation fuels the metabolic syndrome. We recently reported that CD40L – an established marker and mediator of cardiovascular disease – induces inflammatory cytokine production in adipose cells in vitro. Here, we tested the hypothesis that CD40L deficiency modulates adipose tissue inflammation in vivo.

Methodology/Principal Findings

WT or CD40L−/− mice consumed a high fat diet (HFD) for 20 weeks. Inflammatory cell recruitment was impaired in mice lacking CD40L as shown by a decrease of adipose tissue macrophages, B-cells, and an increase in protective T-regulatory cells. Mechanistically, CD40L-deficient mice expressed significantly lower levels of the pro-inflammatory chemokine MCP-1 both, locally in adipose tissue and systemically in plasma. Moreover, levels of pro-inflammatory IgG-antibodies against oxidized lipids were reduced in CD40L−/− mice. Also, circulating low-density lipoproteins and insulin levels were lower in CD40L−/− mice. However, CD40L−/− mice consuming HFD were not protected from the onset of diet-induced obesity (DIO), insulin resistance, and hepatic steatosis, suggesting that CD40L selectively limits the inflammatory features of diet-induced obesity rather than its metabolic phenotype. Interestingly, CD40L−/− mice consuming a low fat diet (LFD) showed both, a favorable inflammatory and metabolic phenotype characterized by diminished weight gain, improved insulin tolerance, and attenuated plasma adipokine levels.

Conclusion

We present the novel finding that CD40L deficiency limits adipose tissue inflammation in vivo. These findings identify CD40L as a potential mediator at the interface of cardiovascular and metabolic disease.  相似文献   

16.
Type 2 diabetes mellitus (T2DM) and insulin resistance (IR) have been associated with dysregulation of iron metabolism. The basis for this association is not completely understood. To attempt to investigate this, we studied temporal associations between onset of insulin resistance (IR) and dysregulated iron homeostasis, in a mouse model of T2DM.Male C57Bl/6 mice (aged 8 weeks) were fed a high-fat diet (HFD; 60% energy from fat) or a control diet (CD; 10% energy from fat) for 4, 8, 12, 16, 20 and 24 weeks. Development of IR was documented, and various metabolic, inflammatory and iron-related parameters were studied in these mice.HFD-feeding induced weight gain, hepato-steatosis and IR in the mice. Onset of IR occurred from 12 weeks onwards. Hepatic iron stores progressively declined from 16 weeks onwards. Accompanying changes included a decrease in hepatic hepcidin (Hamp1) mRNA expression and serum hepcidin levels and an increase in iron content in the epididymal white adipose tissue (eWAT). Iron content in the liver negatively correlated with that in the eWAT. Factors known to regulate hepatic Hamp1 expression (such as serum iron levels, systemic inflammation, and bone marrow-derived erythroid regulators) were not affected by HFD-feeding. In conclusion, the results show that the onset of IR in HFD-fed mice preceded dysregulation of iron homeostasis, evidence of which were found both in the liver and visceral adipose tissue.  相似文献   

17.
Objective: To investigate the involvement of hypoadiponectinemia and inflammation in coupling obesity to insulin resistance in melanocortin‐3 receptor and melanocortin‐4 receptor knockout (KO) mice (Mc3/4rKO). Research Methods and Procedures: Sera and tissue were collected from 6‐month‐old Mc3rKO, Mc4rKO, and wild‐type C57BL6J litter mates maintained on low‐fat diet or exposed to high‐fat diet (HFD) for 1 or 3 months. Inflammation was assessed by both real‐time polymerase chain reaction analysis of macrophage‐specific gene expression and immunohistochemistry. Results: Mc4rKO exhibited hypoadiponectinemia, exacerbated by HFD and obesity, previously reported in murine models of obesity. Mc4r deficiency was also associated with high levels of macrophage infiltration of adipose tissue, again exacerbated by HFD. In contrast, Mc3rKO exhibited normal serum adiponectin levels, irrespective of diet or obesity, and a delayed inflammatory response to HFD relative to Mc4rKO. Discussion: Our findings suggest that severe insulin resistance of Mc4rKO fed a HFD, as reported in other models of obesity such as leptin‐deficient (Lepob/Lepob) and KK‐Ay mice, is linked to reduced serum adiponectin and high levels of inflammation in adipose tissue. Conversely, maintenance of normal serum adiponectin may be a factor in the relatively mild insulin‐resistant phenotype of severely obese Mc3rKO. Mc3rKO are, thus, a unique mouse model where obesity is not associated with reduced serum adiponectin levels. A delay in macrophage infiltration of adipose tissue of Mc3rKO during exposure to HFD may also be a factor contributing to the mild insulin resistance in this model.  相似文献   

18.
Activation of the classical IκB kinases (IKKα and IKKβ) was previously shown to contribute to obesity-induced inflammation and insulin resistance. Using knockout mice, we investigated whether the related isoform IKKε plays a similar metabolic role.IKKε−/− mice had reduced body weight, leptin levels, as well as higher insulin sensitivity when kept on chow diet. However, inflammatory parameters, measured in liver, adipose tissue and plasma, were either unaltered or showed a trend toward up-regulation (liver NF-κB activity, TNFα and IL-1β expression). Chronic feeding of a high fat diet induced equal obesity and insulin resistance, and similarly induced inflammatory markers, in IKKε−/− and wild-type mice, indicating that under high caloric conditions the inflammatory and metabolic effects of IKKε deficiency were overridden.Taken together, our data indicate that IKKε does not have general pro-inflammatory properties in liver and adipose tissue, and suggest that reduced adiposity is the primary mechanism for improved insulin sensitivity in IKKε−/− mice on chow diet.  相似文献   

19.
Obesity can be considered as a low‐grade inflammatory condition, strongly linked to adverse metabolic outcomes. Obesity‐associated adipose tissue inflammation is characterized by infiltration of macrophages and increased cytokine and chemokine production. The distribution of adipose tissue impacts the outcomes of obesity, with the accumulation of fat in visceral adipose tissue (VAT) and deep subcutaneous adipose tissue (SAT), but not superficial SAT, being linked to insulin resistance. We hypothesized that the inflammatory gene expression in deep SAT and VAT is higher than in superficial SAT. A total of 17 apparently healthy women (BMI: 29.3±5.5 kg/m2) were included in the study. Body fat (dual‐energy X‐ray absorptiometry) and distribution (computed tomography) were measured, and insulin sensitivity, blood lipids, and blood pressure were determined. Inflammation‐related differences in gene expression (real‐time PCR) from VAT, superficial and deep SAT biopsies were analyzed using univariate and multivariate data analyses. Using multivariate discrimination analysis, VAT appeared as a distinct depot in adipose tissue inflammation, while the SAT depots had a similar pattern, with respect to gene expression. A significantly elevated (P < 0.01) expression of the CC chemokine receptor 2 (CCR2) and macrophage migration inhibitory factor (MIF) in VAT contributed strongly to the discrimination. In conclusion, the human adipose tissue depots have unique inflammatory patterns, with CCR2 and MIF distinguishing between VAT and the SAT depots.  相似文献   

20.
Adipose tissue inflammation is associated with insulin resistance and increased cardiovascular disease risk in obesity. We previously showed that addition of cholesterol to a diet rich in saturated fat and refined carbohydrate significantly worsens dyslipidemia, insulin resistance, adipose tissue macrophage accumulation, systemic inflammation, and atherosclerosis in LDL receptor-deficient (Ldlr−/−) mice. To test whether inhibition of intestinal cholesterol absorption would improve metabolic abnormalities and adipose tissue inflammation in obesity, we administered ezetimibe, a dietary and endogenous cholesterol absorption inhibitor, to Ldlr−/− mice fed chow or high-fat, high-sucrose (HFHS) diets without or with 0.15% cholesterol (HFHS+C). Ezetimibe blunted weight gain and markedly reduced plasma lipids in the HFHS+C group. Ezetimibe had no effect on glucose homeostasis or visceral adipose tissue macrophage gene expression in the HFHS+C fed mice, although circulating inflammatory markers serum amyloid A (SSA) and serum amyloid P (SSP) levels decreased. Nevertheless, ezetimibe treatment led to a striking (>85%) reduction in atherosclerotic lesion area with reduced lesion lipid and macrophage content in the HFHS+C group. Thus, in the presence of dietary cholesterol, ezetimibe did not improve adipose tissue inflammation in obese Ldlr−/− mice, but it led to a major reduction in atherosclerotic lesions associated with improved plasma lipids and lipoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号