首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Polymorphisms in the potassium channel, voltage-gated, KQT-like subfamily, member 1 (KCNQ1) have recently been reported to associate with type 2 diabetes. The primary aim of the present study was to investigate the putative impact of these KCNQ1 polymorphisms (rs2283228, rs2237892, rs2237895, and rs2237897) on estimates of glucose stimulated insulin release.

Methodology/Principal Findings

Genotypes were examined for associations with serum insulin levels following an oral glucose tolerance test (OGTT) in a population-based sample of 6,039 middle-aged and treatment-naïve individuals. Insulin release indices estimated from the OGTT and the interplay between insulin sensitivity and insulin release were investigated using linear regression and Hotelling T2 analyses.Applying an additive genetic model the minor C-allele of rs2237895 was associated with reduced serum insulin levels 30 min (mean±SD: (CC) 277±160 vs. (AC) 280±164 vs. (AA) 299±200 pmol/l, p = 0.008) after an oral glucose load, insulinogenic index (29.6±17.4 vs. 30.2±18.7vs. 32.2±22.1, p = 0.007), incremental area under the insulin curve (20,477±12,491 vs. 20,503±12,386 vs. 21,810±14,685, p = 0.02) among the 4,568 individuals who were glucose tolerant. Adjustment for the degree of insulin sensitivity had no effect on the measures of reduced insulin release. The rs2237895 genotype had a similar impact in the total sample of treatment-naïve individuals. No association with measures of insulin release were identified for the less common diabetes risk alleles of rs2237892, rs2237897, or rs2283228.

Conclusion

The minor C-allele of rs2237895 of KCNQ1, which has a prevalence of about 42% among Caucasians was associated with reduced measures of insulin release following an oral glucose load suggesting that the increased risk of type 2 diabetes, previously reported for this variant, likely is mediated through an impaired beta cell function.  相似文献   

2.

Background

A number of case-control studies were conducted to investigate the association of common type 2 diabetes (T2D) risk gene polymorphisms with gestational diabetes mellitus (GDM). However, these studies have yielded contradictory results. We therefore performed a meta-analysis to derive a more precise estimation of the association between these polymorphisms and GDM, hence achieve a better understanding to the relationship between T2D and GDM.

Methods

PubMed, EMBASE, ISI web of science and the Chinese National Knowledge Infrastructure databases were systematically searched to identify relevant studies. Data were abstracted independently by two reviewers. A meta-analysis was performed to examine the association between 9 polymorphisms from 8 genes and susceptibility to GDM. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated. Heterogeneity among articles and their publication bias were also tested.

Results

We identified 22 eligible studies including a total of 10,336 GDM cases and 17,445 controls. We found 8 genetic polymorphisms were significantly associated with GDM in a random-effects meta-analysis. These polymorphisms were in or near the following genes: TCF7L2 (rs7903146), MTNR1B (rs10830963), IGF2BP2 (rs4402960), KCNJ11 (rs5219), CDKAL1 (rs7754840), KCNQ1 (rs2237892 and rs2237895) and GCK (rs4607517); while no association was found for PPARG with GDM risk. Similar results were also observed under dominant genetic model for these polymorphisms.

Conclusions

This meta-analysis found 8 genetic variants associated with GDM. The relative contribution and relevance of the identified genes in the pathogenesis of GDM should be the focus of future studies.  相似文献   

3.

Background

Genome-wide association studies in Japanese populations recently identified common variants in the KCNQ1 gene to be associated with type 2 diabetes. We examined the association of these variants within KCNQ1 with type 2 diabetes in a Dutch population, investigated their effects on insulin secretion and metabolic traits and on the risk of developing complications in type 2 diabetes patients.

Methodology

The KCNQ1 variants rs151290, rs2237892, and rs2237895 were genotyped in a total of 4620 type 2 diabetes patients and 5285 healthy controls from the Netherlands. Data on macrovascular complications, nephropathy and retinopathy were available in a subset of diabetic patients. Association between genotype and insulin secretion/action was assessed in the additional sample of 335 individuals who underwent a hyperglycaemic clamp.

Principal Findings

We found that all the genotyped KCNQ1 variants were significantly associated with type 2 diabetes in our Dutch population, and the association of rs151290 was the strongest (OR 1.20, 95% CI 1.07–1.35, p = 0.002). The risk C-allele of rs151290 was nominally associated with reduced first-phase glucose-stimulated insulin secretion, while the non-risk T-allele of rs2237892 was significantly correlated with increased second-phase glucose-stimulated insulin secretion (p = 0.025 and 0.0016, respectively). In addition, the risk C-allele of rs2237892 was associated with higher LDL and total cholesterol levels (p = 0.015 and 0.003, respectively). We found no evidence for an association of KCNQ1 with diabetic complications.

Conclusions

Common variants in the KCNQ1 gene are associated with type 2 diabetes in a Dutch population, which can be explained at least in part by an effect on insulin secretion. Furthermore, our data suggest that KCNQ1 is also associated with lipid metabolism.  相似文献   

4.

Objective

Recent genetic studies have shown that potassium voltage-gated channel, KQT-like subfamily, member1 (KCNQ1) gene is related to gestational diabetes mellitus (GDM). However, studies for the rs2237892 polymorphism in KCNQ1 and GDM remain conflicting in Asians. Furthermore, associations of this polymorphism with glucose levels during oral glucose tolerance test (OGTT) have not been described in Chinese pregnant women. The present study aimed to provide evidence for the associations of rs2237892 in KCNQ1 with GDM and glucose levels, and to systematically evaluate the effect of rs2237892 on GDM in Asians.

Methods

A case-control study on 562 women with GDM and 453 controls was conducted in Beijing, China. The association of rs2237892 with risk of GDM was analyzed using logistic regression. The associations with quantitative glucose levels were assessed using linear regression models. A meta-analysis including the present case-control study and four previously published reports in Asians was conducted.

Results

The rs2237892 polymorphism in KCNQ1 was associated with GDM (OR (95%CI) =1.99(1.26-3.15)). Additionally, the polymorphism was associated with levels of 1h and 2h glucose during OGTT. The pre-pregnancy BMI, age and genotypes of KCNQ1 polymorphism were independent risk factors of GDM. Subsequently, we performed a meta-analysis in Asians. In total, C-allele carriers of rs2237892 polymorphism had a 50% higher risk for GDM (OR (95%CI) =1.50(1.15-1.78)).

Conclusion

The study demonstrated for the first time that the KCNQ1 rs2237892 polymorphism was associated with GDM and glucose levels in Chinese women. The study provides systematic evidence for the association between this polymorphism and GDM in Asians.  相似文献   

5.
Chen XD  Yang YJ  Li SY  Peng QQ  Zheng LJ  Jin L  Wang XF 《PloS one》2012,7(3):e34229

Background

Potassium voltage-gated channel, KQT-like subfamily, member 1 (KCNQ1) is thought to be an important candidate gene of diabetes. Several single nucleotide polymorphisms (SNPs) in a 40-kb linkage disequilibrium (LD) block in its intron 15 have been identified to be associated with diabetes in East Asian populations in recent genome-wide association studies. The aim of this study was to investigate whether KCNQ1 polymorphisms influence the levels of the metabolic phenotypes in general Chinese populations.

Methodology/Principal Findings

We investigated the associations of two SNPs (rs2237892 and rs2237895) in the aforementioned 40-kb LD block, a missense variant rs12720449 (P448R) in exon 10, and a synonymous variant rs1057128 (S546S) in exon 13 with metabolic phenotypes in a Uyghur population (n = 478) and replicated these associations in a Han population (n = 2,485). We found that rs2237892-T allele was significantly associated with decreased triglyceride levels (pcombined = 0.001). The minor G allele of the rs12720449, with sharp difference of the allelic frequency between European and East Asian populations (0.2% versus 14%, respectively), was associated with a lower triglyceride levels than G allele in Uyghur subjects (p = 0.004), in Han subjects (p = 0.052), and in subjects of meta-analysis (pcombined = 0.001). Moreover, the minor A allele of the rs1057128 was also associated with decreased triglyceride levels in meta-analysis (pcombined = 0.010).

Conclusions

To the best of our knowledge, this is the first report associating a missense mutation of KCNQ1, rs12720449, with triglyceride levels. Rs2237892, representing the 40-kb LD block, is also associated with triglyceride levels in Han population. Further studies are required to replicate these findings in other East Asian populations.  相似文献   

6.
The potassium voltage-gated channel, KQT-like subfamily member 1 (KCNQ1) is a member of 11 mammalian Kv channel families that plays a key role for the repolarization of the cardiac action potential as well as water and salt transport. Genome-wide association studies have identified KCNQ1 as a type 2 diabetes (T2D) susceptibility gene in populations of Asian descent. After that, a number of studies reported that the rs2237892, rs2237895, rs2237897, rs2283228, and rs231362 polymorphism in KCNQ1 has been implicated in T2D risk. However, studies on the association between these polymorphism and T2D remain conflicting. To derive a more precise estimation of the relationship, a meta-analysis of 114,140 patients and 167,322 controls from 30 published case–control studies was performed. Overall, significantly elevated T2D risk was associated with rs2237892, rs2237895, rs2237897, rs2283228, and rs231362 risk allele when all studies were pooled into the meta-analysis. In the subgroup analysis by ethnicity, sample size, and Hardy–Weinberg equilibrium status of controls, significantly increased risks were found for these polymorphisms. In conclusion, this meta-analysis suggests that rs2237892, rs2237895, rs2237897, rs2283228, and rs231362 polymorphisms in KCNQ1 are associated with elevated T2D risk.  相似文献   

7.
Cui B  Zhu X  Xu M  Guo T  Zhu D  Chen G  Li X  Xu L  Bi Y  Chen Y  Xu Y  Li X  Wang W  Wang H  Huang W  Ning G 《PloS one》2011,6(7):e22353

Background

Genome-wide association study (GWAS) has identified more than 30 loci associated with type 2 diabetes (T2D) in Caucasians. However, genomic understanding of T2D in Asians, especially Han Chinese, is still limited.

Methods and Principal Findings

A two-stage GWAS was performed in Han Chinese from Mainland China. The discovery stage included 793 T2D cases and 806 healthy controls genotyped using Illumina Human 660- and 610-Quad BeadChips; and the replication stage included two independent case-control populations (a total of 4445 T2D cases and 4458 controls) genotyped using TaqMan assay. We validated the associations of KCNQ1 (rs163182, p = 2.085×10−17, OR 1.28) and C2CD4A/B (rs1370176, p = 3.677×10−4, OR 1.124; rs1436953, p = 7.753×10−6, OR 1.141; rs7172432, p = 4.001×10−5, OR 1.134) in Han Chinese.

Conclusions and Significance

Our study represents the first GWAS of T2D with both discovery and replication sample sets recruited from Han Chinese men and women residing in Mainland China. We confirmed the associations of KCNQ1 and C2CD4A/B with T2D, with the latter for the first time being examined in Han Chinese. Arguably, eight more independent loci were replicated in our GWAS.  相似文献   

8.
Xu M  Bi Y  Xu Y  Yu B  Huang Y  Gu L  Wu Y  Zhu X  Li M  Wang T  Song A  Hou J  Li X  Ning G 《PloS one》2010,5(11):e14022

Background

Many susceptible loci for type 2 diabetes mellitus (T2DM) have recently been identified from Caucasians through genome wide association studies (GWAS). We aimed to determine the association of 11 known loci with T2DM and impaired glucose regulation (IGR), individually and in combination, in Chinese.

Methods/Principal Findings

Subjects were enrolled in: (1) a case-control study including 1825 subjects with T2DM, 1487 with IGR and 2200 with normal glucose regulation; and (2) a prospective cohort with 734 non-diabetic subjects at baseline. The latter was followed up for 3.5 years, in which 67 subjects developed T2DM. Nineteen single nucleotide polymorphisms (SNPs) were selected to replicate in both studies. We found that CDKAL1 (rs7756992), SLC30A8 (rs13266634, rs2466293), CDKN2A/2B (rs10811661) and KCNQ1 (rs2237892) were associated with T2DM with odds ratio from 1.21 to 1.35. In the prospective study, the fourth quartile of risk scores based on the combined effects of the risk alleles had 3.05 folds (95% CI, 1.31–7.12) higher risk for incident T2DM as compared with the first quartile, after adjustment for age, gender, body mass index and diabetes family history. This combined effect was confirmed in the case-control study after the same adjustments. The addition of the risk scores to the model of clinical risk factors modestly improved discrimination for T2DM by 1.6% in the case-control study and 2.9% in the prospective study.

Conclusions/Significance

Our study provided further evidence for these GWAS derived SNPs as the genetic susceptible loci for T2DM in Chinese and extended this association to IGR.  相似文献   

9.

Background

Melatonin receptor 1B (MTNR1B) belongs to the seven-transmembrane G protein-coupled receptor superfamily involved in insulin secretion, which has attracted considerable attention as a candidate gene for type 2 diabetes (T2D) since it was first identified as a loci associated with fasting plasma glucose level through genome wide association approach. The relationship between MTNR1B and T2D has been reported in various ethnic groups. The aim of this study was to consolidate and summarize published data on the potential of MTNR1B polymorphisms in T2D risk prediction.

Methods

PubMed, EMBASE, ISI web of science and the CNKI databases were systematically searched to identify relevant studies. Odds ratios (ORs) and 95% confidence intervals (95% CIs) were calculated. Heterogeneity and publication bias were also tested.

Results

A total of 23 studies involving 172,963 subjects for two common polymorphisms (rs10830963, rs1387153) on MTNR1B were included. An overall random effects per-allele OR of 1.05 (95% CI: 1.02–1.08; P<10−4) and 1.04 (95% CI: 0.98–1.10; P = 0.20) were found for the two variants respectively. Similar results were also observed using dominant or recessive genetic model. There was strong evidence of heterogeneity, which largely disappeared after stratification by ethnicity. Significant results were found in Caucasians when stratified by ethnicity; while no significant associations were observed in East Asians and South Asians. Besides, we found that the rs10830963 polymorphism is a risk factor associated with increased impaired glucose regulation susceptibility.

Conclusions

This meta-analysis demonstrated that the rs10830963 polymorphism is a risk factor for developing impaired glucose regulation and T2D.  相似文献   

10.

Background and Objectives

Potassium inwardly rectifying channel, subfamily J, member 11 (KCNJ11) gene have a key role in insulin secretion and is of substantial interest as a candidate gene for type 2 diabetes (T2D). The current work was performed to delineate the genetic influence of KCNJ11 polymorphisms on risk of T2D in South Indian population through case-control association study along with systematic review and meta-analysis.

Methods

A case-control study of 400 T2D cases and controls of South Indian origin were performed to analyze the association of KCNJ11 polymorphisms (rs5219, rs5215, rs41282930, rs1800467) and copy number variations (CNV) on the risk of T2D. In addition a systematic review and meta-analysis for KCNJ11 rs5219 was conducted in 3,831 cases and 3,543 controls from 5 published reports from South-Asian population by searching various databases. Odds ratio with 95% confidence interval (CI) was used to assess the association strength. Cochran''s Q, I2 statistics were used to study heterogeneity between the eligible studies.

Results

KCNJ11 rs5215, C-G-C-C haplotype and two loci analysis (rs5219 vs rs1800467) showed a significant association with T2D but CNV analysis did not show significant variation between T2D cases and control subjects. Lower age of disease onset (P = 0.04) and higher body mass index (BMI) (P = 0.04) were associated with rs5219 TT genotype in T2D patients. The meta-analysis of KCNJ11 rs5219 on South Asian population showed no association on susceptibility to T2D with an overall pooled OR = 0.98, 95% CI = 0.83–1.16. Stratification analysis showed East Asian population and global population were associated with T2D when compared to South Asians.

Conclusion

KCNJ11 rs5219 is not independently associated with T2D in South-Indian population and our meta-analysis suggests that KCNJ11 polymorphism (rs5219) is associated with risk of T2D in East Asian population and global population but this outcome could not be replicated in South Asian sub groups.  相似文献   

11.

Background

IL-2 receptor (IL2R) alpha is the specific component of the high affinity IL2R system involved in the immune response and in the control of autoimmunity.

Methods and Results

Here we perform a replication and fine mapping of the IL2RA gene region analyzing 3 SNPs previously associated with multiple sclerosis (MS) and 5 SNPs associated with type 1 diabetes (T1D) in a collection of 798 MS patients and 927 matched Caucasian controls from the south of Spain. We observed association with MS in 6 of 8 SNPs. The rs1570538, at the 3′- UTR extreme of the gene, previously reported to have a weak association with MS, is replicated here (P = 0.032). The most associated T1D SNP (rs41295061) was not associated with MS in the present study. However, the rs35285258, belonging to another independent group of SNPs associated with T1D, showed the maximal association in this study but different risk allele. We replicated the association of only one (rs2104286) of the two IL2RA SNPs identified in the recently performed genome-wide association study of MS.

Conclusions

These findings confirm and extend the association of this gene with MS and reveal a genetic heterogeneity of the associated polymorphisms and risk alleles between MS and T1D suggesting different immunopathological roles of IL2RA in these two diseases.  相似文献   

12.

Objective

We explored the desaturase activities and the correlation of fatty acid desaturases (FADS) gene single nucleotide polymorphisms (SNPs) with plasma fatty acid in coronary artery disease (CAD) patients in a Chinese Han population.

Methods

Plasma fatty acids were measured by gas chromatography in CAD patients (n = 505) and a control group (n = 510). Five SNPs in the FADS gene were genotyped with high-resolution melting (HRM) methods.

Results

After adjustment, D6D activity, assessed as arachidonic acid (AA, C20:4n-6)/linoleic acid (LA, C18:2n-6), was higher in CAD patients (p<0.001). D9D activity, which was estimated as the ratio of palmitoleic acid (C16:1)/palmitic acid (C16:0) or oleic acid (C18:1n-9) to stearic acid (C18:0), was also increased (p<0.001). The genotype distributions of rs174537 G>T and rs174460 C>T were different between the two groups. The rs174537 T allele was associated with a lower risk of CAD [OR 0.743, 95% CI (0.624, 0.884), p = 0.001]. Carriers of the rs174460 C allele were associated with a higher risk of CAD [OR 1.357, 95% CI (1.106, 1.665), p = 0.003].

Conclusions

We firstly report that the rs174460 C allele is associated with a higher risk of CAD, and confirm that the rs174537 T allele is associated with a lower risk of CAD. Our results indicate that FADS gene polymorphisms are likely to influence plasma fatty acid concentrations and desaturase activities.  相似文献   

13.

Context

Surfactant protein-D (SP-D) is a primordial component of the innate immune system intrinsically linked to metabolic pathways. We aimed to study the association of single nucleotide polymorphisms (SNPs) affecting SP-D with insulin resistance and type 2 diabetes (T2D).

Research Design and Methods

We evaluated a common genetic variant located in the SP-D coding region (rs721917, Met31Thr) in a sample of T2D patients and non-diabetic controls (n = 2,711). In a subset of subjects (n = 1,062), this SNP was analyzed in association with circulating SP-D concentrations, insulin resistance, and T2D. This SNP and others were also screened in the publicly available Genome Wide Association (GWA) database of the Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC).

Results

We found the significant association of rs721917 with circulating SP-D, parameters of insulin resistance and T2D. Indeed, G carriers showed decreased circulating SP-D (p = 0.004), decreased fasting glucose (p = 0.0002), glycated hemoglobin (p = 0.0005), and 33% (p = 0.002) lower prevalence of T2D, estimated under a dominant model, especially among women. Interestingly, these differences remained significant after controlling for origin, age, gender, and circulating SP-D. Moreover, this SNP and others within the SP-D genomic region (i.e. rs10887344) were significantly associated with quantitative measures of glucose homeostasis, insulin sensitivity, and T2D, according to GWAS datasets from MAGIC.

Conclusions

SP-D gene polymorphisms are associated with insulin resistance and T2D. These associations are independent of circulating SP-D concentrations.  相似文献   

14.

Purpose

New onset diabetes after transplantation (NODAT) is a serious complication following solid organ transplantation. There is a genetic contribution to NODAT and we have conducted comprehensive meta-analysis of available genetic data in kidney transplant populations.

Methods

Relevant articles investigating the association between genetic markers and NODAT were identified by searching PubMed, Web of Science and Google Scholar. SNPs described in a minimum of three studies were included for analysis using a random effects model. The association between identified variants and NODAT was calculated at the per-study level to generate overall significance values and effect sizes.

Results

Searching the literature returned 4,147 citations. Within the 36 eligible articles identified, 18 genetic variants from 12 genes were considered for analysis. Of these, three were significantly associated with NODAT by meta-analysis at the 5% level of significance; CDKAL1 rs10946398 p = 0.006 OR = 1.43, 95% CI = 1.11–1.85 (n = 696 individuals), KCNQ1 rs2237892 p = 0.007 OR = 1.43, 95% CI = 1.10–1.86 (n = 1,270 individuals), and TCF7L2 rs7903146 p = 0.01 OR = 1.41, 95% CI = 1.07–1.85 (n = 2,967 individuals).

Conclusion

Evaluating cumulative evidence for SNPs associated with NODAT in kidney transplant recipients has revealed three SNPs associated with NODAT. An adequately powered, dense genome-wide association study will provide more information using a carefully defined NODAT phenotype.  相似文献   

15.

Aims

The goal of our study is to investigate the combined contribution of 10 genetic variants to diabetes susceptibility.

Methods

Bibliographic databases were searched from 1970 to Dec 2012 for studies that reported on genetic association study of diabetes. After a comprehensive filtering procedure, 10 candidate gene variants with informative genotype information were collected for the current meta-anlayses. Using the REVMAN software, odds ratios (ORs) with 95% confidence intervals (CIs) were calculated to evaluate the combined contribution of the selected genetic variants to diabetes.

Results

A total of 37 articles among 37,033 cases and 54,716 controls were involved in the present meta-analyses of 10 genetic variants. Three variants were found to be significantly associated with type 1 diabetes (T1D): NLRP1 rs12150220 (OR = 0.71, 95% CI = 0.55–0.92, P = 0.01), IL2RA rs11594656 (OR = 0.86, 95% CI = 0.82–0.91, P<0.00001), and CLEC16A rs725613 (OR = 0.71, 95% CI = 0.55–0.92, P = 0.01). APOA5 −1131T/C polymorphism was shown to be significantly associated with of type 2 diabetes (T2D, OR = 1.27, 95% CI = 1.03–1.57, P = 0.03). No association with diabetes was showed in the meta-analyses of other six genetic variants, including SLC2A10 rs2335491, ATF6 rs2070150, KLF11 rs35927125, CASQ1 rs2275703, GNB3 C825T, and IL12B 1188A/C.

Conclusion

Our results demonstrated that IL2RA rs11594656 and CLEC16A rs725613 are protective factors of T1D, while NLRP1 rs12150220 and APOA5 −1131T/C are risky factors of T1D and T2D, respectively.  相似文献   

16.

Background and Objective

Emerging evidence indicates that common functional polymorphisms in the estrogen receptor 1 (ESR1) gene may have an impact on an individual’s susceptibility to endometrial cancer, but individually published results are inconclusive. The aim of this meta-analysis is to derive a more precise estimation of the associations between eight polymorphisms in the ESR1 gene and endometrial cancer risk.

Methods

A literature search of PubMed, Embase, Web of Science and China Biology Medicine (CBM) databases was conducted on publications published before November 1st, 2012. Crude odds ratios (ORs) with 95% confidence intervals (CIs) were calculated. Statistical analyses were performed using the STATA 12.0 software.

Results

Thirteen case-control studies were included with a total of 7,649 endometrial cancer cases and 16,855 healthy controls. When all the eligible studies were pooled into the meta-analysis, the results indicated that PvuII (C>T) polymorphism was associated with an increased risk of endometrial cancer, especially among Caucasian populations. There were also significant associations between rs3020314 (C>T) polymorphism and an increased risk of endometrial cancer. Furthermore, rs2234670 (S/L) polymorphism may decrease the risk of endometrial cancer. However, no statistically significant associations were found in XbaI (A>G), Codon 325 (C>G), Codon 243 (C>T), VNTR (S/L) and rs2046210 (G>A) polymorphisms.

Conclusion

The current meta-analysis suggests that PvuII (C>T) and rs3020314 (C>T) polymorphisms may be risk factors for endometrial cancer, especially among Caucasian populations.  相似文献   

17.

Background

The association of Insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2) common variants (rs4402960 and rs1470579) with type 2 diabetes (T2D) has been performed in different populations. The aim of this study was to evaluate the association of alternative variants of IGF2BP2; rs6777038, rs16860234 and rs7651090 with glutamic acid decarboxylase antibodies (GADA) negative diabetes in Malaysian Subjects.

Methods/Principal Findings

IGF2BP2; rs6777038, rs16860234 and rs7651090 single nucleotide polymorphisms (SNPs) were genotyped in 1107 GADA negative diabetic patients and 620 control subjects of Asian from Malaysia. The additive genetic model adjusted for age, race, gender and BMI showed that alternative variants; rs6777038, rs16860234 and rs7651090 of IGF2BP2 associated with GADA negative diabetes (OR = 1.21; 1.36; 1.35, P = 0.03; 0.0004; 0.0002, respectively). In addition, the CCG haplotype and diplotype CCG-TCG increased the risk of diabetes (OR = 1.51, P = 0.01; OR = 2.36, P = 0.009, respectively).

Conclusions/Significance

IGF2BP2 alternative variants were associated with GADA negative diabetes. The IGF2BP2 haplotypes and diplotypes increased the risk of diabetes in Malaysian subject.  相似文献   

18.

Background

Prefrontal behavior and activity in humans are heritable. Studies in animals demonstrate an interaction between dopamine D2 receptors and nicotinic acetylcholine receptors on prefrontal behavior but evidence in humans is weak. Therefore, we hypothesize that genetic variation regulating dopamine D2 and nicotinic acetylcholine receptor signaling impact prefrontal cortex activity and related cognition. To test this hypothesis in humans, we explored the interaction between functional genetic variants in the D2 receptor gene (DRD2, rs1076560) and in the nicotinic receptor α5 gene (CHRNA5, rs16969968) on both dorsolateral prefrontal cortex mediated behavior and physiology during working memory and on prefrontal gray matter volume.

Methods

A large sample of healthy subjects was compared for genotypic differences for DRD2 rs1076560 (G>T) and CHNRA5 rs16969968 (G>A) on prefrontal phenotypes, including cognitive performance at the N-Back task, prefrontal physiology with BOLD fMRI during performance of the 2-Back working memory task, and prefrontal morphometry with structural MRI.

Results

We found that DRD2 rs1076560 and CHNRA5 rs16969968 interact to modulate cognitive function, prefrontal physiology during working memory, and prefrontal gray matter volume. More specifically, CHRNA5-AA/DRD2-GT subjects had greater behavioral performance, more efficient prefrontal cortex activity at 2Back working memory task, and greater prefrontal gray matter volume than the other genotype groups.

Conclusions

The present data extend previous studies in animals and enhance our understanding of dopamine and acetylcholine signaling in the human prefrontal cortex, demonstrating interactions elicited by working memory that are modulated by genetic variants in DRD2 and CHRNA5.  相似文献   

19.
Recent genome-wide association studies in East Asian poulations reported the association of KCNQ1 variants with type 2 diabetes. In the present study, we first investigated the association between rs2237892 in KCNQ1 and type 2 diabetes in a Hubei Han Chinese population (223 type 2 diabetes patients and 201 controls). The frequencies of CC genotype and C allele in type 2 diabetes patients were significantly higher than those of controls group (CC: 51.6% vs 39.3%, P=0.001; C: 72.2% vs 61.2%, P=0.001). The odds ratio for the risk allele C was 1.65 (95%CI 1.23–2.2, P=0.001). Then, we systematically reviewed the association of SNPs (rs2237892, rs2237895, rs2237897, rs2074196) in KCNQ1 with type 2 diabetes risk in a meta-analysis. Significant heterogeneity between studies was found for SNPs rs2237892 and rs2237897. Combined odds ratios of the rs2237892 C, rs2237895 C, rs2237897 C, rs2074196 G allele were 1.35 (95% CI 1.29–1.41, P<0.0001), 1.27 (95%CI 1.23–1.32, P<0.0001), 1.32 (95%CI 1.21–1.43, P<0.0001), 1.30 (95%CI 1.25–1.35, P<0.0001) respectively. Our results and meta-analysis demonstrated that KCNQ1 polymorphisms were reproducibly associated with the risk of type 2 diabetes in Han Chinese and East Asian populations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号