首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Equal partitioning of the duplicated chromosomes into two daughter cells during cell division is a coordinated process and is initiated only after completion of DNA synthesis. However, this strict order of execution breaks down in CDC6-deficient cells. Cdc6, an evolutionarily conserved protein, is required for the assembly of pre-replicative complexes (pre-RCs) and is essential for the initiation of DNA replication. Yeast cells lacking Cdc6 function, though unable to initiate DNA replication, proceed to undergo “reductional anaphase” by partitioning the unreplicated chromosomes and lose viability rapidly. This extreme form of genomic instability in cdc6 cells is thought to be due to inactivation of a pre-RC based, Cdc6-dependent checkpoint mechanism that, during normal cell cycle, inhibits premature onset of mitosis until pre-RC is assembled. Here, we show that chromosome segregation in cdc6 mutant is caused not by precocious initiation of mitosis in the absence of a checkpoint, but by the deregulation of spindle dynamics induced via a regulatory network involving the ubiquitin-conjugating enzyme Cdc34, microtubule-associated proteins (MAPs) and the anaphase-promoting complex (APC) activator Cdh1. This regulatory circuit governs spindle behavior in the early part of the division cycle and precipitates catastrophic chromosome segregation in the absence of DNA replication.  相似文献   

2.
Checkpoint kinase 1 (Chk1) plays key roles in all currently defined cell cycle checkpoints, but its functions in mouse oocyte meiosis remain unclear. In this study, we report the expression, localization and functions of Chk1 in mouse oocyte meiosis. Chk1 was expressed from germinal vesicle (GV) to metaphase II (MII) stages and localized to the spindle from pro-metaphase I (pro-MI) to MII stages in mouse oocytes. Chk1 depletion facilitated the G2/M transition while Chk1 overexpression inhibited the G2/M transition as indicated by germinal vesicle breakdown (GVBD), through regulation of Cdh1 and Cyclin B1. Chk1 depletion did not affect meiotic cell cycle progression after GVBD, but its overexpression after GVBD activated the spindle assembly checkpoint and prevented homologous chromosome segregation, thus arresting oocytes at pro-MI or metaphase I (MI) stages. These results suggest that Chk1 is indispensable for prophase I arrest and functions in G2/M checkpoint regulation in meiotic oocytes. Moreover, Chk1 overexpression affects meiotic spindle assembly checkpoint regulation and thus chromosome segregation.  相似文献   

3.
Ying Wei  Ziyin Li 《Eukaryotic cell》2014,13(1):110-118
Mitogen-activated protein kinase (MAPK) modules are evolutionarily conserved signaling cascades that function in response to the environment and play crucial roles in intracellular signal transduction in eukaryotes. The involvement of a MAP kinase in regulating cytokinesis in yeast, animals, and plants has been reported, but the requirement for a MAP kinase for cytokinesis in the early-branching protozoa is not documented. Here, we show that a MAP kinase homolog (TbMAPK6) from Trypanosoma brucei plays distinct roles in cytokinesis in two life cycle forms of T. brucei. TbMAPK6 is distributed throughout the cytosol in the procyclic form but is localized in both the cytosol and the nucleus in the bloodstream form. RNA interference (RNAi) of TbMAPK6 results in moderate growth inhibition in the procyclic form but severe growth defects and rapid cell death in the bloodstream form. Moreover, TbMAPK6 appears to be implicated in furrow ingression and cytokinesis completion in the procyclic form but is essential for cytokinesis initiation in the bloodstream form. Despite the distinct defects in cytokinesis in the two forms, RNAi of TbMAPK6 also caused defective basal body duplication/segregation in a small cell population in both life cycle forms. Altogether, our results demonstrate the involvement of the TbMAPK6-mediated pathway in regulating cytokinesis in trypanosomes and suggest distinct roles of TbMAPK6 in cytokinesis between different life cycle stages of T. brucei.  相似文献   

4.
In Caulobacter crescentus, morphogenic events, such as cytokinesis, the establishment of asymmetry and the biogenesis of polar structures, are precisely regulated during the cell cycle by internal cues, such as cell division and the initiation of DNA replication. Recent studies have revealed that the converse is also true. That is, differentiation events impose regulatory controls on other differentiation events, as well as on progression of the cell cycle. Thus, there are pathways that sense the assembly of structures or the localization of complexes and then transduce this information to subsequent biogenesis or cell cycle events. In this review, we examine the interplay between flagellar assembly and the C. crescentus cell cycle.  相似文献   

5.
Entry into mitosis is regulated by a checkpoint at the boundary between the G2 and M phases of the cell cycle (G2/M). In many organisms, this checkpoint surveys DNA damage and cell size and is controlled by both the activation of mitotic cyclin-dependent kinases (Cdks) and the inhibition of an opposing phosphatase, protein phosphatase 2A (PP2A). Misregulation of mitotic entry can often lead to oncogenesis or cell death. Recent research has focused on discovering the signaling pathways that feed into the core checkpoint control mechanisms dependent on Cdk and PP2A. Herein, we review the conserved mechanisms of the G2/M transition, including recently discovered upstream signaling pathways that link cell growth and DNA replication to cell cycle progression. Critical consideration of the human, frog and yeast models of mitotic entry frame unresolved and emerging questions in this field, providing a prediction of signaling molecules and pathways yet to be discovered.  相似文献   

6.
细胞周期是高度有组织的时序调控过程,受到DNA损伤检控点、DNA复制检控点和纺锤体检控点等细胞周期检控点的精确调控。细胞周期检控点的作用主要是调节细胞周期的时序转换,以确保DNA复制、染色体分离等细胞重要生命活动的高度精确性,并对DNA损伤、DNA复制受阻、纺锤体组装和染色体分离异常等细胞损伤及时做出反应,以防止突变和遗传不稳定的发生。细胞周期检控点的功能缺陷,将导致细胞基因组的不稳定,与细胞癌变密切相关。因此细胞周期检控点对于维持细胞遗传信息的稳定性和完整性以及防止细胞癌变和遗传疾病的发生起着至关重要的作用。  相似文献   

7.
8.
In Caulobacter crescentus, morphogenic events, such as cytokinesis, the establishment of asymmetry and the biogenesis of polar structures, are precisely regulated during the cell cycle by internal cues, such as cell division and the initiation of DNA replication. Recent studies have revealed that the converse is also true. That is, differentiation events impose regulatory controls on other differentiation events, as well as on progression of the cell cycle. Thus, there are pathways that sense the assembly of structures or the localization of complexes and then transduce this information to subsequent biogenesis or cell cycle events. In this review, we examine the interplay between flagellar assembly and the C. crescentus cell cycle.  相似文献   

9.
Precise spatiotemporal control of microtubule nucleation and organization is critical for faithful segregation of cytoplasmic and genetic material during cell division and signaling via the primary cilium in quiescent cells. Microtubule-associated proteins (MAPs) govern assembly, maintenance, and remodeling of diverse microtubule arrays. While a set of conserved MAPs are only active during cell division, an emerging group of MAPs acts as dual regulators in dividing and nondividing cells. Here, we elucidated the nonciliary functions and molecular mechanism of action of the ciliopathy-linked protein CCDC66, which we previously characterized as a regulator of ciliogenesis in quiescent cells. We showed that CCDC66 dynamically localizes to the centrosomes, the bipolar spindle, the spindle midzone, the central spindle, and the midbody in dividing cells and interacts with the core machinery of centrosome maturation and MAPs involved in cell division. Loss-of-function experiments revealed its functions during mitotic progression and cytokinesis. Specifically, CCDC66 depletion resulted in defective spindle assembly and orientation, kinetochore fiber stability, chromosome alignment in metaphase as well as central spindle and midbody assembly and organization in anaphase and cytokinesis. Notably, CCDC66 regulates mitotic microtubule nucleation via noncentrosomal and centrosomal pathways via recruitment of gamma-tubulin to the centrosomes and the spindle. Additionally, CCDC66 bundles microtubules in vitro and in cells by its C-terminal microtubule-binding domain. Phenotypic rescue experiments showed that the microtubule and centrosome-associated pools of CCDC66 individually or cooperatively mediate its mitotic and cytokinetic functions. Collectively, our findings identify CCDC66 as a multifaceted regulator of the nucleation and organization of the diverse mitotic and cytokinetic microtubule arrays and provide new insight into nonciliary defects that underlie ciliopathies.

The ciliopathy-linked protein CCDC66 is only known for its ciliary functions. This study reveals that CCDC66 also has extensive non-ciliary functions, localizing to the spindle poles, spindle midzone, central spindle and midbody throughout cell division, where it regulates mitosis and cytokinesis by promoting microtubule nucleation and organization.  相似文献   

10.
The bipolar mitotic spindle is a highly conserved structure among eukaryotes that mediates chromosome alignment and segregation. Spindle assembly and size control are facilitated by force-generating microtubule-dependent motor proteins known as kinesins. In animals, kinesin-12 cooperates with kinesin-5 to produce outward-directed forces necessary for spindle assembly. In plants, the relevant molecular mechanisms for spindle formation are poorly defined. While an Arabidopsis thaliana kinesin-5 ortholog has been identified, the kinesin-12 ortholog in plants remains elusive. In this study, we provide experimental evidence for the function of Arabidopsis KINESIN-12E in spindle assembly. In kinesin-12e mutants, a delay in spindle assembly is accompanied by the reduction of spindle size, demonstrating that KINESIN-12E contributes to mitotic spindle architecture. Kinesin-12E localization is mitosis-stage specific, beginning with its perinuclear accumulation during prophase. Upon nuclear envelope breakdown, KINESIN-12E decorates subpopulations of microtubules in the spindle and becomes progressively enriched in the spindle midzone. Furthermore, during cytokinesis, KINESIN-12E shares its localization at the phragmoplast midzone with several functionally diversified Arabidopsis KINESIN-12 members. Changes in the kinetochore and in prophase and metaphase spindle dynamics occur in the absence of KINESIN-12E, suggest it might play an evolutionarily conserved role during spindle formation similar to its spindle-localized animal kinesin-12 orthologs.

KINESIN-12E aids in the rapid alignment of chromosomes during cell division in Arabidopsis.  相似文献   

11.
This issue of Current Biology features five reviews covering various key aspects of the eukaryotic cell cycle. The topics include initiation of chromosome replication, assembly of the mitotic spindle, cytokinesis, the regulation of cell-cycle progression, and cell-cycle modeling, focusing mainly on budding yeast, fission yeast and animal cell model systems. The reviews underscore common themes as well as key differences in the way these processes are carried out and regulated among the different model organisms. Consequently, an important question is how cell-cycle mechanisms and controls have evolved, particularly in the broader perspective of the three domains of life.  相似文献   

12.
The step-by-step process of chromosome segregation defines the stages of the cell cycle. In eukaryotes, signals controlling these steps converge upon the kinetochore, a multiprotein assembly that connects spindle microtubules to chromosomal centromeres. Kinetochores control and adapt to major chromosomal transactions, including replication of centromeric DNA, biorientation of sister centromeres on the metaphase spindle, and transit of sister chromatids into daughter cells during anaphase. Although the mechanisms that ensure tight microtubule coupling at anaphase are at least partly understood, kinetochore adaptations that support other cell cycle transitions are not. We report here a mechanism that enables regulated control of kinetochore sumoylation. A conserved surface of the Ctf3/CENP-I kinetochore protein provides a binding site for Ulp2, the nuclear enzyme that removes SUMO chains from modified substrates. Ctf3 mutations that disable Ulp2 recruitment cause elevated inner kinetochore sumoylation and defective chromosome segregation. The location of the site within the assembled kinetochore suggests coordination between sumoylation and other cell cycle–regulated processes.  相似文献   

13.
Aurora kinases play critical roles in chromosome segregation and cell division. They are implicated in the centrosome cycle, spindle assembly, chromosome condensation, microtubule-kinetochore attachment, the spindle checkpoint and cytokinesis. Aurora kinases are regulated through phosphorylation, the binding of specific partners and ubiquitin-dependent proteolysis. Several Aurora substrates have been identified and their roles are being elucidated. The deregulation of Aurora kinases impairs spindle assembly, checkpoint function and cell division, causing missegregation of individual chromosomes or polyploidization accompanied by centrosome amplification. Aurora kinases are frequently overexpressed in cancers and the identification of Aurora A as a cancer-susceptibility gene provides a strong link between mitotic errors and carcinogenesis.  相似文献   

14.
Cell reproduction is a complex process involving whole cell structures and machineries in space and time, resulting in regulated distribution of endomembranes, organelles, and genomes between daughter cells. Secretory pathways supported by the activity of the Golgi apparatus play a crucial role in cytokinesis in plants. From the onset of phragmoplast initiation to the maturation of the cell plate, delivery of secretory vesicles is necessary to sustain successful daughter cell separation. Tethering of secretory vesicles at the plasma membrane is mediated by the evolutionarily conserved octameric exocyst complex. Using proteomic and cytologic approaches, we show that EXO84b is a subunit of the plant exocyst. Arabidopsis thaliana mutants for EXO84b are severely dwarfed and have compromised leaf epidermal cell and guard cell division. During cytokinesis, green fluorescent protein–tagged exocyst subunits SEC6, SEC8, SEC15b, EXO70A1, and EXO84b exhibit distinctive localization maxima at cell plate initiation and cell plate maturation, stages with a high demand for vesicle fusion. Finally, we present data indicating a defect in cell plate assembly in the exo70A1 mutant. We conclude that the exocyst complex is involved in secretory processes during cytokinesis in Arabidopsis cells, notably in cell plate initiation, cell plate maturation, and formation of new primary cell wall.  相似文献   

15.
African trypanosomes have a tightly coordinated cell cycle to effect efficient segregation of their single organelles, the nucleus, flagellum, and kinetoplast. To investigate cell cycle control in trypanosomes, a mitotic cyclin gene (CYC6) has been identified in Trypanosoma brucei. We show that CYC6 forms an active kinase complex with CRK3, the trypanosome CDK1 homologue, in vivo. Using RNA interference, we demonstrate that absence of CYC6 mRNA results in a mitotic block and growth arrest in both the insect procyclic and mammalian bloodstream forms. In the procyclic form, CYC6 RNA interference generates anucleate cells with a single kinetoplast, whereas in bloodstream form trypanosomes, cells with one nucleus and multiple kinetoplasts are observed. Fluorescence-activated cell sorting analysis shows that bloodstream but not procyclic trypanosomes are able to reinitiate nuclear S phase in the absence of mitosis. Taken together, these data show that procyclic trypanosomes can undergo cytokinesis without completion of mitosis, whereas a mitotic block in bloodstream form trypanosomes inhibits cytokinesis but not kinetoplast replication and segregation nor an additional round of nuclear DNA synthesis. This indicates that there are fundamental differences in cell cycle controls between life cycle forms of T. brucei and that key cell cycle checkpoints present in higher eukaryotes are absent from trypanosomes.  相似文献   

16.
The Polo-like kinase (PLK) in Trypanosoma brucei plays multiple roles in basal body segregation, flagellum attachment, and cytokinesis. However, the mechanistic role of TbPLK remains elusive, mainly because most of its substrates are not known. Here, we report a new substrate of TbPLK, SPBB1, and its essential roles in T. brucei. SPBB1 was identified through yeast two-hybrid screening with the kinase-dead TbPLK as the bait. It interacts with TbPLK in vitro and in vivo, and is phosphorylated by TbPLK in vitro. SPBB1 localizes to both the mature basal body and the probasal body throughout the cell cycle, and co-localizes with TbPLK at the basal body during early cell cycle stages. RNAi against SPBB1 in procyclic trypanosomes inhibited basal body segregation, disrupted the new flagellum attachment zone filament, detached the new flagellum, and caused defective cytokinesis. Moreover, RNAi of SPBB1 confined TbPLK at the basal body and the bilobe structure, resulting in constitutive phosphorylation of TbCentrin2 at the bilobe. Altogether, these results identified a basal body protein as a TbPLK substrate and its essential role in promoting basal body segregation and flagellum attachment zone filament assembly for flagellum adhesion and cytokinesis initiation.  相似文献   

17.
Research in yeast and animals has resulted in a well-supported consensus model for eukaryotic cell cycle control. The fit of this model to early diverging eukaryotes, such as the plant kingdom, remains unclear. Using the green alga Chlamydomonas reinhardtii, we developed an efficient pipeline, incorporating robotics, semiautomated image analysis, and deep sequencing, to molecularly identify >50 genes, mostly conserved in higher plants, specifically required for cell division but not cell growth. Mutated genes include the cyclin-dependent kinases CDKA (resembling yeast and animal Cdk1) and the plant-specific CDKB. The Chlamydomonas cell cycle consists of a long G1 during which cells can grow >10-fold, followed by multiple rapid cycles of DNA replication and segregation. CDKA and CDKB execute nonoverlapping functions: CDKA promotes transition between G1 and entry into the division cycle, while CDKB is essential specifically for spindle formation and nuclear division, but not for DNA replication, once CDKA-dependent initiation has occurred. The anaphase-promoting complex is required for similar steps in the Chlamydomonas cell cycle as in Opisthokonts; however, the spindle assembly checkpoint, which targets the APC in Opisthokonts, appears severely attenuated in Chlamydomonas, based on analysis of mutants affecting microtubule function. This approach allows unbiased integration of the consensus cell cycle control model with innovations specific to the plant lineage.  相似文献   

18.
Dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) constitute an evolutionarily conserved family of protein kinases with key roles in the control of cell proliferation and differentiation. Members of the DYRK family phosphorylate many substrates, including critical regulators of the cell cycle. A recent report revealed that human DYRK2 acts as a negative regulator of G1/S transition by phosphorylating c-Jun and c-Myc, thereby inducing ubiquitination-mediated degradation. Other DYRKs also function as cell cycle regulators by modulating the turnover of their target proteins. DYRK1B can induce reversible cell arrest in a quiescent G0 state by targeting cyclin D1 for proteasomal degradation and stabilizing p27Kip1. The DYRK2 ortholog of C. elegans, MBK-2, triggers the proteasomal destruction of oocyte proteins after meiosis to allow the mitotic divisions in embryo development. This review summarizes the accumulating results that provide evidence for a general role of DYRKs in the regulation of protein stability.  相似文献   

19.
Eukaryotic cell division requires the co-ordinated assembly and disassembly of the mitotic spindle, accurate chromosome segregation and temporal control of cytokinesis to generate two daughter cells. While the absolute details of these processes differ between organisms, there are evolutionarily conserved core components common to all eukaryotic cells, whose identification will reveal the key processes that control cell division. Glycogen synthase kinase 3 (GSK-3) is a major protein kinase found throughout the eukaryotes and regulates many processes, including cell differentiation, growth, motility and apoptosis. In animals, GSK-3 associates with mitotic spindles and its inhibition causes mis-regulation of chromosome segregation. Two suppressor screens in yeast point to a more general effect of GSK-3 on cell division, however the direct role of GSK-3 in control of mitosis has not been explored outside the animal kingdom. Here we report that the Dictyostelium discoideum GSK-3 orthologue, GskA, associates with the mitotic spindle during cell division, as seen for its mammalian counterparts. Dictyostelium possesses only a single GSK-3 gene that can be deleted to eliminate all GSK-3 activity. We found that gskA-null mutants failed to elongate their mitotic spindle and were unable to divide in shaking culture, but have no chromosome segregation defect. These results suggest further conservation for the role of GSK-3 in the regulation of spindle dynamics during mitosis, but also reveal differences in the mechanisms ensuring accurate chromosome segregation.  相似文献   

20.
Dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs) constitute an evolutionarily conserved family of protein kinases with key roles in the control of cell proliferation and differentiation. Members of the DYRK family phosphorylate many substrates, including critical regulators of the cell cycle. A recent report revealed that human DYRK2 acts as a negative regulator of G1/S transition by phosphorylating c-Jun and c-Myc, thereby inducing ubiquitination-mediated degradation. Other DYRKs also function as cell cycle regulators by modulating the turnover of their target proteins. DYRK1B can induce reversible cell arrest in a quiescent G0 state by targeting cyclin D1 for proteasomal degradation and stabilizing p27Kip1. The DYRK2 ortholog of C. elegans, MBK-2, triggers the proteasomal destruction of oocyte proteins after meiosis to allow the mitotic divisions in embryo development. This review summarizes the accumulating results that provide evidence for a general role of DYRKs in the regulation of protein stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号