首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we investigated the role of the conserved neuraminidase (NA) cytoplasmic tail residues in influenza virus replication. Mutants of influenza A virus (A/WSN/33 [H1N1]) with deletions of the NA cytoplasmic tail region were generated by reverse genetics. The resulting viruses, designated NOTAIL, contain only the initiating methionine of the conserved six amino-terminal residues. The mutant viruses grew much less readily and produced smaller plaques than did the wild-type virus. Despite similar levels of NA cell surface expression by the NOTAIL mutants and wild-type virus, incorporation of mutant NA molecules into virions was decreased by 86%. This reduction resulted in less NA activity per virion, leading to the formation of large aggregates of progeny mutant virions on the surface of infected cells. A NOTAIL virus containing an additional mutation (Ser-12 to Pro) in the transmembrane domain incorporated three times more NA molecules into virions than did the NOTAIL parent but approximately half of the amount incorporated by the wild-type virus. However, aggregation of the progeny virions still occurred at the cell surface. All NOTAIL viruses were attenuated in mice. We conclude that the cytoplasmic tail of NA is not absolutely essential for virus replication but exerts important effects on the incorporation of NA into virions and thus on the aggregation and virulence of progeny virus. In addition, the relative abundance of long filamentous particles formed by the NOTAIL mutants, compared with the largely spherical wild-type particles, indicates a role for the NA cytoplasmic tail in virion morphogenesis.  相似文献   

2.
Reassortment of influenza A and B viruses has never been observed in vivo or in vitro. Using reverse genetics techniques, we generated recombinant influenza A/WSN/33 (WSN) viruses carrying the neuraminidase (NA) of influenza B virus. Chimeric viruses expressing the full-length influenza B/Yamagata/16/88 virus NA grew to titers similar to that of wild-type influenza WSN virus. Recombinant viruses in which the cytoplasmic tail or the cytoplasmic tail and the transmembrane domain of the type B NA were replaced with those of the type A NA were impaired in tissue culture. This finding correlates with reduced NA content in virions. We also generated a recombinant influenza A virus expressing a chimeric hemagglutinin (HA) protein in which the ectodomain is derived from type B/Yamagata/16/88 virus HA, whereas both the cytoplasmic and the transmembrane domains are derived from type A/WSN virus HA. This A/B chimeric HA virus did not grow efficiently in MDCK cells. However, after serial passage we obtained a virus population that grew to titers as high as wild-type influenza A virus in MDCK cells. One amino acid change in position 545 (H545Y) was found to be responsible for the enhanced growth characteristics of the passaged virus. Taken together, we show here that the absence of reassortment between influenza viruses belonging to different A and B types is not due to spike glycoprotein incompatibility at the level of the full-length NA or of the HA ectodomain.  相似文献   

3.
The significance of the conserved cytoplasmic tail sequence of influenza A virus neuraminidase (NA) was analyzed by the recently developed reverse genetics technique (W. Luytjes, M. Krystal, M. Enami, J. D. Parvin, and P. Palese, Cell 59:1107-1113, 1989). A chimeric influenza virus A/WSN/33 NA containing the influenza B virus cytoplasmic tail rescued influenza A virus infectivity. The transfectant virus had less NA incorporated into virions than A/WSN/33, indicating that the cytoplasmic tail of influenza virus NA plays a role in incorporation of NA into virions. However, these results also suggest that the influenza A virus and influenza B virus cytoplasmic tail sequences share common features that lead to the production of infectious virus. Transfectant virus was obtained with all cytoplasmic tail mutants generated by site-directed mutagenesis of the influenza A virus tail, except for the mutant resulting from substitution of the conserved proline residue, presumably because of its contribution to the secondary structure of the tail. No virus was rescued when the cytoplasmic tail was deleted, indicating that the cytoplasmic tail is essential for production of the virus. The virulence of the transfectant viruses in mice was directly proportional to the amount of NA incorporated. The importance of the NA cytoplasmic tail in virus assembly and virulence has implications for use in developing antiviral strategies.  相似文献   

4.
Compensatory mutations contribute to the appearance of the oseltamivir resistance substitution H274Y in the neuraminidase (NA) gene of H1N1 influenza viruses. Here, we describe a high-throughput screening method utilizing error-prone PCR and next-generation sequencing to comprehensively screen NA genes for H274Y compensatory mutations. We found four mutations that can either fully (R194G, E214D) or partially (L250P, F239Y) compensate for the fitness deficiency of the H274Y mutant. The compensatory effect of E214D is applicable in both seasonal influenza virus strain A/New Caledonia/20/1999 and 2009 pandemic swine influenza virus strain A/California/04/2009. The technique described here has the potential to profile a gene at the single-nucleotide level to comprehend the dynamics of mutation space and fitness and thus offers prediction power for emerging mutant species.  相似文献   

5.
In polarized MDCK cells influenza virus (A/WSN/33) neuraminidase (NA) and human transferrin receptor (TR), type II glycoproteins, when expressed from cloned cDNAs, were transported and accumulated preferentially on the apical and basolateral surfaces, respectively. We have investigated the signals for polarized sorting by constructing chimeras between NA and TR and by making deletion mutants. NATR delta 90, which contains the cytoplasmic tail and transmembrane domain of NA and the ectodomain of TR, was found to be localized predominantly on the apical membrane, whereas TRNA delta 35, containing the cytoplasmic and transmembrane domains of TR and the ectodomain of NA, was expressed preferentially on the basolateral membrane. TR delta 57, a TR deletion mutant lacking 57 amino acids in the TR cytoplasmic tail, did not exhibit any polarized expression and was present on both apical and basolateral surfaces, whereas a deletion mutant (NA delta 28-35) lacking amino acid residues from 28 to 35 in the transmembrane domain of NA resulted in secretion of the NA ectodomain predominantly from the apical side. These results taken together indicate that the cytoplasmic tail of TR was sufficient for basolateral transport, but influenza virus NA possesses two sorting signals, one in the cytoplasmic or transmembrane domain and the other within the ectodomain, both of which are independently able to transport the protein to the apical plasma membrane.  相似文献   

6.
Influenza virus neuraminidase (NA), a type II transmembrane glycoprotein, possesses receptor-destroying activity and thereby facilitates virus release from the cell surface. Among the influenza A viruses, both the cytoplasmic tail (CT) and transmembrane domain (TMD) amino acid sequences of NA are highly conserved, yet their function(s) in virus biology remains unknown. To investigate the role of amino acid sequences of the CT and TMD on the virus life cycle, we systematically mutagenized the entire CT and TMD of NA by converting two to five contiguous amino acids to alanine. In addition, we also made two chimeric NA by replacing the CT proximal one-third amino acids of the NA TMD [NA(1T2N)NA] and the entire NA TMD (NATRNA) with that of human transferrin receptor (TR) (a type II transmembrane glycoprotein). We rescued transfectant mutant viruses by reverse genetics and examined their phenotypes. Our results show that all mutated and chimeric NAs could be rescued into transfectant viruses. Different mutants showed pleiotropic effects on virus growth and replication. Some mutants (NA2A5, NA3A7, and NA4A10) had little effect on virus growth while others (NA3A2, NA5A27, and NA5A31) produced about 50- to 100-fold-less infectious virus and still some others (NA5A14, NA4A19, and NA4A23) exhibited an intermediate phenotype. In general, mutations towards the ectodomain-proximal sequences of TMD progressively caused reduction in NA enzyme activity, affected lipid raft association, and attenuated virus growth. Electron microscopic analysis showed that these mutant viruses remained aggregated and bound to infected cell surfaces and could be released from the infected cells by bacterial NA treatment. Moreover, viruses containing mutations in the extreme N terminus of the CT (NA3A2) as well as chimeric NA containing the TMD replaced partially [NA(1T2N)NA] or fully (NATRNA) with TR TMD caused reduction in virus growth and exhibited the morphological phenotype of elongated particles. These results show that although the sequences of NA CT and TMD per se are not absolutely essential for the virus life cycle, specific amino acid sequences play a critical role in providing structural stability, enzyme activity, and lipid raft association of NA. In addition, aberrant morphogenesis including elongated particle formation of some mutant viruses indicates the involvement of NA in virus morphogenesis and budding.  相似文献   

7.
M Enami  K Enami 《Journal of virology》1996,70(10):6653-6657
We have analyzed the mechanism by which the matrix (M1) protein associates with cellular membranes during influenza A virus assembly. Interaction of the M1 protein with the viral hemagglutinin (HA) or neuraminidase (NA) glycoprotein was extensively analyzed by using wild-type and transfectant influenza viruses as well as recombinant vaccinia viruses expressing the M1 protein, HA, or NA. Membrane binding of the M1 protein was significantly stimulated at the late stage of virus infection. Using recombinant vaccinia viruses, we found that a relatively small fraction (20 to 40%) of the cytoplasmic M1 protein associated with cellular membranes in the absence of other viral proteins, while coexpression of the HA and the NA stimulated membrane binding of the M1 protein. The stimulatory effect of the NA (>90%) was significant and higher than that of the HA (>60%). Introduction of mutations into the cytoplasmic tail of the NA interfered with its stimulatory effect. Meanwhile, the HA may complement the defective NA and facilitate virus assembly in cells infected with the NA/TAIL(-) transfectant. In conclusion, the highly conserved cytoplasmic tails of the HA and NA play an important role in virus assembly.  相似文献   

8.
Chen BJ  Takeda M  Lamb RA 《Journal of virology》2005,79(21):13673-13684
The influenza A virus hemagglutinin (HA) transmembrane domain boundary region and the cytoplasmic tail contain three cysteines (residues 555, 562, and 565 for the H3 HA subtype) that are highly conserved among the 16 HA subtypes and which are each modified by the covalent addition of palmitic acid. Previous analysis of the role of these conserved cysteine residues led to differing data, suggesting either no role for HA palmitoylation or an important role for HA palmitoylation. To reexamine the role of these residues in the influenza virus life cycle, a series of cysteine-to-serine mutations were introduced into the HA gene of influenza virus A/Udorn/72 (Ud) (H3N2) by using a highly efficient reverse genetics system. Mutant viruses containing HA-C562S and HA-C565S mutations had reduced growth and failed to form plaques in MDCK cells but formed wild-type-like plaques in an MDCK cell line expressing wild-type HA. In cell-cell fusion assays, nonpalmitoylated H3 HA, in both cDNA-transfected and virus-infected cells, was fully competent for HA-mediated membrane fusion. When the HA cytoplasmic tail cysteine mutants were examined for lipid raft association, using as the criterion Triton X-100 insolubility, loss of raft association did not show a direct correlation with a reduction in virus replication. However, mutant virus assembly was reduced in parallel with reduced virus replication. Additionally, a reassortant of strain A/WSN/33 (WSN), containing the Ud HA gene with mutations C555S, C562S, and C565S, produced virus that could form plaques on regular MDCK cells and had only moderately decreased replication, suggesting differences in the interactions between Ud and WSN HA and internal viral proteins. Analysis of M1 mutants containing substitutions in the six residues that differ between the Ud and WSN M1 proteins indicated that a constellation of residues are responsible for the difference between the M1 proteins in their ability to support virus assembly with nonpalmitoylated H3 HA.  相似文献   

9.
H Jin  G P Leser  J Zhang    R A Lamb 《The EMBO journal》1997,16(6):1236-1247
The cytoplasmic tails of the influenza virus glycoproteins hemagglutinin (HA) and neuraminidase (NA) are highly conserved in sequence for all virus subtypes and it is believed that assembly of this enveloped virus depends on interactions of these domains with cytoplasmic viral components. However, it is possible to rescue altered influenza viruses lacking either the HA or NA cytoplasmic tails. We have obtained an influenza virus that lacks both the cytoplasmic tail of HA and NA. Particle production is reduced approximately 10-fold but these particles, although having a fairly normal protein composition, are greatly elongated and of extended irregular shape. We propose a model in which the interactions of the cytoplasmic tails of HA and NA with an internal viral component are so important for spherical virion shape that there is dual redundancy in the interactions.  相似文献   

10.
We studied the effects of an increase in the hydrophobicity of the transmembrane domain (TM) and cytoplasmic tail (CT) of influenza B virus hemagglutinin (BHA) on fusion activities. For this purpose, we created mutant HAs with novel acylation site(s) in the TM and/or CT. All mutants were able to induce hemifusion and to form fusion pores as well as could wild type (wt) BHA. However, the ability of these mutants to form syncytia was impaired, indicating that the increase in the hydrophobicity of these domains (especially the CT) affected fusion pore dilation.  相似文献   

11.
The influenza virus neuraminidase (NA), a type II transmembrane protein, is directly transported to the apical plasma membrane in polarized MDCK cells. By using deletion mutants and chimeric constructs of influenza virus NA with the human transferrin receptor, a type II basolateral transmembrane protein, we investigated the location of the apical sorting signal of influenza virus NA. When these mutant and chimeric proteins were expressed in stably transfected polarized MDCK cells, the transmembrane domain of NA, and not the cytoplasmic tail, provided a determinant for apical targeting in polarized MDCK cells and this transmembrane signal was sufficient for sorting and transport of the ectodomain of a reporter protein (transferrin receptor) directly to the apical plasma membrane of polarized MDCK cells. In addition, by using differential detergent extraction, we demonstrated that influenza virus NA and the chimeras which were transported to the apical plasma membrane also became insoluble in Triton X-100 but soluble in octylglucoside after extraction from MDCK cells during exocytic transport. These data indicate that the transmembrane domain of NA provides the determinant(s) both for apical transport and for association with Triton X-100-insoluble lipids.  相似文献   

12.
The ability of mutant or chimeric A/Japan hemagglutinins (HAs) to compete for space in the envelope of A/WSN influenza viruses was investigated with monkey kidney fibroblasts that were infected with recombinant simian virus 40 vectors expressing the Japan proteins and superinfected with A/WSN influenza virus. Wild-type Japan HA assembled into virions as well as WSN HA did. Japan HA lacking its cytoplasmic sequences, HAtail-, was incorporated into influenza virions at half the efficiency of wild-type Japan HA. Chimeric HAs containing the 11 cytoplasmic amino acids of the herpes simplex virus type 1gC glycoprotein or the 29 cytoplasmic amino acids of the vesicular stomatitis virus G protein were incorporated into virions at less than 1% the efficiency of HAtail-. Thus, the cytoplasmic domain of HA was not required for the selection process; however, foreign cytoplasmic sequences, even short ones, were excluded. A chimeric HA having the gC transmembrane domain and the HA cytoplasmic domain (HgCH) was incorporated at 4% the efficiency of HAtail-. When expressed from simian virus 40 recombinants in this system, vesicular stomatitis virus G protein with or without (Gtail-) its cytoplasmic domain was essentially excluded from influenza virions. Taken together, these data indicate that the HA transmembrane domain is required for incorporation of HA into influenza virions. The slightly more efficient incorporation of HgCH than G or Gtail- could indicate that the region important for assembling HA into virions extends into part of the cytoplasmic domain.  相似文献   

13.
The viral replication cycle concludes with the assembly of viral components to form progeny virions. For influenza A viruses, the matrix M1 protein and two membrane integral glycoproteins, hemagglutinin and neuraminidase, function cooperatively in this process. Here, we asked whether another membrane protein, the M2 protein, plays a role in virus assembly. The M2 protein, comprising 97 amino acids, possesses the longest cytoplasmic tail (54 residues) of the three transmembrane proteins of influenza A viruses. We therefore generated a series of deletion mutants of the M2 cytoplasmic tail by reverse genetics. We found that mutants in which more than 22 amino acids were deleted from the carboxyl terminus of the M2 tail were viable but grew less efficiently than did the wild-type virus. An analysis of the virions suggested that viruses with M2 tail deletions of more than 22 carboxy-terminal residues apparently contained less viral ribonucleoprotein complex than did the wild-type virus. These M2 tail mutants also differ from the wild-type virus in their morphology: while the wild-type virus is spherical, some of the mutants were filamentous. Alanine-scanning experiments further indicated that amino acids at positions 74 to 79 of the M2 tail play a role in virion morphogenesis and affect viral infectivity. We conclude that the M2 cytoplasmic domain of influenza A viruses plays an important role in viral assembly and morphogenesis.  相似文献   

14.
The C terminus of the influenza virus hemagglutinin (HA) contains three cysteine residues that are highly conserved among HA subtypes, two in the cytoplasmic tail and one in the transmembrane domain. All of these C-terminal cysteine residues are modified by the covalent addition of palmitic acid through a thio-ether linkage. To investigate the role of HA palmitylation in virus assembly, we used reverse genetics technique to introduce substitutions and deletions that affected the three conserved cysteine residues into the H3 subtype HA. The rescued viruses contained the HA of subtype H3 (A/Udorn/72) in a subtype H1 helper virus (A/WSN/33) background. Rescued viruses which do not contain a site for palmitylation (by residue substitution or substitution combined with deletion of the cytoplasmic tail) were obtained. Rescued virions had a normal polypeptide composition. Analysis of the kinetics of HA low-pH-induced fusion of the mutants showed no major change from that of virus with wild-type (wt) HA. The PFU/HA ratio of the rescued viruses grown in eggs ranged from that of virus with wt HA to 16-fold lower levels, whereas the PFU/HA ratio of the rescued viruses grown in MDCK cells varied only 2-fold from that of virus with wt HA. However, except for one rescued mutant virus (CAC), the mutant viruses were attenuated in mice, as indicated by a > or = 400-fold increase in the 50% lethal dose. Interestingly, except for one mutant virus (CAC), all of the rescued mutant viruses were restricted for replication in the upper respiratory tract but much less restricted in the lungs. Thus, the HA cytoplasmic tail may play a very important role in the generation of virus that can replicate in multiple cell types.  相似文献   

15.
Influenza virus assembles and buds at the infected-cell plasma membrane. This involves extrusion of the plasma membrane followed by scission of the bud, resulting in severing the nascent virion from its former host. The influenza virus M2 ion channel protein contains in its cytoplasmic tail a membrane-proximal amphipathic helix that facilitates the scission process and is also required for filamentous particle formation. Mutation of five conserved hydrophobic residues to alanines within the amphipathic helix (M2 five-point mutant, or 5PM) reduced scission and also filament formation, whereas single mutations had no apparent phenotype. Here, we show that any two of these five residues mutated together to alanines result in virus debilitated for growth and filament formation in a manner similar to 5PM. Growth kinetics of the M2 mutants are approximately 2 logs lower than the wild-type level, and plaque diameter was significantly reduced. When the 5PM and a representative double mutant (I51A-Y52A) were introduced into A/WSN/33 M2, a strain that produces spherical particles, similar debilitation in viral growth occurred. Electron microscopy showed that with the 5PM and the I51A-Y52A A/Udorn/72 and WSN viruses, scission failed, and emerging virus particles exhibited a “beads-on-a-string” morphology. The major spike glycoprotein hemagglutinin is localized within lipid rafts in virus-infected cells, whereas M2 is associated at the periphery of rafts. Mutant M2s were more widely dispersed, and their abundance at the raft periphery was reduced, suggesting that the M2 amphipathic helix is required for proper localization in the host membrane and that this has implications for budding and scission.  相似文献   

16.
Ion channel proteins are common constituents of cells and have even been identified in some viruses. For example, the M2 protein of influenza A virus has proton ion channel activity that is thought to play an important role in viral replication. Because direct support for this function is lacking, we attempted to generate viruses with defective M2 ion channel activity. Unexpectedly, mutants with apparent loss of M2 ion channel activity by an in vitro assay replicated as efficiently as the wild-type virus in cell culture. We also generated a chimeric mutant containing an M2 protein whose transmembrane domain was replaced with that from the hemagglutinin glycoprotein. This virus replicated reasonably well in cell culture but showed no growth in mice. Finally, a mutant lacking both the transmembrane and cytoplasmic domains of M2 protein grew poorly in cell culture and showed no growth in mice. Thus, influenza A virus can undergo multiple cycles of replication without the M2 transmembrane domain responsible for ion channel activity, although this activity promotes efficient viral replication.  相似文献   

17.
Zhang J  Pekosz A  Lamb RA 《Journal of virology》2000,74(10):4634-4644
Influenza viruses encoding hemagglutinin (HA) and neuraminidase (NA) glycoproteins with deletions in one or both cytoplasmic tails (HAt- or NAt-) have a reduced association with detergent-insoluble glycolipids (DIGs). Mutations which eliminated various combinations of the three palmitoylation sites in HA exhibited reduced amounts of DIG-associated HA in virus-infected cells. The influenza virus matrix (M(1)) protein was also found to be associated with DIGs, but this association was decreased in cells infected with HAt- or NAt- virus. Regardless of the amount of DIG-associated protein, the HA and NA glycoproteins were targeted primarily to the apical surface of virus-infected, polarized cells. The uncoupling of DIG association and apical transport was augmented by the observation that the influenza A virus M(2) protein as well as the influenza C virus HA-esterase-fusion glycoprotein were not associated with DIGs but were apically targeted. The reduced DIG association of HAt- and NAt- is an intrinsic property of the glycoproteins, as similar reductions in DIG association were observed when the proteins were expressed from cDNA. Examination of purified virions indicated reduced amounts of DIG-associated lipids in the envelope of HAt- and NAt- viruses. The data indicate that deletion of both the HA and NA cytoplasmic tails results in reduced DIG association and changes in both virus polypeptide and lipid composition.  相似文献   

18.
Resistance of influenza A viruses to neuraminidase inhibitors can arise through mutations in the neuraminidase (NA) gene. We show here that a Q136K mutation in the NA of the 2009 pandemic H1N1 virus confers a high degree of resistance to zanamivir. Resistance is accompanied by reduced numbers of NA molecules in viral particles and reduced intrinsic enzymatic activity of mutant NA. Interestingly, the Q136K mutation strongly impairs viral fitness in the guinea pig transmission model.  相似文献   

19.
Influenza B virus BM2 is a type III integral membrane protein that displays H+ ion channel activity. Analysis of BM2 knockout mutants has suggested that this protein is a necessary component for the capture of M1-viral ribonucleoprotein (vRNP) complex at the plasma membrane and for incorporation of vRNP complex into the virion during the assembly process. BM2 comprises 109 amino acid residues and possesses a longer cytoplasmic domain than the other 3 integral membrane proteins (hemagglutinin, neuraminidase, and NB). To explore whether the cytoplasmic domain of BM2 is important for infectious virus production, a series of BM2 deletion mutants lacking three to nine amino acid residues at the carboxyl terminus, BM2Δ107-109, BM2Δ104-109, and BM2Δ101-109, was generated by reverse genetics. Intracellular transport and incorporation into virions were indistinguishable between truncated BM2 proteins and wild-type BM2. The BM2Δ107-109 mutant produced levels of infectious virus similar to those of wild-type virus and displayed a spherical shape. However, the BM2Δ104-109 and BM2Δ101-109 mutants produced viruses containing dramatically reduced vRNP complex, as with BM2 knockout mutants, and formed enlarged, irregularly shaped virions. Moreover, gradient separation of membranes indicated that membrane association of M1 from mutants was greatly affected by carboxyl-terminal truncations of BM2. Studies of alanine substitution mutants further suggested that amino acid sequences in the 98-109 region are variable while those in the 86-97 region are a prerequisite for innate BM2 function. These results indicate that the cytoplasmic domain of the BM2 protein is required for firm association of the M1 protein with lipid membranes, vRNP complex incorporation into virions, and virion morphology.  相似文献   

20.
The hemagglutinin (HA) of fowl plague virus A/FPV/Rostock/34 (H7N1) carries two N-linked oligosaccharides attached to Asn123 and Asn149 in close vicinity to the receptor-binding pocket. In previous studies in which HA mutants lacking either one (mutants G1 and G2) or both (mutant G1,2) glycosylation sites had been expressed from a simian virus 40 vector, we showed that these glycans regulate receptor binding affinity (M. Ohuchi, R. Ohuchi, A. Feldmann, and H. D. Klenk, J. Virol. 71:8377-8384, 1997). We have now investigated the effect of these mutations on virus growth using recombinant viruses generated by an RNA polymerase I-based reverse genetics system. Two reassortants of influenza virus strain A/WSN/33 were used as helper viruses to obtain two series of HA mutant viruses differing only in the neuraminidase (NA). Studies using N1 NA viruses revealed that loss of the oligosaccharide from Asn149 (mutant G2) or loss of both oligosaccharides (mutant G1,2) has a pronounced effect on virus growth in MDCK cells. Growth of virus lacking both oligosaccharides from infected cells was retarded, and virus yields in the medium were decreased about 20-fold. Likewise, there was a reduction in plaque size that was distinct with G1,2 and less pronounced with G2. These effects could be attributed to a highly impaired release of mutant progeny viruses from host cells. In contrast, with recombinant viruses containing N2 NA, these restrictions were much less apparent. N1 recombinants showed lower neuraminidase activity than N2 recombinants, indicating that N2 NA is able to partly overrule the high-affinity binding of mutant HA to the receptor. These results demonstrate that N-glycans flanking the receptor-binding site of the HA molecule are potent regulators of influenza virus growth, with the glycan at Asn149 being dominant and that at Asn123 being less effective. In addition, we show here that HA and NA activities need to be highly balanced in order to allow productive influenza virus infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号