首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
2.
Rolling-circle replication is initiated by a replicon-encoded endonuclease which introduces a single-strand nick into specific origin sequences, becoming covalently attached to the 5′ end of the DNA at the nick and providing a 3′ hydroxyl to prime unidirectional, leading-strand synthesis. Parvoviruses, such as minute virus of mice (MVM), have adapted this mechanism to amplify their linear single-stranded genomes by using hairpin telomeres which sequentially unfold and refold to shuttle the replication fork back and forth along the genome, creating a continuous, multimeric DNA strand. The viral initiator protein, NS1, then excises individual genomes from this continuum by nicking and reinitiating synthesis at specific origins present within the hairpin sequences. Using in vitro assays to study ATP-dependent initiation within the right-hand (5′) MVM hairpin, we have characterized a HeLa cell factor which is absolutely required to allow NS1 to nick this origin. Unlike parvovirus initiation factor (PIF), the cellular complex which activates NS1 endonuclease activity at the left-hand (3′) viral origin, the host factor which activates the right-hand hairpin elutes from phosphocellulose in high salt, has a molecular mass of around 25 kDa, and appears to bind preferentially to structured DNA, suggesting that it might be a member of the high-mobility group 1/2 (HMG1/2) protein family. This prediction was confirmed by showing that purified calf thymus HMG1 and recombinant human HMG1 or murine HMG2 could each substitute for the HeLa factor, activating the NS1 endonuclease in an origin-specific nicking reaction.  相似文献   

3.
The covalently closed terminal hairpins of the linear duplex-DNA genomes of the orthopoxvirus vaccinia and the leporipoxvirus Shope fibroma virus (SFV) have been cloned as imperfect palindromes within circular plasmids in yeast cells and recombination-deficient Escherichia coli. The viral telomeres inserted within these recombinant plasmids are equivalent to the inverted-repeat structures detected as telomeric replicative intermediates during poxvirus replication in vivo. Although the telomeres of vaccinia and SFV show little sequence homology, the termini from both viral genomes exist as AT-rich terminal hairpins with extrahelical bases and alternate "flip-flop" configurations. Using an in vivo replication assay in which circular plasmid DNA was transfected into poxvirus-infected cells, we demonstrated the efficient replication and resolution of the cloned imperfect palindromes to bona fide hairpin termini. The resulting linear minichromosomes, which were readily purified from transfected cells, were shown by restriction enzyme mapping and by electron microscopy to have intact covalently closed hairpin termini at both ends. In addition, staggered unidirectional deletion derivatives of both the cloned vaccinia and SFV telomeric palindromes localized an approximately 200-base-pair DNA region in which the sequence organization was highly conserved and which was necessary for the resolution event. These data suggest a conserved mechanism of the resolution of poxvirus telomeres.  相似文献   

4.
Poxvirus genomes consist of a linear duplex DNA that ends in short inverted and complementary hairpin structures. These elements also encode loops and mismatches that likely serve a role in genome packaging and perhaps replication. We constructed mutant vaccinia viruses (VACV) where the native hairpins were replaced by altered forms and tested effects on replication, assembly, and virulence. Our studies showed that structure, not sequence, likely determines function as one can replace an Orthopoxvirus (VACV) hairpin with one copied from a Leporipoxvirus with no effect on growth. Some loops can be deleted from VACV hairpins with little effect, but VACV bearing too few mismatches grew poorly and we couldn’t recover viruses lacking all mismatches. Further studies were conducted using a mutant bearing only one of six mismatches found in wild-type hairpins (SΔ1Δ3–6). This virus grew to ~20-fold lower titers, but neither DNA synthesis nor telomere resolution was affected. However, the mutant exhibited a particle-to-PFU ratio 10-20-fold higher than wild-type viruses and p4b/4b core protein processing was compromised, indicating an assembly defect. Electron microscopy showed that SΔ1Δ3–6 mutant development was blocked at the immature virus (IV) stage, which phenocopies known effects of I1L mutants. Competitive DNA binding assays showed that recombinant I1 protein had less affinity for the SΔ1Δ3–6 hairpin than the wild-type hairpin. The SΔ1Δ3–6 mutant was also attenuated when administered to SCID-NCR mice by tail scarification. Mice inoculated with viruses bearing wild-type hairpins exhibited a median survival of 30–37 days, while mice infected with SΔ1Δ3–6 virus survived >70 days. Persistent infections favor genetic reversion and genome sequencing detected one example where a small duplication near the hairpin tip likely created a new loop. These observations show that mismatches serve a critical role in genome packaging and provide new insights into how VACV “flip and flop” telomeres are arranged.  相似文献   

5.
During DNA replication, the hairpin telomeres of Minute Virus of Mice (MVM) are extended and copied to create imperfectly palindromic duplex junction sequences that bridge adjacent genomes in concatameric replicative-form DNA. These are resolved by the viral initiator protein, NS1, but mechanisms employed at the two telomeres differ. Left-end:left-end junctions are resolved asymmetrically at a single site, OriLTC, by NS1 acting in concert with a host factor, parvovirus initiation factor (PIF). Replication segregates doublet and triplet sequences, initially present as unpaired nucleotides in the bubble region of the left-end hairpin stem, to either side of the junction. These act as spacers between the NS1 and PIF binding sites, and their asymmetric distribution sets up active (OriLTC) and inactive (OriLGAA) forms of OriL. We used a reverse genetic approach to disrupt this asymmetry and found that neither opposing doublets nor triplets in the hairpin bubble were tolerated. Viable mutants were isolated at low frequency and found to contain second-site mutations that either restored the asymmetry or crippled one PIF binding site. These mutations either inactivated the inboard or activated the outboard form of OriL, a polarity that strongly suggests that, in the genus Parvovirus, an active inboard OriL is lethal.  相似文献   

6.
Parvoviruses have a linear single-stranded DNA genome, around 5 kb in length, with short imperfect terminal palindromes that fold back on themselves to form duplex hairpin telomeres. These contain most of the cis-acting information required for viral “rolling hairpin” DNA replication, an evolutionary adaptation of rolling-circle synthesis in which the hairpins create duplex replication origins, prime complementary strand synthesis, and act as hinges to reverse the direction of the unidirectional cellular fork. Genomes are packaged vectorially into small, rugged protein capsids ∼260 Å in diameter, which mediate their delivery directly into the cell nucleus, where they await their host cell’s entry into S phase under its own cell cycle control. Here we focus on genus-specific variations in genome structure and replication, and review host cell responses that modulate the nuclear environment.Viruses from the family Parvoviridae are unique in having a linear single-stranded DNA genome, ∼5 kb in length, which terminates in short (120–420 base) imperfect palindromes that fold into self-priming hairpin telomeres. These viruses replicate via a “rolling hairpin” mechanism, with strong evolutionary and mechanistic links to “rolling-circle” replication, as reviewed in detail in previous editions of this work (Cotmore and Tattersall 1996, 2006). Rolling hairpin synthesis relies on the ability of each hairpin to give rise to a duplex origin sequence, which can be nicked by a viral initiator nuclease to create a base-paired DNA primer, and to function as a hinge, allowing quasi-circular synthesis by alternately folding and unfolding to shuttle a continuous unidirectional replication fork back and forth along linear DNA. Together with a few adjacent nucleotides, these palindromes provide all of the cis-acting information required for viral DNA replication and packaging. However, the size, sequence, and predicted structures of the hairpins can vary substantially between genera, or even between the two ends of a single genome, and they appear to have adapted to fulfill multiple additional roles in the life cycle of specific viruses. Parvoviral DNA amplification proceeds via a unidirectional single-strand displacement mechanism through a series of monomeric and concatemeric duplex replicative-form (RF) intermediates, and while the viral initiator protein, variously called NS1 or Rep, serves both as a site- and strand-specific nickase and as a 3′-to-5′ helicase, all other replicative functions are co-opted from the host cell. This mechanism benefits from suppression of host DNA synthesis, and generates long stretches of single-stranded DNA with alien terminal structures that invoke host damage responses, which impact both positively and negatively on viral replication. Although details of the mechanisms that mediate parvoviral replication have received relatively little attention since our previous review (Cotmore and Tattersall 2006), recognition that infection is invariably associated with host DNA damage responses (DDRs), some of which are specifically required for efficient viral DNA amplification, has led to significant reappraisal of the nuclear environment and replicative machinery available to these viruses. In parallel, major advances have occurred in our knowledge of genome diversity and cell specificity in this ever-expanding family, which provide novel insight into mechanisms of replication control.The International Committee on Taxonomy of Viruses (ICTV, Tijssen et al. 2011), classifies viruses in the family Parvoviridae that infect vertebrates as the subfamily Parvovirinae, which currently contains just five genera: the Parvoviruses, Dependoviruses, Amdoviruses, Erythroviruses, and Bocaviruses, although there are at least two additional genera, tentatively called Partetraviruses and Avetalviruses, that await ICTV recognition. This reflects a major jump in known virus diversity, with many new species and genera first identified in clinical or veterinary samples using PCR-based virus discovery methods (Allander et al. 2005; Jones et al. 2005; Day and Zsak 2010). Potential human pathogens that are still pending recognition include genetic variants of Human Bocavirus (HBoV 1–4), which are particularly common in the respiratory and gastrointestinal tracts of children (Kapoor et al. 2010; Kantola et al. 2011), and two broadly distributed genotypes of a “PARV4”-based genus (the aforementioned Partetraviruses), parenterally transmitted among injecting drug users, hemophiliacs, and polytransfused individuals (Sharp et al. 2009; Lahtinen et al. 2011). Most recently, viruses from another potential genus, with sequences resembling both Parvoviruses and Amdoviruses, were detected in fecal samples from children in Burkina Faso, and tentatively named Bufaviruses (Phan et al. 2012). In vitro culture systems or high titer clinical samples are often not available for new members, which can thus only be studied by PCR amplification from patient tissue.Although the vast majority of parvoviruses replicate without the aid of a helper virus, the adeno-associated viruses (AAVs) from the genus Dependovirus establish latent infections that only become productive when cells are coinfected with a more complex virus, typically an adeno- or herpesvirus. To date the replication mechanisms of adeno-associated virus 2 (AAV2) and minute virus of mice (MVM), from the genus Parvovirus, have been studied in detail, as documented in previous editions of this work. Here we adopt a broader perspective, discussing inter-genera variations that shed light on replication control, and reviewing host cell responses to viral infection that modulate the nuclear environment.  相似文献   

7.
Trinucleotide repeat (TNR) expansion is responsible for numerous human neurodegenerative diseases. However, the underlying mechanisms remain unclear. Recent studies have shown that DNA base excision repair (BER) can mediate TNR expansion and deletion by removing base lesions in different locations of a TNR tract, indicating that BER can promote or prevent TNR expansion in a damage location–dependent manner. In this study, we provide the first evidence that the repair of a DNA base lesion located in the loop region of a CAG repeat hairpin can remove the hairpin, attenuating repeat expansion. We found that an 8-oxoguanine located in the loop region of CAG hairpins of varying sizes was removed by OGG1 leaving an abasic site that was subsequently 5′-incised by AP endonuclease 1, introducing a single-strand breakage in the hairpin loop. This converted the hairpin into a double-flap intermediate with a 5′- and 3′-flap that was cleaved by flap endonuclease 1 and a 3′-5′ endonuclease Mus81/Eme1, resulting in complete or partial removal of the CAG hairpin. This further resulted in prevention and attenuation of repeat expansion. Our results demonstrate that TNR expansion can be prevented via BER in hairpin loops that is coupled with the removal of TNR hairpins.  相似文献   

8.
Eleven RNA hairpins containing 2-aminopurine (2-AP) in either base-paired or single nucleotide bulge loop positions were optically melted in 1 M NaCl; and, the thermodynamic parameters ΔH°, ΔS°, ΔG°37, and TM for each hairpin were determined. Substitution of 2-AP for an A (adenosine) at a bulge position (where either the 2-AP or A is the bulge) in the stem of a hairpin, does not affect the stability of the hairpin. For group II bulge loops such as AA/U, where there is ambiguity as to which of the A residues is paired with the U, hairpins with 2-AP substituted for either the 5′ or 3′ position in the hairpin stem have similar stability. Fluorescent melts were performed to monitor the environment of the 2-AP. When the 2-AP was located distal to the hairpin loop on either the 5′ or 3′ side of the hairpin stem, the change in fluorescent intensity upon heating was indicative of an unpaired nucleotide. A database of phylogenetically determined RNA secondary structures was examined to explore the presence of naturally occurring bulge loops embedded within a hairpin stem. The distribution of bulge loops is discussed and related to the stability of hairpin structures.  相似文献   

9.
Viroids are small non-coding parasitic RNAs that are able to infect their host plants systemically. This circular naked RNA makes use of host proteins to accomplish its proliferation. Here we analyze the specific binding of the tomato protein Virp1 to the terminal right domain of potato spindle tuber viroid RNA (PSTVd). We find that two asymmetric internal loops within the PSTVd (+) RNA, each composed of the sequence elements 5′-ACAGG and CUCUUCC-5′, are responsible for the specific RNA–protein interaction. In view of the nucleotide composition we call this structural element an ‘RY motif’. The RY motif located close to the terminal right hairpin loop of the PSTVd secondary structure has an ~5-fold stronger binding affinity than the more centrally located RY motif. Simultaneous sequence alterations in both RY motifs abolished the specific binding to Virp1. Mutations in any of the two RY motifs resulted in non-infectious viroid RNA, with the exception of one case, where reversion to sequence wild type took place. In contrast, the simultaneous exchange of two nucleotides within the terminal right hairpin loop of PSTVd had only moderate influence on the binding to Virp1. This variant was infectious and sequence changes were maintained in the progeny. The relevance of the phylogenetic conservation of the RY motif, and sequence elements therein, amongst various genera of the family Pospiviroidae is discussed.  相似文献   

10.
11.
Base excision repair (BER) of an oxidized base within a trinucleotide repeat (TNR) tract can lead to TNR expansions that are associated with over 40 human neurodegenerative diseases. This occurs as a result of DNA secondary structures such as hairpins formed during repair. We have previously shown that BER in a TNR hairpin loop can lead to removal of the hairpin, attenuating or preventing TNR expansions. Here, we further provide the first evidence that AP endonuclease 1 (APE1) prevented TNR expansions via its 3′-5′ exonuclease activity and stimulatory effect on DNA ligation during BER in a hairpin loop. Coordinating with flap endonuclease 1, the APE1 3′-5′ exonuclease activity cleaves the annealed upstream 3′-flap of a double-flap intermediate resulting from 5′-incision of an abasic site in the hairpin loop. Furthermore, APE1 stimulated DNA ligase I to resolve a long double-flap intermediate, thereby promoting hairpin removal and preventing TNR expansions.  相似文献   

12.
Subdomain 5BSL3.2 of hepatitis C virus RNA lies at the core of a network of distal RNA–RNA contacts that connect the 5′ and 3′ regions of the viral genome and regulate the translation and replication stages of the viral cycle. Using small-angle X-ray scattering and NMR spectroscopy experiments, we have determined at low resolution the structural models of this subdomain and its distal complex with domain 3′X, located at the 3′-terminus of the viral RNA chain. 5BSL3.2 adopts a characteristic ‘L’ shape in solution, whereas the 5BSL3.2–3′X distal complex forms a highly unusual ‘Y’-shaped kissing junction that blocks the dimer linkage sequence of domain 3′X and promotes translation. The structure of this complex may impede an effective association of the viral polymerase with 5BSL3.2 and 3′X to start negative-strand RNA synthesis, contributing to explain the likely mechanism used by these sequences to regulate viral replication and translation. In addition, sequence and shape features of 5BSL3.2 are present in functional RNA motifs of flaviviruses, suggesting conserved regulatory processes within the Flaviviridae family.  相似文献   

13.
RNAi efficiency is influenced by local RNA structure of the target sequence. We studied this structure-based resistance in detail by targeting a perfect RNA hairpin and subsequently destabilized its tight structure by mutation, thereby gradually exposing the target sequence. Although the tightest RNA hairpins were completely resistant to RNAi, we observed an inverse correlation between the overall target hairpin stability and RNAi efficiency within a specific thermodynamic stability (ΔG) range. Increased RNAi efficiency was shown to be caused by improved binding of the siRNA to the destabilized target RNA hairpins. The mutational effects vary for different target regions. We find an accessible target 3′ end to be most important for RNAi-mediated inhibition. However, these 3′ end effects cannot be reproduced in siRNA-target RNA-binding studies in vitro, indicating the important role of RISC components in the in vivo RNAi reaction. The results provide a more detailed insight into the impact of target RNA structure on RNAi and we discuss several possible implications. With respect to lentiviral-mediated delivery of shRNA expression cassettes, we present a ΔG window to destabilize the shRNA insert for vector improvement, while avoiding RNAi-mediated self-targeting during lentiviral vector production.  相似文献   

14.
Expansion of CAG/CTG trinucleotide repeats causes certain familial neurological disorders. Hairpin formation in the nascent strand during DNA synthesis is considered a major path for CAG/CTG repeat expansion. However, the underlying mechanism is unclear. We show here that removal or retention of a nascent strand hairpin during DNA synthesis depends on hairpin structures and types of DNA polymerases. Polymerase (pol) δ alone removes the 3′-slipped hairpin using its 3′-5′ proofreading activity when the hairpin contains no immediate 3′ complementary sequences. However, in the presence of pol β, pol δ preferentially facilitates hairpin retention regardless of hairpin structures. In this reaction, pol β incorporates several nucleotides to the hairpin 3′-end, which serves as an effective primer for the continuous DNA synthesis by pol δ, thereby leading to hairpin retention and repeat expansion. These findings strongly suggest that coordinated processing of 3′-slipped (CAG)n/(CTG)n hairpins by polymerases δ and β on during DNA synthesis induces CAG/CTG repeat expansions.  相似文献   

15.
Infrared and UV spectroscopies have been used to study the assembly of a hairpin nucleotide sequence (nucleotides 3–30) of the 5′ non-coding region of the hepatitis C virus RNA (5′-GGCGGGGAUUAUCCCCGCUGUGAGGCGG-3′) with a RNA 20mer ligand (5′-CCGCCUCACAAAGGUGGGGU-3′) in the presence of magnesium ion and spermidine. The resulting complex involves two helical structural domains: the first one is an intermolecular duplex stem at the bottom of the target hairpin and the second one is a parallel triplex generated by the intramolecular hairpin duplex and the ligand. Infrared spectroscopy shows that N-type sugars are exclusively present in the complex. This is the first case of formation of a RNA parallel triplex with purine motif and shows that this type of targeting RNA strands to viral RNA duplexes can be used as an alternative to antisense oligonucleotides or ribozymes.  相似文献   

16.
17.
V(D)J recombination events are initiated by cleavage at gene segments by the RAG1:RAG2 complex, which results in hairpin formation at the coding ends. The hairpins are opened by the Artemis:DNA-PKcs complex, and then joined via the nonhomologous DNA end joining (NHEJ) process. Here we examine the opening of the hairpinned coding ends from all of the 39 functional human VH elements. We find that there is some sequence-dependent variation in the efficiency and even the position of hairpin opening by Artemis:DNA-PKcs. The hairpin opening efficiency varies over a 7-fold range. The hairpin opening position varies over the region from 1 to 4 nt 3′ of the hairpin tip, leading to a 2–8 nt single-stranded 3′ overhang at each coding end. This information provides greater clarity on the extent to which the hairpin opening position contributes to junctional diversification in V(D)J recombination.  相似文献   

18.
Most small nucleolar RNAs (snoRNAs) guide rRNA nucleotide modifications, some participate in pre-rRNA cleavages, and a few have both functions. These activities involve direct base-pairing of the snoRNA with pre-rRNA using different domains. It is not known if the modification and processing functions occur independently or in a coordinated manner. We address this question by mutational analysis of a yeast box H/ACA snoRNA that mediates both processing and modification. This snoRNA (snR10) contains canonical 5′- and 3′-hairpin structures with a guide domain for pseudouridylation in the 3′ hairpin. Our functional mapping results show that: (i) processing requires the 5′ hairpin exclusively, in particular a 7-nt element; (ii) loss of the 3′ hairpin or pseudouridine does not affect rRNA processing; (iii) a single nucleotide insertion in the guide domain shifts modification to an adjacent uridine in rRNA, and severely impairs both processing and cell growth; and (iv) the deleterious effects of the insertion mutation depend on the presence of the processing element in the 5′ hairpin, but not modification of the novel site. Together, the results suggest that the snoRNA hairpins function in a coordinated manner and that their interactions with pre-rRNA could be coupled.  相似文献   

19.
Hairpin telomeres of bacterial linear chromosomes are generated by a DNA cutting–rejoining enzyme protelomerase. Protelomerase resolves a concatenated dimer of chromosomes as the last step of chromosome replication, converting a palindromic DNA sequence at the junctions between chromosomes into covalently closed hairpins. The mechanism by which protelomerase transforms a duplex DNA substrate into the hairpin telomeres remains largely unknown. We report here a series of crystal structures of the protelomerase TelA bound to DNA that represent distinct stages along the reaction pathway. The structures suggest that TelA converts a linear duplex substrate into hairpin turns via a transient strand-refolding intermediate that involves DNA-base flipping and wobble base-pairs. The extremely compact di-nucleotide hairpin structure of the product is fully stabilized by TelA prior to strand ligation, which drives the reaction to completion. The enzyme-catalyzed, multistep strand refolding is a novel mechanism in DNA rearrangement reactions.  相似文献   

20.
A microtiter-based assay system is described in which DNA hairpin probes with dangling ends and single-stranded, linear DNA probes were immobilized and compared based on their ability to capture single-strand target DNA. Hairpin probes consisted of a 16 bp duplex stem, linked by a T2-biotin·dT-T2 loop. The third base was a biotinylated uracil (UB) necessary for coupling to avidin coated microtiter wells. The capture region of the hairpin was a 3′ dangling end composed of either 16 or 32 bases. Fundamental parameters of the system, such as probe density and avidin adsorption capacity of the plates were characterized. The target DNA consisted of 65 bases whose 3′ end was complementary to the dangling end of the hairpin or to the linear probe sequence. The assay system was employed to measure the time dependence and thermodynamic stability of target hybridization with hairpin and linear probes. Target molecules were labeled with either a 5′-FITC, or radiolabeled with [γ-33P]ATP and captured by either linear or hairpin probes affixed to the solid support. Over the range of target concentrations from 10 to 640 pmol hybridization rates increased with increasing target concentration, but varied for the different probes examined. Hairpin probes displayed higher rates of hybridization and larger equilibrium amounts of captured targets than linear probes. At 25 and 45°C, rates of hybridization were better than twice as great for the hairpin compared with the linear capture probes. Hairpin–target complexes were also more thermodynamically stable. Binding free energies were evaluated from the observed equilibrium constants for complex formation. Results showed the order of stability of the probes to be: hairpins with 32 base dangling ends > hairpin probes with l6 base dangling ends > 16 base linear probes > 32 base linear probes. The physical characteristics of hairpins could offer substantial advantages as nucleic acid capture moieties in solid support based hybridization systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号