首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
3.
Bartonella quintana is a re-emerging pathogen and the causative agent of a variety of disease manifestations in humans including trench fever. Various typing methods have been developed for B. quintana, but these tend to be limited by poor resolution and, in the case of gel-based methods, a lack of portability. Multilocus sequence typing (MLST) has been used to study the molecular epidemiology of a large number of pathogens, including B. henselae, a close relative of B. quintana. We developed a MLST scheme for B. quintana based on the 7 MLST loci employed for B. henselae with two additional loci to cover underrepresented regions of the B. quintana chromosome. A total of 16 B. quintana isolates spanning over 60 years and three continents were characterized. Allelic variation was detected in five of the nine loci. Although only 8/4270 (0.002%) of the nucleotide sites examined were variable over all loci, these polymorphisms resolved the 16 isolates into seven sequence types (STs). We also demonstrate that MLST can be applied on uncultured isolates by direct PCR from cardiac valve tissue, and suggest this method presents a promising approach for epidemiological studies in this highly clonal organism. Phylogenetic and clustering analyses suggest that two of the seven STs form a distinct lineage within the population.  相似文献   

4.
Background Bartonella quintana, the etiologic agent of trench fever and other human diseases, is transmitted by the feces of body lice. Recently, this bacterium has been detected in other arthropod families such as bed bugs, which begs the question of their involvement in B. quintana transmission. Although several infectious pathogens have been reported and are suggested to be transmitted by bed bugs, the evidence regarding their competence as vectors is unclear.ConclusionThe present work demonstrated for the first time that bed bugs can acquire, maintain for more than 2 weeks and release viable B. quintana organisms following a stercorarial shedding. We also observed the vertical transmission of the bacterium to their progeny. Although the biological role of bed bugs in the transmission of B. quintana under natural conditions has yet to be confirmed, the present work highlights the need to reconsider monitoring of these arthropods for the transmission of human pathogens.  相似文献   

5.
Metabolic Activity of the Trench Fever Rickettsia, Rickettsia quintana   总被引:9,自引:5,他引:4  
A study of the metabolic activity of Rickettsia quintana was carried out by conventional Warburg and radioisotope techniques with intact cells harvested while growing in the fluid counterpart of the medium of Vinson and Fuller. Like other rickettsiae, R. quintana did not utilize glucose, but did metabolize glutamate and glutamine. Unlike typhus rickettsiae, R. quintana did not require a diluent high in K+ for metabolic activity, and it utilized glutamine more efficiently than glutamate. In typical experiments, this microorganism produced 1.6 to 2.0 μmoles of CO2 from glutamine per mg of rickettsial protein per hr at 37 C, while consuming 1.5 to 1.7 μmoles of O2. R. quintana also utilized, in descending order, succinate, α-ketoglutarate, glutamate, pyruvate, and citrate; the first-named substrate was utilized more rapidly than glutamine. R. quintana, like typhus rickettsiae, has a glutamate-oxaloacetate transaminase because aspartate was isolated, by means of thin-layer chromatography, as one of the end products of the utilization of glutamine. When the microorganisms were incubated with glutamine-14C and unlabeled intermediates of the citric acid cycle, labeled dicarboxylic acids of the cycle were recovered. Labeled tricarboxylic acids, however, were not recovered, possibly because of cellular impermeability to the corresponding unlabeled intermediates. In the case of cis-aconitate, it was shown that this substrate interfered with the uptake of glutamine. These observations are believed to provide convincing evidence that glutamine is utilized through the citric acid cycle and that R. quintana, with the differences noted, resembles other rickettsiae.  相似文献   

6.
Bartonella species are blood-borne, re-emerging organisms, capable of causing prolonged infection with diverse disease manifestations, from asymptomatic bacteremia to chronic debilitating disease and death. This pathogen can survive for over a month in stored blood. However, its prevalence among blood donors is unknown, and screening of blood supplies for this pathogen is not routinely performed. We investigated Bartonella spp. prevalence in 500 blood donors from Campinas, Brazil, based on a cross-sectional design. Blood samples were inoculated into an enrichment liquid growth medium and sub-inoculated onto blood agar. Liquid culture samples and Gram-negative isolates were tested using a genus specific ITS PCR with amplicons sequenced for species identification. Bartonella henselae and Bartonella quintana antibodies were assayed by indirect immunofluorescence. B. henselae was isolated from six donors (1.2%). Sixteen donors (3.2%) were Bartonella-PCR positive after culture in liquid or on solid media, with 15 donors infected with B. henselae and one donor infected with Bartonella clarridgeiae. Antibodies against B. henselae or B. quintana were found in 16% and 32% of 500 blood donors, respectively. Serology was not associated with infection, with only three of 16 Bartonella-infected subjects seropositive for B. henselae or B. quintana. Bartonella DNA was present in the bloodstream of approximately one out of 30 donors from a major blood bank in South America. Negative serology does not rule out Bartonella spp. infection in healthy subjects. Using a combination of liquid and solid cultures, PCR, and DNA sequencing, this study documents for the first time that Bartonella spp. bacteremia occurs in asymptomatic blood donors. Our findings support further evaluation of Bartonella spp. transmission which can occur through blood transfusions.  相似文献   

7.
Bacterial pathogens typically infect only a limited range of hosts; however, the genetic mechanisms governing host-specificity are poorly understood. The α-proteobacterial genus Bartonella comprises 21 species that cause host-specific intraerythrocytic bacteremia as hallmark of infection in their respective mammalian reservoirs, including the human-specific pathogens Bartonella quintana and Bartonella bacilliformis that cause trench fever and Oroya fever, respectively. Here, we have identified bacterial factors that mediate host-specific erythrocyte colonization in the mammalian reservoirs. Using mouse-specific Bartonella birtlesii, human-specific Bartonella quintana, cat-specific Bartonella henselae and rat-specific Bartonella tribocorum, we established in vitro adhesion and invasion assays with isolated erythrocytes that fully reproduce the host-specificity of erythrocyte infection as observed in vivo. By signature-tagged mutagenesis of B. birtlesii and mutant selection in a mouse infection model we identified mutants impaired in establishing intraerythrocytic bacteremia. Among 45 abacteremic mutants, five failed to adhere to and invade mouse erythrocytes in vitro. The corresponding genes encode components of the type IV secretion system (T4SS) Trw, demonstrating that this virulence factor laterally acquired by the Bartonella lineage is directly involved in adherence to erythrocytes. Strikingly, ectopic expression of Trw of rat-specific B. tribocorum in cat-specific B. henselae or human-specific B. quintana expanded their host range for erythrocyte infection to rat, demonstrating that Trw mediates host-specific erythrocyte infection. A molecular evolutionary analysis of the trw locus further indicated that the variable, surface-located TrwL and TrwJ might represent the T4SS components that determine host-specificity of erythrocyte parasitism. In conclusion, we show that the laterally acquired Trw T4SS diversified in the Bartonella lineage to facilitate host-restricted adhesion to erythrocytes in a wide range of mammals.  相似文献   

8.
中国部分地区实验猕猴巴尔通体感染状况及其遗传特征   总被引:1,自引:0,他引:1  
【目的】五日热巴尔通体(Bartonella quintana)由体虱在人群中传播,可引起多种人类疾病包括战壕热。为进一步搜集猕猴是五日热巴尔通体自然宿主的证据,本研究调查了国内4个地区实验用猕猴五日热巴尔通体的感染状况,对菌株遗传特征进行了分析。【方法】采集猕猴全血和血清样品各550份,用于菌株分离、核酸和血清IgG抗体检测。应用6个管家基因扩增及测序方法进行菌株鉴定、系统发育及核苷酸多态性分析;应用随机扩增多态性DNA标记(Random amplified polymorphic DNA,RAPD)技术分析不同宿主来源菌株RAPD指纹图谱差异;应用间接免疫荧光法(Indirect immunofluorescence assay,IFA)检测血清中抗五日热巴尔通体IgG抗体水平。【结果】从550只猕猴中分离到8株五日热巴尔通体菌株,带菌率为1.5%;直接PCR检测550份全血核酸的总感染率为8.2%。普通猕猴血清阳性率为19.0%,感染水平明显高于食蟹猕猴(5.6%)。五日热巴尔通体与汉赛巴尔通体RAPD指纹图谱的带型完全不同,猴源和人源五日热巴尔通体菌株Fuller带型基本一致。不同宿主来源菌株核苷酸多态性分析显示,猴源菌株之间差异小,其与人源菌株差异较大。【结论】中国猕猴五日热巴尔通体感染水平较高,普通猕猴自然感染率及抗体水平明显高于食蟹猕猴,猴源与人源菌株的基因型有明显差异。  相似文献   

9.
Bartonella quintana is a bacterium that causes a broad spectrum of diseases in humans including trench fever. Humans were previously considered to be the primary, if not the only, reservoir hosts for B. quintana. To identify the animal reservoir and extend our understanding of the ecological and evolutionary history of B. quintana, we examined blood samples from macaques and performed multilocus sequence typing (MLST) analysis. We demonstrated the prevalence of B. quintana infection was common in macaques from main primate centres in mainland China. Overall, 18.0% (59/328) of rhesus macaques and 12.7% (39/308) of cynomolgus macaques were found to be infected with B. quintana by blood culture and/or polymerase chain reaction. The infection was more frequently identified in juvenile and young monkeys compared with adult animals. In contrast with the relatively low level of sequence divergence of B. quintana reported in humans, our investigation revealed much higher genetic diversity in nonhuman primates. We identified 44 new nucleotide variable sites and 14 novel sequence types (STs) among the B. quintana isolates by MLST analysis. Some STs were found only in cynomolgus macaques, while some others were detected only in rhesus macaques, suggesting evidence of host‐cospeciation, which were further confirmed by phylogenetic analysis and Splits decomposition analysis. Our findings suggest that trench fever may primarily be a zoonotic disease with macaques as the natural hosts.  相似文献   

10.
Bartonella quintana is transmitted by the infected faeces of body lice. Recently, this bacterium was detected in cat fleas (Ctenocephalides felis) and in two humans with chronic adenopathy whose only risk factor was contact with cat fleas. In this study, a total of 960 C. felis were divided into 12 groups (2 control groups and 10 infected groups) each containing 80 fleas. The fleas were fed B. quintana‐inoculated human blood at different dilutions (≈3.6 × 104 ? 8.4 × 109 bacteria) for 4 days via an artificial membrane. Subsequently, all flea groups were fed uninfected blood until day 13 postinfection (dpi). On day 3 pi, B. quintana was detected with two specific genes by quantitative PCR in 60–100% of randomly chosen fleas per dilution: 52% (26/50) in the infected fleas in Trial 1 and 90% (45/50) of the fleas in Trial 2. B. quintana was also identified by molecular and culture assays in flea faeces. The average number of B. quintana as determined by qPCR decreased until the 11th dpi and was absent in both trials at the 13th dpi. Bacteria were localized only in the flea gastrointestinal gut by specific immunohistochemistry. Our results indicate that cat fleas can acquire B. quintana by feeding and release viable organisms into their faeces. Therefore, fleas may play a role as vectors of trench fever or other clinical manifestations that are caused by B. quintana. However, the biological role of C. felis in the transmission of B. quintana under natural conditions is yet to be defined.  相似文献   

11.

Background

The new field of paleomicrobiology allows past outbreaks to be identified by testing dental pulp of human remains with PCR.

Methods

We identified a mass grave in Douai, France dating from the early XVIIIth century. This city was besieged during the European war of Spanish succession. We tested dental pulp from 1192 teeth (including 40 from Douai) by quantitative PCR (qPCR) for R. prowazekii and B. quintana. We also used ultra-sensitive suicide PCR to detect R. prowazekii and genotyped positive samples.

Results and Discussion

In the Douai remains, we identified one case of B. quintana infection (by qPCR) and R. prowazekii (by suicide PCR) in 6/21 individuals (29%). The R. prowazekii was genotype B, a genotype previously found in a Spanish isolate obtained in the first part of the XXth century.

Conclusion

Louse-borne outbreaks were raging during the XVIIIth century; our results support the hypothesis that typhus was imported into Europe by Spanish soldiers from America.  相似文献   

12.

Background

Historical records suggest that multiple burial sites from the 14th–16th centuries in Venice, Italy, were used during the Black Death and subsequent plague epidemics.

Methodology/Principal Findings

High throughput, multiplexed real-time PCR detected DNA of seven highly transmissible pathogens in 173 dental pulp specimens collected from 46 graves. Bartonella quintana DNA was identified in five (2.9%) samples, including three from the 16th century and two from the 15th century, and Yersinia pestis DNA was detected in three (1.7%) samples, including two from the 14th century and one from the 16th century. Partial glpD gene sequencing indicated that the detected Y. pestis was the Orientalis biotype.

Conclusions

These data document for the first time successive plague epidemics in the medieval European city where quarantine was first instituted in the 14th century.  相似文献   

13.
Bartonella spp. can cause persistent bloodstream infections in humans and animals. To determine whether Bartonella henselae is present in questing Ixodes ricinus ticks, we analyzed the prevalence of B. henselae DNA among tick stages compared to the prevalence of DNA from Borrelia burgdorferi sensu lato, the pathogen most frequently transmitted by ticks. B. henselae DNA was present with a prevalence of up to ∼40% in tick populations sampled in four European sites (Eberdingen, Germany; Klasdorf, Germany; Lembach, France; and Madeira, Portugal). The odds of detecting B. henselae DNA in nymphal ticks was ∼14-fold higher than in adult ticks. No tick was found to be coinfected with B. henselae and B. burgdorferi sensu lato. Taken together, our data indicate that ticks might serve as a vector for the transmission of B. henselae to humans.In immunocompetent patients, Bartonella henselae infections often result in cat scratch disease (CSD), a self-limiting but often prolonged lymphadenitis; immunocompromised patients (e.g., AIDS patients) can suffer from vasculoproliferative disorders (bacillary angiomatosis, peliosis hepatis [1]). Cats are a confirmed reservoir host of B. henselae transmitting the pathogen by cat scratches or bites.Several Bartonella species (e.g., B. henselae, B. quintana, and B. vinsonii) cause a persistent intraerythrocytic bacteremia in their respective mammalian reservoir hosts (7). B. henselae was detected in the peripheral blood of a wide range of mammals including domestic (e.g., cats, dogs, and horses) and wild animals (e.g., porpoise, lions, cheetahs, and wild felids). Obviously, such an asymptomatic, persistent bacteremia with B. henselae represents an important factor for the spread of the pathogens via blood-sucking arthropods. Mechanistic details determining the intraerythrocytic presence of Bartonella spp. have been investigated in detail in a B. tribocorum rat infection model mimicking Trench fever (a human disease caused by B. quintana); here, the pathogen persists several weeks in the circulating blood in an immunoprivileged intraerythrocytic niche (28).Cat fleas are well established vectors for B. henselae (1). However, transmission by other arthropods, in particular ticks, has been suggested: B. henselae DNA was detected in questing Ixodes pacificus and I. persulcatus ticks in North America, Eastern Europe, and Russia, respectively (4, 13, 14, 22, 25) and in I. ricinus ticks feeding on people or domestic animals in Central Europe (24, 26). DNA of various Bartonella spp. has also been detected in keds, biting flies, and mites (reviewed in reference 2). Recently, ticks (I. ricinus) were experimentally infected with B. henselae. Inoculation of cats with salivary glands of infected ticks resulted in a B. henselae bacteremia (5). Nevertheless, controversial data about the prevalence of Bartonella spp. in ticks and their role as vectors for B. henselae exist (29).Here, we present data on the prevalence of B. henselae and Lyme disease spirochetes in 654 questing ticks (I. ricinus) collected at four locations in Europe, suggesting that ticks might serve as potential vectors for the transmission of B. henselae to humans.  相似文献   

14.
The Mip surface protein, a prokaryotic analog of the FK506-binding proteins, enhances the ability of Legionella pneumophila to infect macrophages and protozoa. Using mip-specific probes and low-stringency Southern hybridizations, we have detected DNA sequences homologous to mip within Coxiella burnetii and Rochalimaea quintana. Using specific anti-Mip antisera and immunoblot analysis, we also detected Mip-related proteins within these bacteria as well as within Rickettsia and Ehrlichia species. These data suggest that Mip-related proteins have broad significance for host-parasite interactions. However, they also indicate that care must be exercised when using mip probes or anti-Mip antibodies for the detection of Legionella organisms in water or clinical samples.  相似文献   

15.
An enzyme-linked immunosorbent assay (ELISA) for the detection of IgG antibodies to Babesia microti antigen was developed. B. microti antigens were harvested from experimentally infected hamster blood and used as a coating antigen. The sensitivity and specificity of the IgG ELISA relative to immunofluorescent antibody assay (IFA) testing was 95.5% and 94.1%, respectively. According to the receiver operating characteristic curve analysis, the area under the curve was 0.987. No cross-reactivity of serum samples collected from patients infected with Toxoplasma gondii, Borrelia burgdorferi, Anaplasma phagocytophilum, Bartonella quintana, Dengue virus, or West Nile virus was detected. Cross-reactivity was observed with one of 35 sera from patients infected with Bartonella henselae. These results indicate that the established ELISA methods could be utilized as an accurate measure for the clinical diagnosis of human babesiosis.  相似文献   

16.
17.
Pulsed-field gel electrophoresis was used to analyze the genomic organization of 16 bacteria belonging or related to the family Rhizobiaceae of the alpha subgroup of the class Proteobacteria. The number and sizes of replicons were determined by separating nondigested DNA. Hybridization of an rrn gene probe was used to distinguish between chromosomes and plasmids. Members of the genus Agrobacterium all possess two chromosomes, and each biovar has a specific genome size. As previously demonstrated for Agrobacterium tumefaciens C58, the smaller chromosomes of Agrobacterium biovar 1 and Agrobacterium rubi strains appear to be linear. The genomes of Rhizobium strains were all of similar sizes but were seen to contain either one, two, or three megareplicons. Only one chromosome was present in the member of the related genus Phyllobacterium. We found one or two chromosomes in Rhodobacter and Brucella species, two chromosomes in Ochrobactrum anthropi, and one chromosome in Mycoplana dimorpha and Bartonella quintana; all of these genera are related to the Rhizobiaceae. The presence of multiple chromosomes is discussed from a phylogenetic and taxonomic point of view.

Bacterial genomes were long considered to consist of a single circular chromosome. With the discovery of the existence of multiple circular chromosomes or a linear chromosome in some bacteria, this paradigm is no longer valid. Two different circular chromosomes were reported for Rhodobacter sphae-roides (39), Brucella melitensis 16M (27), and Leptospira interrogans (45), while three chromosomes are present in the genomes of Rhizobium meliloti (38), Burkholderia cepacia (7), and related species (33). A linear chromosome was reported first for the spirochete Borrelia burgdorferi (3, 11) and then for the gram-positive organisms Streptomyces lividans (25) and Rhodococcus fascians (8). We subsequently demonstrated that the genome of the gram-negative bacterium Agrobacterium tumefaciens C58 consisted of two chromosomes, one circular and the other linear (1). Most of the organisms presenting a multipartite genomic organization are confined to certain species within the purple bacteria (or Proteobacteriaceae), a phylum of the Bacteria, and perhaps this feature is correlated with the phylogeny of these bacteria. In the present study, we have investigated the genomic organization of organisms belonging to the alpha subgroup of the class Proteobacteria, particularly members of the genera Mycoplana, Ochrobactrum, Rhodobacter, Phyllobacterium, Rhizobium, and Agrobacterium. Although the first three genera do not belong to the family Rhizobiaceae, 16S rRNA sequence comparisons suggest that they belong to a tight phylogenetic group which also includes the genera Brucella and Bartonella (Rochalimaea) (9, 43).  相似文献   

18.
Bartonella effector proteins (named Beps) are substrates of VirB type IV secretion system for translocation into host cells evolved in Bartonella spp. Among these, BepE has been shown to protect cells from fragmentation effects triggered by other Beps and to promote in vivo dissemination of bacteria from the dermal site of inoculation to the bloodstream. Bacterial pathogens secreted effectors to modulate the interplay with host autophagy, either to combat autophagy to escape its bactericidal effect or to exploit autophagy to benefit intracellular replication. Here, we reported a distinct phenotype that selective autophagy in host cells is activated as a countermeasure, to attack BepE via conjugation with K63 polyubiquitin chain on BepE. We found that ectopic expression of Bartonella quintana BepE specifically induced punctate structures that colocalised with an autophagy marker (LC3‐II) in host cells, in addition to filopodia and membrane ruffle formation. Two tandemly arranged B artonella Intracellular Delivery (BID) domains in the BepE C‐terminus, where ubiquitination of sister pairs of lysine residues was confirmed, were essential to activate host cell autophagy. Multiple polyubiquitin chain linkages of K27, K29, K33, and K63 were found to be conjugated at sites of K222 and K365 on BepE, of which K63 polyubiquitination on BepE K365 determined the selective autophagy (p62/SQSTM1 positive autophagy) independent of the PI3K pathway. Colocalisation of BepE with LAMP1 confirmed the maturation of BepE‐induced autophagosomes in which BepE were targeted for degradation. Moreover, host cells employed selective autophagy to counter‐attack BepE to rescue cells from BepE‐induced endocytosis deficiency.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号