首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Strawberry plants (Fragaria ananassaDuchesne var. Elsanta) weregrown in pots at two concentrations of carbon dioxide (partialpressures of 39 and 56 Pa) and with three rates of nitrogensupply (0.04, 0.4 and 4 mMas nutrient solution) to study theirindividual and interactive effects on plant growth and fruityield. Nitrogen deficiency reduced total dry biomass and relativegrowth rate (RGR), mainly through reductions in leaf area ratio(LAR) and plant N concentration (PNC), although both the netassimilation rate (NAR) and root weight ratio (RWR) increased.Elevated CO2increased the N productivity (NP) but reduced theLAR. High CO2increased the fruit yield by 42% at high N supplyand by 17% at low N supply. The CO2yield enhancement occurredthrough an increase in the flower and fruit number of individualplants. This resulted in an increase in the fruit weight ratio(FWR) of plants at high CO2. Nitrogen deficiency reduced thefruit yield by about 50% through decreases in fruit size, fruitset and the number of fruits. However, N deficiency increasedthe proportion of total plant dry biomass allocated to fruits.There were no significant interactions between CO2and N supplyon yield.Copyright 1998 Annals of Botany Company Nitrogen; carbon dioxide; strawberry (Fragaria ananassaDuchesne); fruit yield.  相似文献   

2.
The effect of CO2 concentration elevated to 575 – 620 µmol mol–1 on growth, tillering, grain yield, net photosynthetic rate, dark respiration rate, stomatal conductance, sugar content and protein profile of two rice (Oryza sativa L.) cultivars Pusa Basmati-1 and Pusa-677 at flowering stage was studied using open top chambers. The cultivar Pusa Basmati-1 responded more markedly for most of the growth and physiological parameters compared to Pusa-677. The increase in grain yield in Pusa Basmati-1 attributed largely to increased grain number. The increased net photosynthetic rate and greater accumulation of sugar contributed significantly to the accelerated development of leaves and tillers in both the cultivars. The reduction in the low molecular mass proteins including Rubisco and increase in high molecular mass photosystem 2 proteins was observed in both the cultivars. Additional sugars may possibly help in balancing the profile of photosynthetic proteins and sustain greater growth and productivity in rice cultivars.  相似文献   

3.
Ponderosa Pine Responses to Elevated CO2and Nitrogen Fertilization   总被引:1,自引:1,他引:0  
The effects of elevated CO2 (ambient, +175, and +350 μl l−1) and nitrogen fertilization (0, 100, and 200 kg N ha−1 yr−1 as ammonium sulfate) on C and N accumulations in biomass and soils planted with ponderosa pine (Pinus ponderosa Laws) over a 6-year study period are reported. Both nitrogen fertilization and elevated CO2 caused increases in C and N contents of vegetation over the study period. The pattern of responses varied over time. Responses to CO2 decreased in the +175 μl l−1 and increased in the +350 μl l−1 after the first year, whereas responses to N decreased after the first year and became non-significant by year six. Foliar N concentrations were lower and tree C:N ratios were higher with elevated CO2 in the early years, but this was offset by the increases in biomass, resulting in substantial increases in N uptake with elevated CO2. Nitrogen budget estimates showed that the major source of the N for unfertilized trees, with or without elevated CO2, was likely the soil organic N pool. There were no effects of elevated CO2 on soil C, but a significant decrease in soil N and an increase in soil C:N ratio in year six. Nitrogen fertilization had no significant effect on tree C:N ratios, foliar N concentrations, soil C content, soil N content, or soil C:N ratios. There were no significant interactions between CO2 and N treatments, indicating that N fertilization had no effect on responses to CO2 and that CO2 treatments had no effect on responses to N fertilization. These results illustrate the importance of long-term studies involving more than one level of treatment to assess the effects of elevated CO2.  相似文献   

4.
The mechanisms underlying heritable phenotypic divergence associated with adaptation in response to environmental stresses may involve both genetic and epigenetic variations. Several prior studies have revealed even higher levels of epigenetic variation than genetic variation. However, few population‐level studies have explored the effects of epigenetic variation on species with high levels of genetic diversity distributed across different habitats. Using AFLP and methylation‐sensitive AFLP markers, we tested the hypothesis that epigenetic variation may contribute to differences in plants occupying different habitats when genetic variation alone cannot fully explain adaptation. As a cosmopolitan invasive species, Phragmites australis (common reed) together with high genetic diversity and remarkable adaptability has been suggested as a model for responses to global change and indicators of environmental fluctuations. We found high levels of genetic and epigenetic diversity and significant genetic/epigenetic structure within each of 12 studied populations sampled from four natural habitats of P. australis. Possible adaptive epigenetic variation was suggested by significant correlations between DNA methylation‐based epigenetic differentiation and adaptive genetic divergence in populations across the habitats. Meanwhile, various AMOVAs indicated that some epigenetic differences may respond to various local habitats. A partial Mantel test was used to tease out the correlations between genetic/epigenetic variation and habitat after controlling for the correlation between genetic and epigenetic variations. We found that epigenetic diversity was affected mostly by soil nutrient availability, suggesting that at least some epigenetic differentiation occurred independently of genetic variation. We also found stronger correlations between epigenetic variation and phenotypic traits than between genetic variation and such traits. Overall, our findings indicate that genetically based differentiation correlates with heterogeneous habitats, while epigenetic variation plays an important role in ecological differentiation in natural populations of P. australis. In addition, our results suggest that when assessing global change responses of plant species, intraspecific variation needs to be considered.  相似文献   

5.
Contrasting effects on the stomatal index (SI), stomatal density,epidermal cell size and number were observed in four chalk grasslandherbs (Sanguisorba minor Scop., Lotus corniculatus L., Anthyllisvulneraria L. and Plantago media L.) following exposure to elevatedcarbon dioxide concentrations (CO2) in controlled environmentgrowth cabinets. SI of S. minor increased for both leaf surfaces,whilst in A. vulneraria and P. media SI decreased on one surfaceonly. In L. corniculatus , no differences in SI were observedas epidermal cell density changed in parallel with stomataldensity. In L. corniculatus and S. minor stomatal density increasedon both surfaces, whereas in P. media it decreased; in A. vulnerariastomatal density decreased on the abaxial leaf surface alonefollowing exposure to elevated CO2. In the latter three species,SI changed because stomatal density did not change in parallelwith epidermal cell density. The results suggest elevated CO2is either directly or indirectly affecting cell differentiationand thus stomatal initiation in the meristem. In S. minor and P. media leaf growth increased in elevated CO2,because of increased cell expansion of epidermal cells, whereasin L. corniculatus, epidermal cell size decreased and greaterleaf growth was because of an increase in epidermal cell divisions.In A. vulneraria, leaf size did not change, but increased cellexpansion on the adaxial surface suggests CO2 affects leaf surfacesdifferently, either directly or indirectly at the cell differentiationstage or as the leaf grows. These results suggest component species of a plant communitymay differ in their response to elevated CO2. Predicting theeffect of environmental change is therefore difficult.Copyright1994, 1999 Academic Press Elevated CO2, Sanguisorba minor (salad burnet), Lotus corniculatus (birdsfoot trefoil), Anthyllis vulneraria (kidney vetch), Plantago media (hoary plantain), stomatal index, stomatal density, epidermal cell size  相似文献   

6.
Rainbow trout, Oncorhynchus mykiss, and crayfish, Orconectes virilis, have been introduced for the last century into North American streams inhabited by native fishes. We sought to determine the behavioral response of a federally threatened cyprinid, Little Colorado spinedace, Lepidomeda vittata, in the concurrent presence of multiple nonnative predators (rainbow trout and crayfish), as well as the response to the presence of a combination of native (Apache trout, Oncorhynchus apache) and nonnative (crayfish) predators. We held spinedace in artificial streams and exposed them to four treatments: (1) control, (2) crayfish added, (3) trout added, and (4) both crayfish and trout added. Only a single spinedace was consumed over the course of the experiments; it was captured and preyed upon by a crayfish. When both crayfish and Apache trout were present, spinedace response was similar to what it was when only Apache trout were present (decreased movement in and out of refuge), suggesting that crayfish and Apache trout did not mutually influence spinedace behavior. However, when both rainbow trout and crayfish were present, spinedace not only decreased movements in and out of refuge, but also decreased activity rates. We suggest that crayfish and rainbow trout mutually influence spinedace behavior and recommend control or elimination of crayfish and rainbow trout from spinedace critical habitat or potential reintroduction sites. In addition, potential reintroduction sites for Apache trout should be evaluated based on presence of crayfish and spinedace to avoid potential multiple predator interactions and negative effects on spinedace.  相似文献   

7.
CO2倍增对不同氮水平下小麦幼苗根系及叶片NR活性的影响   总被引:2,自引:0,他引:2  
以小麦品种'小偃22'幼苗为材料,采用开顶式气室和水培实验研究了不同供氮水平(2.5、5.0、10.0和 15.0 mmol·L-1)下小麦幼苗植株生长量、根系形态、有机碳分泌速率和硝酸还原酶(NR)活性对大气CO2浓度升高的响应.结果显示,大气CO2浓度倍增均增加了小麦幼苗各生长阶段根冠生物量以及根系长度、面积、有机碳分泌速率和叶片NR活性.随供氮水平的提高,各生长阶段幼苗根冠生物量、根长和面积以及叶片NR活性呈上升趋势,而有机碳分泌速率呈下降趋势;根冠比变化不同阶段表现不一致,一叶一心期呈下降趋势,二叶一心期和三叶一心期分别以15.0和10.0 mmol·L-1氮水平较高.研究表明,大气CO2浓度升高可促进小麦幼苗根系生长和有机碳分泌速率,提高其氮素同化能力;增加介质供氮有利于高CO2浓度条件下小麦幼苗根冠生长和氮素同化,提高根冠比,减少根系有机碳过度分泌引起的碳损耗.  相似文献   

8.
9.
10.

Background

If biofuels are to be a viable substitute for fossil fuels, it is essential that they retain their potential to mitigate climate change under future atmospheric conditions. Elevated atmospheric CO2 concentration [CO2] stimulates plant biomass production; however, the beneficial effects of increased production may be offset by higher energy costs in crop management.

Methodology/Main Findings

We maintained full size poplar short rotation coppice (SRC) systems under both current ambient and future elevated [CO2] (550 ppm) and estimated their net energy and greenhouse gas balance. We show that a poplar SRC system is energy efficient and produces more energy than required for coppice management. Even more, elevated [CO2] will increase the net energy production and greenhouse gas balance of a SRC system with 18%. Managing the trees in shorter rotation cycles (i.e., 2 year cycles instead of 3 year cycles) will further enhance the benefits from elevated [CO2] on both the net energy and greenhouse gas balance.

Conclusions/Significance

Adapting coppice management to the future atmospheric [CO2] is necessary to fully benefit from the climate mitigation potential of bio-energy systems. Further, a future increase in potential biomass production due to elevated [CO2] outweighs the increased production costs resulting in a northward extension of the area where SRC is greenhouse gas neutral. Currently, the main part of the European terrestrial carbon sink is found in forest biomass and attributed to harvesting less than the annual growth in wood. Because SRC is intensively managed, with a higher turnover in wood production than conventional forest, northward expansion of SRC is likely to erode the European terrestrial carbon sink.  相似文献   

11.
Acclimation of photosynthesis to elevated CO2 has previously been shown to be more pronounced when N supply is poor. Is this a direct effect of N or an indirect effect of N by limiting the development of sinks for photoassimilate? This question was tested by growing a perennial ryegrass (Lolium perenne) in the field under elevated (60 Pa) and current (36 Pa) partial pressures of CO2 (pCO2) at low and high levels of N fertilization. Cutting of this herbage crop at 4- to 8-week intervals removed about 80% of the canopy, therefore decreasing the ratio of photosynthetic area to sinks for photoassimilate. Leaf photosynthesis, in vivo carboxylation capacity, carbohydrate, N, ribulose-1,5-bisphosphate carboxylase/oxygenase, sedoheptulose-1,7-bisphosphatase, and chloroplastic fructose-1,6-bisphosphatase levels were determined for mature lamina during two consecutive summers. Just before the cut, when the canopy was relatively large, growth at elevated pCO2 and low N resulted in significant decreases in carboxylation capacity and the amount of ribulose-1,5-bisphosphate carboxylase/oxygenase protein. In high N there were no significant decreases in carboxylation capacity or proteins, but chloroplastic fructose-1,6-bisphosphatase protein levels increased significantly. Elevated pCO2 resulted in a marked and significant increase in leaf carbohydrate content at low N, but had no effect at high N. This acclimation at low N was absent after the harvest, when the canopy size was small. These results suggest that acclimation under low N is caused by limitation of sink development rather than being a direct effect of N supply on photosynthesis.  相似文献   

12.
Vascular plant responses to experimental enrichment with atmospheric carbon dioxide (CO2), using MINIFACE technology, were studied in a Dutch lowland peatland dominated by Sphagnum and Phragmites for 3 years. We hypothesized that vascular plant carbon would accumulate in this peatland in response to CO2 enrichment owing to increased productivity of the predominant species and poorer quality (higher C/N ratios) and consequently lower decomposability of the leaf litter of these species. Carbon isotope signatures demonstrated that the extra 180 ppmv CO2 in enriched plots had been incorporated into vegetation biomass accordingly. However, on the CO2 sequestration side of the ecosystem carbon budget, there were neither any significant responses of total aboveground abundance of vascular plants, nor of any of the individual species. On the CO2 release side of the carbon budget (decomposition pathway), litter quantity did not differ between ambient and CO2 treatments, while the changes in litter quality (N and P concentration, C/N and C/P ratio) were marginal and inconsistent. It appeared therefore that the afterlife effects of significant CO2-induced changes in green-leaf chemistry (lower N and P concentrations, higher C/N and C/P) were partly offset by greater resorption of mobile carbohydrates from green leaves during senescence in CO2-enriched plants. The decomposability of leaf litters of three predominant species from ambient and CO2-enriched plots, as measured in a laboratory litter respiration assay, showed no differences. The relatively short time period, environmental spatial heterogeneity and small plot sizes might explain part of the lack of CO2 response. When our results are combined with those from other Sphagnum peatland studies, the common pattern emerges that the vascular vegetation in these ecosystems is genuinely resistant to CO2-induced change. On decadal time-scales, water management and its effects on peatland hydrology, N deposition from anthropogenic sources and land management regimes that arrest the early successional phase (mowing, tree and shrub removal), may have a greater impact on the vascular plant species composition, carbon balance and functioning of lowland Sphagnum–Phragmites reedlands than increasing CO2 concentrations in the atmosphere.  相似文献   

13.
For the leaf succulent Agave deserti and the stem succulent Ferocactus acanthodes, increasing the ambient CO2 level from 350 microliters per liter to 650 microliters per liter immediately increased daytime net CO2 uptake about 30% while leaving nighttime net CO2 uptake of these Crassulacean acid metabolism (CAM) plants approximately unchanged. A similar enhancement of about 30% was found in dry weight gain over 1 year when the plants were grown at 650 microliters CO2 per liter compared with 350 microliters per liter. Based on these results plus those at 500 microliters per liter, net CO2 uptake over 24-hour periods and dry weight productivity of these two CAM succulents is predicted to increase an average of about 1% for each 10 microliters per liter rise in ambient CO2 level up to 650 microliters per liter.  相似文献   

14.
Urban  O. 《Photosynthetica》2003,41(1):9-20
The dynamics of the terrestrial ecosystems depend on interactions between a number of biogeochemical cycles (i.e. carbon, nutrient, and hydrological cycles) that may be modified by human actions. Conversely, terrestrial ecosystems are important components of these cycles that create the sources and sinks of important greenhouse gases (e.g. carbon dioxide, methane, nitrous oxide). Especially, carbon is exchanged naturally among these ecosystems and the atmosphere through photosynthesis, respiration, decomposition, and combustion processes. Continuous increase of atmospheric carbon dioxide (CO2) concentration has led to extensive research over the last two decades, during which more then 1 400 scientific papers describing impacts of elevated [CO2] (EC) on photosynthesis have been published. However, the degree of response is very variable, depending on species, growing conditions, mineral nutrition, and duration of CO2 enrichment. In this review, I have summarised the major physiological responses of plants, in particular of trees, to EC including molecular and primary, especially photosynthetic, physiological responses. Likewise, secondary (photosynthate translocation and plant water status) and tertiary whole plant responses including also plant to plant competition are shown.  相似文献   

15.
We studied the effects of elevated CO2 (180–200 ppmv above ambient) on growth and chemistry of three moss species (Sphagnum palustre, S. recurvum and Polytrichum commune) in a lowland peatland in the Netherlands. Thereto, we conducted both a greenhouse experiment with both Sphagnum species and a field experiment with all three species using MiniFACE (Free Air CO2 Enrichment) technology during 3 years. The greenhouse experiment showed that Sphagnum growth was stimulated by elevated CO2 in the short term, but that in the longer term (≥1 year) growth was probably inhibited by low water tables and/or down-regulation of photosynthesis. In the field experiment, we did not find significant changes in moss abundance in response to elevated CO2, although CO2 enrichment appeared to reduce S. recurvum abundance. Both Sphagnum species showed stronger responses to spatial variation in hydrology than to increased atmospheric CO2 concentrations. Polytrichum was insensitive to changes in hydrology. Apart from the confounding effects of hydrology, the relative lack of growth response of the moss species may also have been due to the relatively small increase in assimilated CO2 as achieved by the experimentally added CO2. We calculated that the added CO2 contributed at most 32% to the carbon assimilation of the mosses, while our estimates based on stable C isotope data even suggest lower contributions for Sphagnum (24–27%). Chemical analyses of the mosses showed only small elevated CO2 effects on living tissue N concentration and C/N ratio of the mosses, but the C/N ratio of Polytrichum was substantially lower than those of the Sphagnum species. Continuing expansion of Polytrichum at the expense of Sphagnum could reduce the C sink function of this lowland Sphagnum peatland, and similar ones elsewhere, as litter decomposition rates would probably be enhanced. Such a reduction in sink function would be driven mostly by increased atmospheric N deposition, water table regulation for agricultural purposes and land management to preserve the early successional stage (mowing, tree and shrub removal), since these anthropogenic factors will probably exert a greater control on competition between Polytrichum and Sphagnum than increased atmospheric CO2 concentrations.  相似文献   

16.
A major frontier in global change research is predicting how multiple agents of global change will alter plant productivity, a critical component of the carbon cycle. Recent research has shown that plant responses to climate change are phylogenetically conserved such that species within some lineages are more productive than those within other lineages in changing environments. However, it remains unclear how phylogenetic patterns in plant responses to changing abiotic conditions may be altered by another agent of global change, the introduction of non-native species. Using a system of 28 native Tasmanian Eucalyptus species belonging to two subgenera, Symphyomyrtus and Eucalyptus, we hypothesized that productivity responses to abiotic agents of global change (elevated CO2 and increased soil N) are unique to lineages, but that novel interactions with a non-native species mediate these responses. We tested this hypothesis by examining productivity of 1) native species monocultures and 2) mixtures of native species with an introduced hardwood plantation species, Eucalyptus nitens, to experimentally manipulated soil N and atmospheric CO2. Consistent with past research, we found that N limits productivity overall, especially in elevated CO2 conditions. However, monocultures of species within the Symphyomyrtus subgenus showed the strongest response to N (gained 127% more total biomass) in elevated CO2 conditions, whereas those within the Eucalyptus subgenus did not respond to N. Root:shoot ratio (an indicator of resource use) was on average greater in species pairs containing Symphyomyrtus species, suggesting that functional traits important for resource uptake are phylogenetically conserved and explaining the phylogenetic pattern in plant response to changing environmental conditions. Yet, native species mixtures with E. nitens exhibited responses to CO2 and N that differed from those of monocultures, supporting our hypothesis and highlighting that both plant evolutionary history and introduced species will shape community productivity in a changing world.  相似文献   

17.
Peñuelas  J.  Estiarte  M.  Kimball  B.A. 《Photosynthetica》2000,37(4):615-619
We compared flavonoids in green, mature, and senescing flag leaves of wheat grown under ambient (AC - 370 mol mol-1) and elevated (EC - 550 mol mol-1) concentrations of CO2 in a FACE (Free Air CO2 Enrichment) system. The concentrations of flag leaf flavonoids (e.g., isoorientin and tricin) decreased to one third in mature leaves, and the majoritary isoorientin almost disappeared in senescing leaves. Flavonoid concentrations increased in green well-developed flag leaves under EC (46 % isoorientin and 55 % tricin), whereas the differences disappeared in mature and senescing flag leaves. Predictions of changes in litter phenolic concentrations and their effects on decomposition rates under EC based on changes in green leaves need to be revised.  相似文献   

18.
It is commonly accepted that introduced species have recruitment advantages over native species. However, this idea has not been widely tested, and those studies that have compared survival of introduced and native species have produced mixed results. We compiled data from the literature on survival through germination (seed to seedling survival), early seedling survival (survival through one week from seedling emergence) and survival to adulthood (survival from germination to first reproduction) under natural conditions for 285 native and 63 introduced species. Contrary to expectations, we found that introduced and native species do not significantly differ in survival through germination, early seedling survival, or survival from germination to first reproduction. These comparisons remained non-significant after accounting for seed mass, longevity and when including a random effect for site. Results remained consistent after excluding naturalized species from the introduced species data set, after performing phylogenetic independent contrasts, and after accounting for the effect of life form (woody/non-woody). Although introduced species sometimes do have advantages over native species (for example, through enemy release, or greater phenotypic plasticity), our findings suggest that the overall advantage conferred by these factors is either counterbalanced by advantages of native species (such as superior adaptation to local conditions) or is simply too small to be detected at a broad scale.  相似文献   

19.
20.
Globally it is estimated that up to 37% of all marine mammals are at a risk of extinction, due in particular to human impacts, including coastal pollution. Dolphins are known to be at risk from anthropogenic contaminants due to their longevity and high trophic position. While it is known that beach-cast animals are often high in contaminants, it has not been possible to determine whether levels may also be high in live animals from the same populations. In this paper we quantitatively assess mercury contamination in the two main populations of a newly described dolphin species from south eastern Australia, Tursiops australis. This species appear to be limited to coastal waters in close proximity to a major urban centre, and as such is likely to be vulnerable to anthropogenic pollution. For the first time, we were able to compare blubber mercury concentrations from biopsy samples of live individuals and necropsies of beach-cast animals and show that beach-cast animals were highly contaminated with mercury, at almost three times the levels found in live animals. Levels in live animals were also high, and are attributable to chronic low dose exposure to mercury from the dolphin''s diet. Measurable levels of mercury were found in a number of important prey fish species. This illustrates the potential for low dose toxins in the environment to pass through marine food webs and potentially contribute to marine mammal deaths. This study demonstrates the potential use of blubber from biopsy samples to make inferences about the health of dolphins exposed to mercury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号