首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The phylogenetic relationships among Chrysanthemum and its related genera (Anthemideae, Asteraceae) is poorly understood. In the present study, these relationships were investigated using 45S and 5S ribosomal DNA (rDNA)-targeted fluorescent in situ hybridization. The results showed that there were two 45S rDNA signals present in Crossostephium chinense, four 45S rDNA signals in Cercidiphyllum japonicum, Artemisia sieversiana, Artemisia annua and Artemisia absinthium, six 45S rDNA signals in Chrysanthemum boreale and Pyrethrum parthenium, eight 45S rDNA signals in Chrysanthemum nankingense, Chrysanthemum dichrum, Chrysanthemum lavandulifolium and Tanacetum vulgare, and ten 45S rDNA signals in Ajania przewalskii. For the 5S rDNA locus, two 5S rDNA signals were present in C. nankingense, C. dichrum, C. lavandulifolium, C. boreale, C. japonicum, C. chinense and P. parthenium, four in A. sieversiana, A. annua, A. absinthium and A. przewalskii, and six 5S in T. vulgare. In addition, karyotypes of the 12 species were investigated. From this study, we inferred that Chrysanthemum was closely related to Ajania, and that Chrysanthemum species originating from China and Japan may have evolved differently. These findings add a new level to the understanding of the phylogenetic relationships of Chrysanthemum and related genera.  相似文献   

3.
The phylogeny of the genus Picea was investigated by sequencing three loci from the paternally inherited chloroplast genome (trnK, rbcL and trnTLF) and the intron 2 of the maternally transmitted mitochondrial gene nad1 for 35 species. Significant topological differences were found between the trnK tree and the rbcL and trnTLF phylogenetic trees, and between cpDNA and mtDNA phylogenies. None of the phylogenies matched morphological classifications. The mtDNA phylogeny was geographically more structured than cpDNA phylogenies, reflecting the different inheritance of the two cytoplasmic genomes in the Pinaceae and their differential dispersion by seed only and seed and pollen, respectively. Most North American taxa formed a monophyletic group on the mtDNA tree, with topological patterns suggesting geographic speciation by range fragmentation or by dispersal and isolation. Similar patterns were also found among Asian taxa. Such a trend towards geographic speciation is anticipated in other Pinaceae genera with similar life history, autecology and reproductive system. Incongruences between organelle phylogenies suggested the occurrence of mtDNA capture by invading cpDNA. Incongruences between cpDNA partitions further suggested heterologous recombination presumably also linked to ancient reticulate evolution. Whilst cpDNA appears potentially valuable for molecular taxonomy and systematics purposes, these results emphasize the reduced value of cpDNA to infer vertical descent and the speciation history for plants with paternal transmission and high dispersal of their chloroplast genome.  相似文献   

4.
Evolutionary shifts among radiate, disciform and discoid flowerheads have occurred repeatedly in a number of major lineages across the Asteraceae phylogeny; such transitions may also appear within evolutionarily young groups. Although several studies have demonstrated that CYC2 genes partake in regulating floral morphogenesis in Asteraceae, the evolution of capitulum forms within a recently diverging lineage has remained poorly understood. Here, we study the molecular regulation of the shift from a radiate to a disciform capitulum within the Chrysanthemum group. This is a recently radiating group mainly comprising two genera, Chrysanthemum and Ajania, that are phylogenetically intermingled but distinct in flowerhead morphology: Chrysanthemum spp. with radiate capitula and Ajania spp. with disciform capitula. We found that the morphogenesis of zygomorphy in the marginal floret in Ajania was disrupted soon after floral primordium emergence; CYC2g, one of the CYC2 copies that was expressed prominently in the ray floret of Chrysanthemum was not expressed in flowerheads of Ajania. Weakening the expression of ClCYC2g in Chrysanthemum lavandulifolium led to the gradual transition of a ray flower toward the disc-like form. Molecular evolutionary analyses indicated that the disciform capitulum might have evolved only once, approximately 8 Mya, arising from dysfunction of the CYC2g orthologs. A 20-nt deletion, including a putative TATA-box of the Ajania-type CYC2g promoter, appeared to inhibit the expression of the gene. Considering the divergent habitats of Chrysanthemum and Ajania, we propose that the shift from radiate to disciform capitulum must have been related to changes in pollination strategies under selective pressure.  相似文献   

5.
6.
Genetic variation at 17 isozyme loci was used to assess divergence among the four genera comprising subtribe Chrysantheminae (Anthemideae: Asteraceae). The Macaronesian endemic genus Argyranthemum is supported as monophyletic and is about equally divergent at isozyme loci from the other three genera of the Chrysantheminae, Chrysanthemum, Heteranthemis, and Ismelia. Chrysanthemum is native to the Mediterranean whereas Heteranthemis occurs in southern Iberia and Morocco, and Ismelia is endemic to Morocco. The genera Chrysanthemum and Ismelia have a genetic identity of 0.9283, which is comparable to values often seen for congeneric species and indicates that they should be treated as one genus. The isozyme data indicate that three lines consisting of Argyranthemum, Chrysanthemum-Ismelia, and Heteranthemis radiated rapidly from a common ancestor. Divergence times estimated from isozyme data suggest that the initial radiation of the three lines occurred 2.5–3.0 mya. If this is so, then Argyranthemum or its ancestor arrived in Macaronesia after all the islands except La Palma and El Hierro were formed. The evolutionary history of the subtribe is discussed in relation to the climatic and geological events that took place in the Western Mediterranean between the Tertiary and Quaternary, i.e., the first Northern Hemisphere glaciation and desertification of the Sahara region. The high mean genetic identities between species of Argyranthemum suggest that it might have subsequently undergone a second more recent radiation in the Macaronesian Islands. Also, the high mean identity (0.860) between populations in Chrysanthemum and Ismelia suggest that these continental genera might be in the early stages of secondary speciation.  相似文献   

7.
With about 350 species, Paspalum is one of the richest genera within the Poaceae. Its species inhabit ecologically diverse areas along the Americas and they are largely responsible for the biodiversity of grassland ecosystems in South America. Despite its size and relevance, no phylogeny of the genus as a whole is currently available and infrageneric relationships remain uncertain. Many Paspalum species consist of sexual-diploid and apomictic-polyploid cytotypes, and several have arisen through hybridization. In this paper we explore the phylogenetic structure of Paspalum using sequence data of four non-coding cpDNA fragments from a wide array of species which were combined with morphological data for a subset of diploid taxa. Our results confirmed the general monophyly of Paspalum if P. inaequivalve is excluded and the small genus Thrasyopsis is included. Only one of the four currently recognized subgenera was monophyletic but nested within the remainder of the genus. Some informal morphological groups were found to be polyphyletic. The placement of known allopolyploid groups is generally congruent with previously stated hypotheses although some species with shared genomic formulae formed paraphyletic arrangements. Other species formed a basal grade including mostly umbrophilous or hygrophilous species. It is hypothesized that the genus may have diversified as a consequence of the expansion of C4 grass-dominated grasslands in South America.  相似文献   

8.
Ceropegia includes more than 200 species distributed in the Old World ranging from the Canary Islands to Australia. In India, there are about 50 species described on a morphological basis as belonging to Ceropegia, and most of them are endemic to the Western Ghats. To investigate evolutionary relationships among Indian Ceropegia taxa and their allies, a phylogenetic analysis was conducted to include 31 Indian taxa of Ceropegia and Brachystelma and their congeners from other geographical regions using nuclear ribosomal internal transcribed spacer (ITS) and three noncoding chloroplast DNA (cpDNA) sequences, including intergenic spacers trnT-L and trnL-F, and trnL intron. The Western Ghats Ceropegia species were found to be most closely related to Indian Brachystelma, with the two genera being placed sister to each other in the ITS phylogeny or with the Brachystelma clade nested within one of the two subclades of Indian Ceropegia in the cpDNA phylogeny. In contrast, Ceropegia species from other regions and African Brachystelma all formed separate clades basal to the Indian Ceropegia–Brachystelma clade. Thus, it can be concluded that the classical morphology-based delineation of the two genera needs revision to reflect their phylogenetic relationships, which are more in accordance with their geographical origin than with morphology.  相似文献   

9.
Subtropical East Asia harbours a large plant diversity that is often attributed to allopatric speciation in this topographically complex region characterized by a relative climate stability. Here, we use observations of Platycarya, a widespread subtropical Asian tree genus, to explore the consequences of past climate stability on species’ evolutionary history in subtropical China. This genus has a controversial taxonomy: while it is now prevailingly treated as monotypic, two species have been originally described, Platycarya strobilacea and P. longipes. Previous information from species distribution models, fossil pollen data and genetic data based on chloroplast DNA (cpDNA) were integrated with newly obtained genetic data from the two putative species. We used both cpDNA (psbA-trnH and trnL-F intergenic spacers, including a partial trnL gene sequence) and nuclear markers. The latter included sequences of the internal transcribed spacer region (ITS1–5.8S–ITS2) of the nuclear ribosomal DNA and random genomic single nucleotide polymorphisms. Using these nuclear genetic markers, we found interspecific genetic divergence fitting with the ‘two species’ scenario and geographically structured intraspecific variation. Using cpDNA markers, we also found geographically structured intraspecific variation. Despite deep inter- and intraspecific genetic divergence, we detected genetic admixture in southwest China. Overall, our findings of genetic divergence within Platycarya support the hypothesis of allopatric speciation. However, episodes of population interconnection were identified, at least in southwest China, suggesting that the genus has had a dynamic population history.  相似文献   

10.
The taxonomy and phylogeny of Asian Meconopsis (Himalayan blue poppy) remain largely unresolved. We used the internal transcribed spacer (ITS) region of nuclear ribosomal DNA (nrDNA) and the chloroplast DNA (cpDNA) trnL-F region for phylogenetic reconstruction of Meconopsis and its close relatives Papaver, Roemeria, and Stylomecon. We identified five main clades, which were well-supported in the gene trees reconstructed with the nrDNA ITS and cpDNA trnL-F sequences. We found that 41 species of Asian Meconopsis did not constitute a monophyletic clade, but formed two solid clades (I and V) separated in the phylogenetic tree by three clades (II, III and IV) of Papaver and its allies. Clade V includes only four Asian Meconopsis species, with the remaining 90 percent of Asian species included in clade I. In this core Asian Meconopsis clade, five subclades (Ia–Ie) were recognized in the nrDNA ITS tree. Three species (Meconopsis discigera, M. pinnatifolia, and M. torquata) of subgenus Discogyne were imbedded in subclade Ia, indicating that the present definition of subgenera in Meconopsis should be rejected. These subclades are inconsistent with any series or sections of the present classifications, suggesting that classifications of the genus should be completely revised. Finally, proposals for further revision of the genus Meconopsis were put forward based on molecular, morphological, and biogeographical evidences.  相似文献   

11.
12.
In the last decade, several studies have shown that subterranean aquatic habitats harbor cryptic species with restricted geographic ranges, frequently occurring as isolated populations. Previous studies on aquatic subterranean species have implied that habitat heterogeneity can promote speciation and that speciation events can be predicted from species’ distributions. We tested the prediction that species distributed across different drainage systems and karst sectors comprise sets of distinct species. Amphipods from the genus Niphargus from 11 caves distributed along the Western Carpathians (Romania) were investigated using three independent molecular markers (COI, H3 and 28S). The results showed that: 1) the studied populations belong to eight different species that derive from two phylogenetically unrelated Niphargus clades; 2) narrow endemic species in fact comprise complexes of morphologically similar species that are indistinguishable without using a molecular approach. The concept of monophyly, concordance between mitochondrial and nuclear DNA, and the value of patristic distances were used as species delimitation criteria. The concept of cryptic species is discussed within the framework of the present work and the contribution of these species to regional biodiversity is also addressed.  相似文献   

13.
 We examined patterns of cpDNA RFLP variability using 21 restriction endonucleases in 21 populations of Androcymbium that represent 12 endemic species distributed in the winter rainfall areas of South Africa to explore the diversification of the genus in its area of maximum species diversity. Our results are supportive of a diversification landscape characterized by continued opportunistic short-range invasion, naturalization, and rapid speciation, in which the selective action of the different environments where Androcymbium species occur determined their colonization success and subsequent short-range geographic expansion. The historical presence of fire, the constraint imposed by the low concentration of nutrients throughout southwestern South Africa and the different reproductive capabilities of Androcymbium species have also likely stimulated species' diversification. Our divergence time estimates bolster the view that speciation of South African Androcymbium initiated in the late Eocene, intensified in the Oligocene and proceeded more sporadically during the Miocene. These chronological estimates also substantiate the previous hypothesis that most lineages of Androcymbium in South Africa are much more ancient than their North African relatives, whose diversification began in the late Miocene-early Pliocene. Received July 25, 2001 Accepted December 6, 2001  相似文献   

14.
Many of the genes that control photosynthesis are carried in the chloroplast. These genes differ among species. However, evidence has yet to be reported revealing the involvement of organelle genes in the initial stages of plant speciation. To elucidate the molecular basis of aquatic plant speciation, we focused on the unique plant species Chara braunii C. C. Gmel. that inhabits both shallow and deep freshwater habitats and exhibits habitat‐based dimorphism of chloroplast DNA (cpDNA). Here, we examined the “shallow” and “deep” subpopulations of C. braunii using two nuclear DNA (nDNA) markers and cpDNA. Genetic differentiation between the two subpopulations was measured in both nDNA and cpDNA regions, although phylogenetic analyses suggested nuclear gene flow between subpopulations. Neutrality tests based on Tajima’s D demonstrated diversifying selection acting on organelle DNA regions. Furthermore, both “shallow” and “deep” haplotypes of cpDNA detected in cultures originating from bottom soils of three deep environments suggested that migration of oospores (dormant zygotes) between the two habitats occurs irrespective of the complete habitat‐based dimorphism of cpDNA from field‐collected vegetative thalli. Therefore, the two subpopulations are highly selected by their different aquatic habitats and show prezygotic isolation, which represents an initial process of speciation affected by ecologically based divergent selection of organelle genes.  相似文献   

15.
Islands isolated by oceans that act as a geographical barrier for plant migration often possess high species endemism and have been deemed as a natural laboratory for studying species divergence. Fatsia Decne. & Planch. (Araliaceae), with three species, is one of the few plant genera absent in continents while exclusively spanning continental and oceanic islands. The nuclear ribosomal internal transcribed spacer (nrITS) phylogeny uncovered a pattern with reciprocal monophyly of Fatsia oligocarpella Koidz. (Bonin) and Fatsia polycarpa Hayata (Taiwan) vs. paraphyly of Fatsia japonica (Thunb.) Decne. & Planch. (Japan and Ryukyus), suggesting ancestry of the species in Japan and a likely temperate origin; whereas, lack of monophyly of all three allopatrically distributed species at chloroplast DNA (cpDNA) trnL–trnF spacer likely resulted from lineage sorting. In spite of the limited habitats for F. oligocarpella, unexpectedly high genetic variations in this species of oceanic islands were likely attributable to multiple colonizations and recurrent gene introgression. Biogeographical analyses suggested that Fatsia likely diverged via southward colonization in Bonin Islands and Taiwan during the late Pliocene to Pleistocene. Besides, Fatsia species with an allopatric distribution provide a perfect model for testing speciation modes of insular endemics. Nonzero gene flow between species was detected based on MIGRATE and STRUCTURE analyses of DNA sequences and microsatellite fingerprints, suggesting that allopatric speciation is less likely.  相似文献   

16.
以龙脑菊、菊花脑、野菊等15个菊花近缘种属植物幼苗为材料,对其进行不同梯度遮荫处理(全光照,遮光率60%,遮光率78%,遮光率95%),从形态和生理等方面的22个指标进行测定,以各项指标的耐阴系数作为衡量耐阴性的指标,利用主成分分析、回归分析和聚类分析法对其耐阴性进行综合评价。结果表明:遮光率78%时的植物茎粗(X2)、叶片厚度(X10)、叶绿素含量(X16),遮光率60%时的植物叶绿素含量(X15),以及遮光率95%时的植物叶面积(X13)、相对含水量(X14)和胞间二氧化碳浓度(X21)8个指标可作为菊花近缘种属植物耐阴性评价指标,建立菊花近缘种属植物耐阴性评价的数学模型:Y=82.876-0.153X2+0.094X10+0.741X13+0.084X14+0.054X15-0.087X16-0.472X2,(R2=0.998),预测精度大于0.97。13份材料的耐阴性极强,矶菊的耐阴性较差,即多数菊花近缘种属植物具有较好的耐阴能力。  相似文献   

17.

Background

The family Phyllanthaceae has a predominantly pantropical distribution. Of its several genera, Bridelia Willd. is of a special interest because it has disjunct equally distributed species in Africa and tropical Asia i.e. 18–20 species in Africa-Madagascar (all endemic) and 18 species in tropical Asia (some shared with Australia). On the basis of molecular phylogenetic study on Bridelia, it has been suggested that the genus evolved in Southeast Asia around 33±5 Ma, while speciation and migration to other parts of the world occurred at 10±2 Ma. Fossil records of Bridelia are equally important to support the molecular phylogenetic studies and plate tectonic models.

Results

We describe a new fossil leaf of Bridelia from the late Oligocene (Chattian, 28.4–23 Ma) sediments of Assam, India. The detailed venation pattern of the fossil suggests its affinities with the extant B. ovata, B. retusa and B. stipularis. Based on the present fossil evidence and the known fossil records of Bridelia from the Tertiary sediments of Nepal and India, we infer that the genus evolved in India during the late Oligocene (Chattian, 28.4–23 Ma) and speciation occurred during the Miocene. The stem lineage of the genus migrated to Africa via “Iranian route” and again speciosed in Africa-Madagascar during the late Neogene resulting in the emergence of African endemic clades. Similarly, the genus also migrated to Southeast Asia via Myanmar after the complete suturing of Indian and Eurasian plates. The emergence and speciation of the genus in Asia and Africa is the result of climate change during the Cenozoic.

Conclusions

On the basis of present and known fossil records of Bridelia, we have concluded that the genus evolved during the late Oligocene in northeast India. During the Neogene, the genus diversified and migrated to Southeast Asia via Myanmar and Africa via “Iranian Route”.  相似文献   

18.
Historical tectonism and climate oscillations can isolate and contract the geographical distributions of many plant species, and they are even known to trigger species divergence and ultimately speciation. Here, we estimated the nucleotide variation and speciation in three closely related Populus species, Populus tremuloides, P. tremula and P. davidiana, distributed in North America and Eurasia. We analysed the sequence variation in six single‐copy nuclear loci and three chloroplast (cpDNA) fragments in 497 individuals sampled from 33 populations of these three species across their geographic distributions. These three Populus species harboured relatively high levels of nucleotide diversity and showed high levels of nucleotide differentiation. Phylogenetic analysis revealed that P. tremuloides diverged earlier than the other two species. The cpDNA haplotype network result clearly illustrated the dispersal route from North America to eastern Asia and then into Europe. Molecular dating results confirmed that the divergence of these three species coincided with the sundering of the Bering land bridge in the late Miocene and a rapid uplift of the Qinghai‐Tibetan Plateau around the Miocene/Pliocene boundary. Vicariance‐driven successful allopatric speciation resulting from historical tectonism and climate oscillations most likely played roles in the formation of the disjunct distributions and divergence of these three Populus species.  相似文献   

19.
Gobies (Teleostei: Gobiidae) are an extremely diverse and widely distributed group and are the second most species rich family of vertebrates. Ecological drivers are key to the evolutionary success of the Gobiidae. However, ecological and phylogenetic data are lacking for many diverse genera of gobies. Our study investigated the evolution of microhabitat association across the phylogeny of 18 species of dwarfgobies (genus Eviota), an abundant and diverse group of coral reef fishes. In addition, we also explore the evolution of pectoral fin-ray branching and sensory head pores to determine the relationship between morphological evolution and microhabitat shifts. Our results demonstrate that Eviota species switched multiple times from a facultative hard-coral association to inhabiting rubble or mixed sand/rubble habitat. We found no obvious relationship between microhabitat shifts and changes in pectoral fin-ray branching or reduction in sensory pores, with the latter character being highly homoplasious throughout the genus. The relative flexibility in coral-association in Eviota combined with the ability to move into non-coral habitats suggests a genetic capacity for ecological release in contrast to the strict obligate coral-dwelling relationship commonly observed in closely related coral gobies, thus promoting co-existence through fine scale niche partitioning. The variation in microhabitat association may facilitate opportunistic ecological speciation, and species persistence in the face of environmental change. This increased speciation opportunity, in concert with a high resilience to extinction, may explain the exceptionally high diversity seen in Eviota compared to related genera in the family.  相似文献   

20.
CpDNA variation among 52 tree samples belonging to 25 different taxa of Coffea and two species of Psilanthus was assessed by RFLP analysis on both the total chloroplast genome and the atpB-rbcL intergenic region. Twelve variable characters were distinguished allowing the identification of 12 different plastomes. The low sequence divergence observed might suggest that Coffea is a young genus. The results were in contradiction with the present classification into two genera. Additionally, cpDNA inheritance was studied in interspecific hybrids between C. arabica and C. canephora, and in an intraspecific progeny of C. canephora, using PCR-based markers. Both studies showed exclusively maternal inheritance of cpDNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号