首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The melanoma antigen (MAGE) family proteins are well known as tumor-specific antigens and comprise more than 60 genes, which share a conserved MAGE homology domain (MHD). Type I MAGEs are highly expressed cancer antigens, and they play an important role in tumorigenesis and cancer cell survival. Recently, several MAGE proteins were identified to interact with RING domain proteins, including a sub-family of E3 ubiquitin ligases. The binding mode between MAGEs and RING proteins was investigated and one important structure of these MAGE-RING complexes was solved: the MAGE-G1-NSE1 complex. Structural and biochemical studies indicated that MAGE proteins could adjust the E3 ubiquitin ligase activity of its cognate RING partner both in vitro and in vivo. However, the underlying mechanism was not fully understood. Here, we review these exciting advances in the studies on MAGE family, suggest potential mechanisms by which MAGEs activate the E3 activity of their binding RING proteins and highlight the anticancer potential of this family proteins.  相似文献   

2.
Kawano Y  Sasaki M  Nakahira K  Yoshimine T  Shimizu K  Wada H  Ikenaka K 《Gene》2001,277(1-2):129-137
Genes of the melanoma-associated antigen (MAGE) family are characterized by the expression of tumor antigens on a malignant melanoma recognized by autologous cytolytic T lymphocytes. We have previously identified novel members of the MAGE gene family expressed in human glioma and named them MAGE-E1a-c. In the present study, we have revealed the genomic structure of MAGE-E1 by sequence analysis of a human chromosome bacterial artificial chromosome clone containing the MAGE-E1 gene. The MAGE-E1 gene is composed of 13 exons, and three of these (exon 2, exon 3 and exon 12) are alternatively spliced in each variant (E1a-c). The open reading frame encoding the MAGE-E1 peptides initiates in exon 2 and ends in exon 13. We have also demonstrated that the MAGE-E1 gene is located in Xp11 through the analysis of radiation hybrid panels. The genomic structure of MAGE-E1 is markedly similar to that of MAGE-D and its chromosomal locus is also identical to that of MAGE-D, but these features contrast with those of other MAGEs. These results suggest that MAGE-D and -E1 may be evolutionarily distant from other members of the MAGE family, and the two may be ancestral genes for the others.  相似文献   

3.
Patients with an intact SRY gene and duplications of portions of Xp21 develop as phenotypic females. We have recently mapped this sex reversal locus, DSS, to a 160-kb region of Xp21 that includes the adrenal hypoplasia congenita locus. To clone the gene(s) underlying DSS and AHC, we isolated expressed sequences quences from the region. Here we describe the characterization of two related genes. DAM10 and DAM6, expressed in adult testis and lung tumors. The predicted DAM10 and DAM6 proteins are 66% identical and are both highly similar to the MAGE family of tumor-associated antigens and to mouse necdin. Genes belonging to the MAGE superfamily, DAMs, MAGEs, and necdin, are likely to have originated from a common ancestor and to be subject to an unusually rapid evolution. The tumor-restricted expression of DAM proteins and their structural similarity to MAGE genes suggest that DAM peptides may be targets for active immunotherapy in lung cancer patients.  相似文献   

4.
Katsura Y  Satta Y 《PloS one》2011,6(6):e20365
The evolutionary mode of a multi-gene family can change over time, depending on the functional differentiation and local genomic environment of family members. In this study, we demonstrate such a change in the melanoma antigen (MAGE) gene family on the mammalian X chromosome. The MAGE gene family is composed of ten subfamilies that can be categorized into two types. Type I genes are of relatively recent origin, and they encode epitopes for human leukocyte antigen (HLA) in cancer cells. Type II genes are relatively ancient and some of their products are known to be involved in apoptosis or cell proliferation. The evolutionary history of the MAGE gene family can be divided into four phases. In phase I, a single-copy state of an ancestral gene and the evolutionarily conserved mode had lasted until the emergence of eutherian mammals. In phase II, eight subfamily ancestors, with the exception for MAGE-C and MAGE-D subfamilies, were formed via retrotransposition independently. This would coincide with a transposition burst of LINE elements at the eutherian radiation. However, MAGE-C was generated by gene duplication of MAGE-A. Phase III is characterized by extensive gene duplication within each subfamily and in particular the formation of palindromes in the MAGE-A subfamily, which occurred in an ancestor of the Catarrhini. Phase IV is characterized by the decay of a palindrome in most Catarrhini, with the exception of humans. Although the palindrome is truncated by frequent deletions in apes and Old World monkeys, it is retained in humans. Here, we argue that this human-specific retention stems from negative selection acting on MAGE-A genes encoding epitopes of cancer cells, which preserves their ability to bind to highly divergent HLA molecules. These findings are interpreted with consideration of the biological factors shaping recent human MAGE-A genes.  相似文献   

5.
The MAGE (melanoma antigen) family is characterized by a large conserved domain termed MAGE homology domain. Originally identified MAGE genes encoding tumor rejection antigens are expressed only in cancers and male germ cells. Necdin, which contains the MAGE homology domain, is highly expressed in postmitotic cells such as neurons and skeletal muscle cells. The human necdin gene NDN is transcribed only from the paternal allele through genomic imprinting, and its deficiency is implicated in the pathogenesis of the neurodevelopmental disorder Prader-Willi syndrome. Although over 30 MAGE genes have been identified in humans, fruit fly (Drosophila melanogaster) has only a single MAGE gene that encodes a protein similar to necdin homologous MAGE proteins. In this study, we analyzed the spatiotemporal expression patterns of MAGE mRNA and the encoded protein during fly development. Whole-mount embryo in situ hybridization analysis revealed that MAGE mRNA was highly expressed at the syncytial blastoderm stage and in the ventral and procephalic neurogenic regions of the ectoderm during gastrulation. In contrast, MAGE expression was nearly undetectable in postmitotic neurons of the central nervous system at late embryonic stages. During postembryonic neurogenesis, MAGE was highly expressed in neural stem cells (neuroblasts) and their progeny (ganglion mother cells and postmitotic neurons) at larval and pupal stages. MAGE was also expressed in postmitotic neurons including mushroom body neurons and retinal photoreceptors in adulthood. These results indicate that MAGE expression lasts throughout the postembryonic neurogenesis in Drosophila.  相似文献   

6.
7.
8.
In evolutionary genomics, it is fundamentally important to understand how characteristics of genomic sequences, such as gene expression level, determine the rate of adaptive evolution. While numerous statistical methods, such as the McDonald–Kreitman (MK) test, are available to examine the association between genomic features and the rate of adaptation, we currently lack a statistical approach to disentangle the independent effect of a genomic feature from the effects of other correlated genomic features. To address this problem, I present a novel statistical model, the MK regression, which augments the MK test with a generalized linear model. Analogous to the classical multiple regression model, the MK regression can analyze multiple genomic features simultaneously to infer the independent effect of a genomic feature, holding constant all other genomic features. Using the MK regression, I identify numerous genomic features driving positive selection in chimpanzees. These features include well-known ones, such as local mutation rate, residue exposure level, tissue specificity, and immune genes, as well as new features not previously reported, such as gene expression level and metabolic genes. In particular, I show that highly expressed genes may have a higher adaptation rate than their weakly expressed counterparts, even though a higher expression level may impose stronger negative selection. Also, I show that metabolic genes may have a higher adaptation rate than their nonmetabolic counterparts, possibly due to recent changes in diet in primate evolution. Overall, the MK regression is a powerful approach to elucidate the genomic basis of adaptation.  相似文献   

9.
10.
The genomic structure of the mouse 59-kDa keratin gene, a Type I intermediate filament (IF) gene is presented. A comparison of the organization of this gene with that of the human 67-kDa keratin, a Type II IF gene, and hamster vimentin, a Type III IF gene, suggests a common evolutionary origin for Type I, II, and III IF genes. Most introns in these three types of IF genes occur at similar positions within the region encoding sequences predicted to form coiled-coils, but do not delineate structural subdomains. Interestingly though, most of the introns interrupt at or near the beginning of the characteristic 7-residue (heptad) repeat of sequences which form the coiled-coil. These data suggest that the three types of IF genes arose from a common ancestor which may have been assembled from smaller units containing multiple heptad repeats. Subsequent duplication events may then have formed the three known alpha-helical types and each of their various members.  相似文献   

11.
There is increasing evidence for ribosome heterogeneity in biological systems. In Arabidopsis thaliana, the ribosomal protein S15a is encoded by six separate genes, which fall into two evolutionarily distinct categories (Type I and Type II). Type I S15a is a universally conserved component of cytosolic ribosomes, whereas there is ambiguity as to the specific subcellular location of Type II S15a (cytosolic and/or mitochondrial ribosomes). In this study, we investigated the functional significance of the distinct form of ribosomal protein S15a (Type II) in Arabidopsis by examining: the evolutionary relationship of eukaryotic S15a proteins with respect to organellar homologs, the expression of individual Type II S15a genes during various developmental stages by RT-PCR, and the phenotypes of an insertional mutation into the RPS15aE gene. The Type II S15a proteins are plant specific, and the duplication event that gave rise to the Type II S15a genes appears to have occurred during the evolution of land plants. The genes encoding Type II S15a in Arabidopsis are differentially expressed, and mutant plants in which the gene encoding S15aE is knocked down produce larger leaves, longer roots, and possess larger cells than wild-type plants suggesting that the RPS15aE isoform of Type II S15a may act as a regulator of translational activity. Our results add significantly to the understanding of the protein constitution of plant ribosomes and the functional significance of ribosome heterogeneity.  相似文献   

12.
Resistance Gene Candidate2 (RGC2) genes belong to a large, highly duplicated family of nucleotide binding site-leucine rich repeat (NBS-LRR) encoding disease resistance genes located at a single locus in lettuce (Lactuca sativa). To investigate the genetic events occurring during the evolution of this locus, approximately 1.5- to 2-kb 3' fragments of 126 RGC2 genes from seven genotypes were sequenced from three species of Lactuca, and 107 additional RGC2 sequences were obtained from 40 wild accessions of Lactuca spp. The copy number of RGC2 genes varied from 12 to 32 per genome in the seven genotypes studied extensively. LRR number varied from 40 to 47; most of this variation had resulted from 13 events duplicating two to five LRRs because of unequal crossing-over within or between RGC2 genes at one of two recombination hot spots. Two types of RGC2 genes (Type I and Type II) were initially distinguished based on the pattern of sequence identities between their 3' regions. The existence of two types of RGC2 genes was further supported by intron similarities, the frequency of sequence exchange, and their prevalence in natural populations. Type I genes are extensive chimeras caused by frequent sequence exchanges. Frequent sequence exchanges between Type I genes homogenized intron sequences, but not coding sequences, and obscured allelic/orthologous relationships. Sequencing of Type I genes from additional wild accessions confirmed the high frequency of sequence exchange and the presence of numerous chimeric RGC2 genes in nature. Unlike Type I genes, Type II genes exhibited infrequent sequence exchange between paralogous sequences. Type II genes from different genotype/species within the genus Lactuca showed obvious allelic/orthologous relationships. Trans-specific polymorphism was observed for different groups of orthologs, suggesting balancing selection. Unequal crossover, insertion/deletion, and point mutation events were distributed unequally through the gene. Different evolutionary forces have impacted different parts of the LRR.  相似文献   

13.
14.
15.
Phylogenetic analysis was conducted on 9 kDa non-specific lipid transfer protein (nsLTP) genes from nine plant species. Each of the five classified types in angiosperms exhibited eight conserved cysteine patterns. The most abundant nsLTP genes fell into the type I category, which was particularly enriched in a grass-specific lineage of clade I.1. Six pairs of tandem copies of nsLTP genes on the distal region of rice chromosomes 11 and 12 were well-preserved under concerted evolution, which was not observed in sorghum. The transgenic promoter-reporter assay revealed that both rice and sorghum nsLTP genes of type I displayed a relatively conserved expression feature in the epidermis of growing tissue, supporting its functional roles in cutin synthesis or defence against phytopathogens. For type I, the frequent expression in the stigma and seed are indicative of functional involvement in pistil-pollen interactions and seed development. By way of contrast, several type V genes were observed, mainly in the vascular bundle of the rosette as well as the young shoots, which might be related with vascular tissue differentiation or defence signalling. Compared with sorghum, the highly redundant tissue-specific expression pattern among members of rice nsLTP genes in clade I.1 suggests that concerted evolution via gene conversion favours the preservation of crucial expression motifs via the homogenization of proximal promoter sequences under high selection constraints. However, extensive regulatory subfunctionalization might also have occurred under relative low selection constraints, resulting in functional divergence at the expression level.  相似文献   

16.
Understanding why genes evolve at different rates is fundamental to evolutionary thinking. In species of the budding yeast, the rate at which genes diverge in expression correlates with the organization of their promoter nucleosomes: genes lacking a nucleosome-free region (denoted OPN for "Occupied Proximal Nucleosomes") vary widely between the species, while the expression of those containing NFR (denoted DPN for "Depleted Proximal Nucleosomes") remains largely conserved. To examine if early evolutionary dynamics contributes to this difference in divergence, we artificially selected for high expression of GFP-fused proteins. Surprisingly, selection was equally successful for OPN and DPN genes, with -80% of genes in each group stably increasing in expression by a similar amount. Notably, the two groups adapted by distinct mechanisms: DPN-selected strains duplicated large genomic regions, while OPN-selected strains favored trans mutations not involving duplications. When selection was removed, DPN (but not OPN) genes reverted rapidly to wild-type expression levels, consistent with their lower diversity between species. Our results suggest that promoter organization constrains the early evolutionary dynamics and in this way biases the path of long-term evolution.  相似文献   

17.
18.
The major histocompatibility complex (MHC) genes code for proteins that play a critical role in the immune system response. The MHC genes are among the most polymorphic genes in vertebrates, presumably due to balancing selection. The two MHC classes appear to differ in the rate of evolution, but the reasons for this variation are not well understood. Here, we investigate the level of polymorphism and the evolution of sequences that code for the peptide-binding regions of MHC class I and class II DRB genes in the Alpine marmot (Marmota marmota). We found evidence for four expressed MHC class I loci and two expressed MHC class II loci. MHC genes in marmots were characterized by low polymorphism, as one to eight alleles per putative locus were detected in 38 individuals from three French Alps populations. The generally limited degree of polymorphism, which was more pronounced in class I genes, is likely due to bottleneck the populations undergone. Additionally, gene duplication within each class might have compensated for the loss of polymorphism at particular loci. The two gene classes showed different patterns of evolution. The most polymorphic of the putative loci, Mama-DRB1, showed clear evidence of historical positive selection for amino acid replacements. However, no signal of positive selection was evident in the MHC class I genes. These contrasting patterns of sequence evolution may reflect differences in selection pressures acting on class I and class II genes.  相似文献   

19.
K Wu  T Xu  C Guo  X Zhang  S Yang 《BMC genetics》2012,13(1):73
ABSTRACT: BACKGROUND: The Pi2/9 locus contains multiple nucleotide binding site--leucine-rich repeat (NBS-LRR) genes in the rice genome. Although three functional R-genes have been cloned from this locus, little is known about the origin and evolutionary history of these genes. Herein, an extensive genome-wide survey of Pi2/9 homologs in rice, sorghum, Brachypodium and Arabidopsis, was conducted to explore this theme. RESULTS: In our study, 1, 1, 5 and 156 Pi2/9 homologs were detected in Arabidopsis, Brachypodium, sorghum and rice genomes, respectively. Two distinct evolutionary patterns of Pi2/9 homologs, Type I and Type II, were observed in rice lines. Type I Pi2/9 homologs showed evidence of rapid gene diversification, including substantial copy number variations, obscured orthologous relationships, high levels of nucleotide diversity or/and divergence, frequent sequence exchanges and strong positive selection, whereas Type II Pi2/9 homologs exhibited a fairly slow evolutionary rate. Interestingly, the three cloned R-genes from the Pi2/9 locus all belonged to the Type I genes. CONCLUSIONS: Our data show that the Pi2/9 locus had an ancient origin predating the common ancestor of gramineous species. The existence of two types of Pi2/9 homologs suggest that diversifying evolution should be an important strategy of rice to cope with different types of pathogens. The relationship of cloned Pi2/9 genes and Type I genes also suggests that rapid gene diversification might facilitate rice to adapt quickly to the changing spectrum of the fungal pathogen M. grisea. Based on these criteria, other potential candidate genes that might confer novel resistance specificities to rice blast could be predicted.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号