首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

PKCδ expressed in neutrophils is implicated in promoting reperfusion injury after ischemic stroke. To understand the molecular and cellular actions of PKCδ, we employed a chemical-genetics approach to identify PKCδ substrates in neutrophils.

Results

We recently generated knock-in mice endogenously expressing analog-specific PKCδ (AS-PKCδ) that can utilize ATP analogs as phosphate donors. Using neutrophils isolated from the knock-in mice, we identified several PKCδ substrates, one of which was lipocalin-2 (LCN2), which is an iron-binding protein that can trigger apoptosis by reducing intracellular iron concentrations. We found that PKCδ phosphorylated LCN2 at T115 and this phosphorylation was reduced in Prkcd−/− mice. PKCδ colocalized with LCN2 in resting and stimulated neutrophils. LCN2 release from neutrophils after cerebral ischemia was reduced in PKCδ null mice.

Conclusions

These findings suggest that PKCδ phosphorylates LCN2 and mediates its release from neutrophils during ischemia-reperfusion injury.  相似文献   

2.

Background

Metastatic renal cell carcinoma (RCC) is highly resistant to systemic chemotherapy. Unfortunately, nearly all patients die of the metastatic and chemoresistant RCC. Recent studies have shown the atypical PKCζ is an important regulator of tumorigenesis. However, the correlation between PKCζ expression and the clinical outcome in RCC patients is unclear. We examined the level of PKCζ expression in human RCC.

Methods

PKCζ mRNA and protein expressions were examined by real-time polymerase chain reaction (PCR) and immunohistochemistry (IHC) respectively in RCC tissues of 144 patients. Cellular cytotoxicity and proliferation were assessed by MTT.

Results

PKCζ expression was significantly higher in normal than in cancerous tissues (P < 0.0001) by real-time PCR and IHC. Similarly, PKCζ expression was down-regulated in four renal cancer cell lines compared to immortalized benign renal tubular cells. Interestingly, an increase of PKCζ expression was associated with the elevated tumor grade (P = 0.04), but no such association was found in TNM stage (P = 0.13). Tumors with higher PKCζ expression were associated with tumor size (P = 0.048). Expression of higher PKCζ found a poor survival in patients with high tumor grade. Down-regulation of PKCζ showed the significant chemoresistance in RCC cell lines. Inactivation of PKCζ expression enhanced cellular resistance to cisplatin and paclitaxel, and proliferation in HK-2 cells by specific PKCζ siRNA and inhibitor.

Conclusions

PKCζ expression was associated with tumorigenesis and chemoresistance in RCC.  相似文献   

3.

Background

Bacterial colonization and recurrent infections of the respiratory tract contribute to the progression of chronic obstructive pulmonary disease (COPD). There is evidence that exacerbations of COPD are provoked by new bacterial strains acquired from the environment. Using a murine model of colonization, we examined whether chronic exposure to cigarette smoke (CS) promotes nasopharyngeal colonization with typical lung pathogens and whether colonization is linked to inflammation in the respiratory tract.

Methods

C57BL/6 N mice were chronically exposed to CS. The upper airways of mice were colonized with nontypeable Haemophilus influenzae (NTHi) or Streptococcus pneumoniae. Bacterial colonization was determined in the upper respiratory tract and lung tissue. Inflammatory cells and cytokines were determined in lavage fluids. RT-PCR was performed for inflammatory mediators.

Results

Chronic CS exposure resulted in significantly increased numbers of viable NTHi in the upper airways, whereas NTHi only marginally colonized air-exposed mice. Colonization with S. pneumoniae was enhanced in the upper respiratory tract of CS-exposed mice and was accompanied by increased translocation of S. pneumoniae into the lung. Bacterial colonization levels were associated with increased concentrations of inflammatory mediators and the number of immune cells in lavage fluids of the upper respiratory tract and the lung. Phagocytosis activity was reduced in whole blood granulocytes and monocytes of CS-exposed mice.

Conclusions

These findings demonstrate that exposure to CS impacts the ability of the host to control bacterial colonization of the upper airways, resulting in enhanced inflammation and susceptibility of the host to pathogens migrating into the lung.  相似文献   

4.

Objective

Platelets play crucial roles in the pathophysiology of thrombosis and myocardial infarction. Protein kinase C ε (PKCε) is virtually absent in human platelets and its expression is precisely regulated during human megakaryocytic differentiation. On the basis of what is known on the role of platelet PKCε in other species, we hypothesized that platelets from myocardial infarction patients might ectopically express PKCε with a pathophysiological role in the disease.

Methods and Results

We therefore studied platelet PKCε expression from 24 patients with myocardial infarction, 24 patients with stable coronary artery disease and 24 healthy subjects. Indeed, platelets from myocardial infarction patients expressed PKCε with a significant frequency as compared to both stable coronary artery disease and healthy subjects. PKCε returned negative during patient follow-up. The forced expression of PKCε in normal donor platelets significantly increased their response to adenosine diphosphate-induced activation and adhesion to subendothelial collagen.

Conclusions

Our data suggest that platelet generations produced before the acute event retain PKCε-mRNA that is not down-regulated during terminal megakaryocyte differentiation. Results are discussed in the perspective of peri-infarctual megakaryocytopoiesis as a critical component of myocardial infarction pathophysiology.  相似文献   

5.

Aims/hypothesis

Diabetic macular edema represents the main cause of visual loss in diabetic retinopathy. Besides inner blood retinal barrier breakdown, the role of the outer blood retinal barrier breakdown has been poorly analyzed. We characterized the structural and molecular alterations of the outer blood retinal barrier during the time course of diabetes, focusing on PKCζ, a critical protein for tight junction assembly, known to be overactivated by hyperglycemia.

Methods

Studies were conducted on a type2 diabetes Goto-Kakizaki rat model. PKCζ level and subcellular localization were assessed by immunoblotting and immunohistochemistry. Cell death was detected by TUNEL assays. PKCζ level on specific layers was assessed by laser microdissection followed by Western blotting. The functional role of PKCζ was then evaluated in vivo, using intraocular administration of its specific inhibitor.

Results

PKCζ was localized in tight junction protein complexes of the retinal pigment epithelium and in photoreceptors inner segments. Strikingly, in outer segment PKCζ staining was restricted to cone photoreceptors. Short-term hyperglycemia induced activation and delocalization of PKCζ from both retinal pigment epithelium junctions and cone outer segment. Outer blood retinal barrier disruption and photoreceptor cone degeneration characterized long-term hyperglycemia. In vivo, reduction of PKCζ overactivation using a specific inhibitor, restored its tight-junction localization and not only improved the outer blood retinal barrier, but also reduced photoreceptor cell-death.

Conclusions

In the retina, hyperglycemia induced overactivation of PKCζ is associated with outer blood retinal barrier breakdown and photoreceptor degeneration. In vivo, short-term inhibition of PKCζ restores the outer barrier structure and reduces photoreceptor cell death, identifying PKCζ as a potential target for early and underestimated diabetes-induced retinal pathology.  相似文献   

6.

Objectives

The RhoA/ROCK pathway contributes to diabetic cardiomyopathy in part by promoting the sustained activation of PKCβ2 but the details of their interaction are unclear. The purpose of this study was to investigate if over-activation of ROCK in the diabetic heart leads to direct phosphorylation and activation of PKCβ2, and to determine if their interaction affects PDK-1/Akt signaling.

Methods

Regulation by ROCK of PKCβ2 and related kinases was investigated by Western blotting and co-immunoprecipitation in whole hearts and isolated cardiomyocytes from 12 to 14-week diabetic rats. Direct ROCK2 phosphorylation of PKCβ2 was examined in vitro. siRNA silencing was used to confirm role of ROCK2 in PKCβ2 phosphorylation in vascular smooth muscle cells cultured in high glucose. Furthermore, the effect of ROCK inhibition on GLUT4 translocation was determined in isolated cardiomyocytes by confocal microscopy.

Results

Expression of ROCK2 and expression and phosphorylation of PKCβ2 were increased in diabetic hearts. A physical interaction between the two kinases was demonstrated by reciprocal immunoprecipitation, while ROCK2 directly phosphorylated PKCβ2 at T641 in vitro. ROCK2 siRNA in vascular smooth muscle cells or inhibition of ROCK in diabetic hearts reduced PKCβ2 T641 phosphorylation, and this was associated with attenuation of PKCβ2 activity. PKCβ2 also formed a complex with PDK-1 and its target AKT, and ROCK inhibition resulted in upregulation of the phosphorylation of PDK-1 and AKT, and increased translocation of glucose transporter 4 (GLUT4) to the plasma membrane in diabetic hearts.

Conclusion

This study demonstrates that over-activation of ROCK2 contributes to diabetic cardiomyopathy by multiple mechanisms, including direct phosphorylation and activation of PKCβ2 and interference with the PDK-1-mediated phosphorylation and activation of AKT and translocation of GLUT4. This suggests that ROCK2 is a critical node in the development of diabetic cardiomyopathy and may be an effective target to improve cardiac function in diabetes.  相似文献   

7.

Rationale

Nontypeable Haemophilus influenzae (NTHi) is the most common cause for bacterial exacerbations in chronic obstructive pulmonary disease (COPD). Recent investigations suggest the participation of the inflammasome in the pathomechanism of airway inflammation. The inflammasome is a cytosolic protein complex important for early inflammatory responses, by processing Interleukin-1β (IL-1β) to its active form.

Objectives

Since inflammasome activation has been described for a variety of inflammatory diseases, we investigated whether this pathway plays a role in NTHi infection of the airways.

Methods

A murine macrophage cell line (RAW 264.7), human alveolar macrophages and human lung tissue (HLT) were stimulated with viable or non-viable NTHi and/or nigericin, a potassium ionophore. Secreted cytokines were measured with ELISA and participating proteins detected via Western Blot or immunohistochemistry.

Measurements and Main Results

Western Blot analysis of cells and immunohistochemistry of lung tissue detected the inflammasome key components NLRP3 and caspase-1 after stimulation, leading to a significant induction of IL-1β expression (RAW: control at the lower detection limit vs. NTHi 505±111pg/ml, p<0.01). Inhibition of caspase-1 in human lung tissue led to a significant reduction of IL-1β and IL-18 levels (IL-1β: NTHi 24 h 17423±3198pg/ml vs. NTHi+Z-YVAD-FMK 6961±1751pg/ml, p<0.01).

Conclusion

Our data demonstrate the upregulation of the NRLP3-inflammasome during NTHi-induced inflammation in respiratory cells and tissues. Our findings concerning caspase-1 dependent IL-1β release suggest a role for the inflammasome in respiratory tract infections with NTHi which may be relevant for the pathogenesis of bacterial exacerbations in COPD.  相似文献   

8.

Background

The intravenous anaesthetic propofol retracts neurites and reverses the transport of vesicles in rat cortical neurons. Orexin A (OA) is an endogenous neuropeptide regulating wakefulness and may counterbalance anaesthesia. We aim to investigate if OA interacts with anaesthetics by inhibition of the propofol-induced neurite retraction.

Methods

In primary cortical cell cultures from newborn rats’ brains, live cell light microscopy was used to measure neurite retraction after propofol (2 µM) treatment with or without OA (10 nM) application. The intracellular signalling involved was tested using a protein kinase C (PKC) activator [phorbol 12-myristate 13-acetate (PMA)] and inhibitors of Rho-kinase (HA-1077), phospholipase D (PLD) [5-fluoro-2-indolyl des-chlorohalopemide (FIPI)], PKC (staurosporine), and a PKCε translocation inhibitor peptide. Changes in PKCε Ser729 phosphorylation were detected with Western blot.

Results

The neurite retraction induced by propofol is blocked by Rho-kinase and PMA. OA blocks neurite retraction induced by propofol, and this inhibitory effect could be prevented by FIPI, staurosporine and PKCε translocation inhibitor peptide. OA increases via PLD and propofol decreases PKCε Ser729 phosphorylation, a crucial step in the activation of PKCε.

Conclusions

Rho-kinase is essential for propofol-induced neurite retraction in cortical neuronal cells. Activation of PKC inhibits neurite retraction caused by propofol. OA blocks propofol-induced neurite retraction by a PLD/PKCε-mediated pathway, and PKCε maybe the key enzyme where the wakefulness and anaesthesia signal pathways converge.  相似文献   

9.

Background

Increasing evidence suggests that individual isoforms of protein kinase C (PKC) play distinct roles in regulating platelet activation.

Methodology/Principal Findings

In this study, we focus on the role of two novel PKC isoforms, PKCδ and PKCε, in both mouse and human platelets. PKCδ is robustly expressed in human platelets and undergoes transient tyrosine phosphorylation upon stimulation by thrombin or the collagen receptor, GPVI, which becomes sustained in the presence of the pan-PKC inhibitor, Ro 31-8220. In mouse platelets, however, PKCδ undergoes sustained tyrosine phosphorylation upon activation. In contrast the related isoform, PKCε, is expressed at high levels in mouse but not human platelets. There is a marked inhibition in aggregation and dense granule secretion to low concentrations of GPVI agonists in mouse platelets lacking PKCε in contrast to a minor inhibition in response to G protein-coupled receptor agonists. This reduction is mediated by inhibition of tyrosine phosphorylation of the FcRγ-chain and downstream proteins, an effect also observed in wild-type mouse platelets in the presence of a PKC inhibitor.

Conclusions

These results demonstrate a reciprocal relationship in levels of the novel PKC isoforms δ and ε in human and mouse platelets and a selective role for PKCε in signalling through GPVI.  相似文献   

10.
11.

Objectives

This study investigated the PKCα protein expression in gastric carcinoma, and correlated it with clinicopathological parameters. The prognostic significance of PKCα protein expression in gastric carcinoma was analyzed.

Methods

Quantitative real-time PCR test was applied to compare the PKCα mRNA expression in tumorous and nontumorous tissues of gastric carcinoma in ten randomly selected cases. Then PKCα protein expression was evaluated in 215 cases of gastric carcinoma using immunohistochemical method. The immunoreactivity was scored semiquantitatively as: 0 = absent; 1 = weak; 2 = moderate; and 3 = strong. All cases were further classified into two groups, namely PKCα overexpression group with score 2 or 3, and non-overexpression group with score 0 or 1. The PKCα protein expression was correlated with clinicopathological parameters. Survival analysis was performed to determine the prognostic significance of PKCα protein expression in patients with gastric carcinoma.

Results

PKCα mRNA expression was upregulated in all ten cases of gastric carcinoma via quantitative real-time PCR test. In immunohistochemical study, eighty-eight out of 215 cases (41%) of gastric carcinoma revealed PKCα protein overexpression, which was statistically correlated with age (P = 0.0073), histologic type (P<0.0001), tumor differentiation (P = 0.0110), depth of invasion (P = 0.0003), angiolymphatic invasion (P = 0.0373), pathologic stage (P = 0.0047), and distant metastasis (P = 0.0048). We found no significant difference in overall and disease free survival rates between PKCα overexpression and non-overexpression groups (P = 0.0680 and 0.0587). However, PKCα protein overexpression emerged as a significant independent prognostic factor in multivariate Cox regression analysis (hazard ratio 0.632, P = 0.0415).

Conclusions

PKCα protein is upregulated in gastric carcinoma. PKCα protein expression is statistically correlated with age, histologic type, tumor differentiation, depth of invasion, angiolymphatic invasion, pathologic stage, and distant metastasis. The PKCα protein overexpression in patients with gastric carcinoma is a significant independent prognostic factor in multivariate Cox regression analysis.  相似文献   

12.

Background

Interleukin-33 (IL-33) is a new member of the IL-1 cytokine family. The objectives of present study are to assess whether IL-33 can protect cardiomyocytes from anoxia/reoxygenation (A/R)-induced injury and the mechanism involved in the protection.

Methods

Cardiomyocytes derived from either wild type or JNK1−/− mice were challenged with an A/R with or without IL-33. Myocyte apoptosis was assessed by measuring caspase 3 activity, fragmented DNA and TUNEL staining. In addition, cardiomyocyte oxidative stress was assessed by measuring DHR123 oxidation; PKCβII and JNK phosphorylation were assessed with Western blot.

Results

Challenge of cardiomyocytes with an A/R resulted in cardiomyocyte oxidative stress, PKCβII and JNK phosphorylation, and myocyte apoptosis. Treatment of the cardiomyocytes with IL-33 attenuated the A/R-induced myocyte oxidative stress, prevented PKCβII and JNK phosphorylation and attenuated the A/R-induced myocyte apoptosis. The protective effect of the IL-33 did not show in cardiac myocytes with siRNA specific to PKCβII or myocytes deficient in JNK1. Inhibition of PKCβII prevented the A/R-induced JNK phosphorylation, but inhibition of JNK1 showed no effect on A/R-induced PKCβII phosphorylation.

Conclusions

Our results indicate that IL-33 prevents the A/R-induced myocyte apoptosis through inhibition of PKCβ/JNK pathway.  相似文献   

13.

Objectives

The epidemiology of invasive Haemophilus influenzae (Hi) has changed since the introduction of the Hi type b (Hib) vaccine. The aim of this study was to analyze the clinical and molecular epidemiology of Hi invasive disease in adults.

Methods

Clinical data of the 82 patients with Hi invasive infections were analyzed. Antimicrobial susceptibility, serotyping, and genotyping were studied (2008–2013).

Results

Men accounted for 63.4% of patients (whose mean age was 64.3 years). The most frequent comorbidities were immunosuppressive therapy (34.1%), malignancy (31.7%), diabetes, and COPD (both 22%). The 30-day mortality rate was 20.7%. The majority of the strains (84.3%) were nontypeable (NTHi) and serotype f was the most prevalent serotype in the capsulated strains. The highest antimicrobial resistance was for cotrimoxazole (27.1%) and ampicillin (14.3%). Twenty-three isolates (32.9%) had amino acid changes in the PBP3 involved in resistance. Capsulated strains were clonal and belonged to clonal complexes 6 (serotype b), 124 (serotype f), and 18 (serotype e), whereas NTHi were genetically diverse.

Conclusions

Invasive Hi disease occurred mainly in elderly and those with underlying conditions, and it was associated with a high mortality rate. NTHi were the most common cause of invasive disease and showed high genetic diversity.  相似文献   

14.
15.
16.
17.
18.
19.

Introduction

The repair capability of traumatized articular cartilage is highly limited so that joint injuries often lead to osteoarthritis. Migratory chondrogenic progenitor cells (CPC) might represent a target cell population for in situ regeneration. This study aims to clarify, whether 1) CPC are present in regions of macroscopically intact cartilage from human osteoarthritic joints, 2) CPC migration is stimulated by single growth factors and the cocktail of factors released from traumatized cartilage and 3) CPC migration is influenced by cytokines present in traumatized joints.

Methods

We characterized the cells growing out from macroscopically intact human osteoarthritic cartilage using a panel of positive and negative surface markers and analyzed their differentiation capacity. The migratory response to platelet-derived growth factor (PDGF)-BB, insulin-like growth factor 1 (IGF-1), supernatants obtained from in vitro traumatized cartilage and interleukin-1 beta (IL-1β) as well as tumor necrosis factor alpha (TNF-α) were tested with a modified Boyden chamber assay. The influence of IL-1β and TNF-α was additionally examined by scratch assays and outgrowth experiments.

Results

A comparison of 25 quadruplicate marker combinations in CPC and bone-marrow derived mesenchymal stromal cells showed a similar expression profile. CPC cultures had the potential for adipogenic, osteogenic and chondrogenic differentiation. PDGF-BB and IGF-1, such as the supernatant from traumatized cartilage, induced a significant site-directed migratory response. IL-1β and TNF-α significantly reduced basal cell migration and abrogated the stimulative effect of the growth factors and the trauma supernatant. Both cytokines also inhibited cell migration in the scratch assay and primary outgrowth of CPC from cartilage tissue. In contrast, the cytokine IL-6, which is present in trauma supernatant, did not affect growth factor induced migration of CPC.

Conclusion

These results indicate that traumatized cartilage releases chemoattractive factors for CPC but IL-1β and TNF-α inhibit their migratory activity which might contribute to the low regenerative potential of cartilage in vivo.  相似文献   

20.

Background

Unambiguous identification of nontypeable Haemophilus influenzae (NTHi) is not possible by conventional microbiology. Molecular characterisation of phenotypically defined NTHi isolates suggests that up to 40% are Haemophilus haemolyticus (Hh); however, the genetic similarity of NTHi and Hh limits the power of simple molecular techniques such as PCR for species discrimination.

Methodology/Principal Findings

Here we assess the ability of previously published and novel PCR-based assays to identify true NTHi. Sixty phenotypic NTHi isolates, classified by a dual 16S rRNA gene PCR algorithm as NTHi (n = 22), Hh (n = 27) or equivocal (n = 11), were further characterised by sequencing of the 16S rRNA and recA genes then interrogated by PCR-based assays targeting the omp P2, omp P6, lgtC, hpd, 16S rRNA, fucK and iga genes. The sequencing data and PCR results were used to define NTHi for this study. Two hpd real time PCR assays (hpd#1 and hpd#3) and the conventional iga PCR assay were equally efficient at differentiating study-defined NTHi from Hh, each with a receiver operator characteristic curve area of 0.90 [0.83; 0.98]. The hpd#1 and hpd#3 assays were completely specific against a panel of common respiratory bacteria, unlike the iga PCR, and the hpd#3 assay was able to detect below 10 copies per reaction.

Conclusions/Significance

Our data suggest an evolutionary continuum between NTHi and Hh and therefore no single gene target could completely differentiate NTHi from Hh. The hpd#3 real time PCR assay proved to be the superior method for discrimination of NTHi from closely related Haemophilus species with the added potential for quantification of H. influenzae directly from specimens. We suggest the hpd#3 assay would be suitable for routine NTHi surveillance and to assess the impact of antibiotics and vaccines, on H. influenzae carriage rates, carriage density, and disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号