首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang H  Wu LJ  Kim SS  Lee FJ  Gong B  Toyoda H  Ren M  Shang YZ  Xu H  Liu F  Zhao MG  Zhuo M 《Neuron》2008,59(4):634-647
The fragile X mental retardation protein (FMRP) is an RNA-binding protein that controls translational efficiency and regulates synaptic plasticity. Here, we report that FMRP is involved in dopamine (DA) modulation of synaptic potentiation. AMPA glutamate receptor subtype 1 (GluR1) surface expression and phosphorylation in response to D1 receptor stimulation were reduced in cultured Fmr1(-/-) prefrontal cortex (PFC) neurons. Furthermore, D1 receptor signaling was impaired, accompanied by D1 receptor hyperphosphorylation at serine sites and subcellular redistribution of G protein-coupled receptor kinase 2 (GRK2) in both PFC and striatum of Fmr1(-/-) mice. FMRP interacted with GRK2, and pharmacological inhibition of GRK2 rescued D1 receptor signaling in Fmr1(-/-) neurons. Finally, D1 receptor agonist partially rescued hyperactivity and enhanced the motor function of Fmr1(-/-) mice. Our study has identified FMRP as a key messenger for DA modulation in the forebrain and may provide insights into the cellular and molecular mechanisms underlying fragile X syndrome.  相似文献   

2.
ABSTRACT: BACKGROUND: Fragile X syndrome (FXS) is caused by the absence of the mRNA-binding protein Fragile X mental retardation protein (FMRP), encoded by the Fmr1 gene. Overactive signaling by group 1 metabotropic glutamate receptor (Grp1 mGluR) could contribute to slowed synaptic development and other symptoms of FXS. Our previous study has identified that facilitation of synaptic long-term potentiation (LTP) by D1 receptor is impaired in Fmr1 knockout (KO) mice. However, the contribution of Grp1 mGluR to the facilitation of synaptic plasticity by D1 receptor stimulation in the prefrontal cortex has been less extensively studied. RESULTS: Here we demonstrated that DL-AP3, a Grp1 mGluR antagonist, rescued LTP facilitation by D1 receptor agonist SKF81297 in Fmr1KO mice. Grp1 mGluR inhibition restored the GluR1-subtype AMPA receptors surface insertion by D1 activation in the cultured Fmr1KO neurons. Simultaneous treatment of Grp1 mGluR antagonist with D1 agonist recovered the D1 receptor signaling by reversing the subcellular redistribution of G protein-coupled receptor kinase 2 (GRK2) in the Fmr1KO neurons. Treatment of SKF81297 alone failed to increase the phosphorylation of NR2B-containing N-methyl D-aspartate receptors (NMDARs) at Tyr-1472 (p-NR2B-Tyr1472) in the cultures from KO mice. However, simultaneous treatment of DL-AP3 could rescue the level of p-NR2B-Tyr1472 by SKF81297 in the cultures from KO mice. Furthermore, behavioral tests indicated that simultaneous treatment of Grp1 mGluR antagonist with D1 agonist inhibited hyperactivity and improved the learning ability in the Fmr1KO mice. CONCLUSION: The findings demonstrate that mGluR1 inhibition is a useful strategy to recover D1 receptor signaling in the Fmr1KO mice, and combination of Grp1 mGluR antagonist and D1 agonist is a potential drug therapy for the FXS.  相似文献   

3.
Fragile X syndrome (FXS) is a well-recognized form of inherited mental retardation, caused by a mutation in the fragile X mental retardation 1 (Fmr1) gene. The gene is located on the long arm of the X chromosome and encodes fragile X mental retardation protein (FMRP). Absence of FMRP in fragile X patients as well as in Fmr1 knockout (KO) mice results, among other changes, in abnormal dendritic spine formation and altered synaptic plasticity in the neocortex and hippocampus. Clinical features of FXS include cognitive impairment, anxiety, abnormal social interaction, mental retardation, motor coordination and speech articulation deficits. Mouse pups generate ultrasonic vocalizations (USVs) when isolated from their mothers. Whether those social ultrasonic vocalizations are deficient in mouse models of FXS is unknown. Here we compared isolation-induced USVs generated by pups of Fmr1-KO mice with those of their wild type (WT) littermates. Though the total number of calls was not significantly different between genotypes, a detailed analysis of 10 different categories of calls revealed that loss of Fmr1 expression in mice causes limited and call-type specific deficits in ultrasonic vocalization: the carrier frequency of flat calls was higher, the percentage of downward calls was lower and that the frequency range of complex calls was wider in Fmr1-KO mice compared to their WT littermates.  相似文献   

4.
Fragile X syndrome (FXS), a common form of inherited mental retardation, is caused by the lack of fragile X mental retardation protein (FMRP). The animal model of FXS, Fmr1 knockout mice, have deficits in the Morris water maze and trace fear memory tests, showing impairment in hippocampus-dependent learning and memory. However, results for synaptic long-term potentiation (LTP), a key cellular model for learning and memory, remain inconclusive in the hippocampus of Fmr1 knockout mice. Here, we demonstrate that FMRP is required for glycine induced LTP (Gly-LTP) in the CA1 of hippocampus. This form of LTP requires activation of post-synaptic NMDA receptors and metabotropic glutamateric receptors, as well as the subsequent activation of extracellular signal-regulated kinase (ERK) 1/2. However, paired-pulse facilitation was not affected by glycine treatment. Genetic deletion of FMRP interrupted the phosphorylation of ERK1/2, suggesting the possible role of FMRP in the regulation of the activity of ERK1/2. Our study provide strong evidences that FMRP participates in Gly-LTP in the hippocampus by regulating the phosphorylation of ERK1/2, and that improper regulation of these signaling pathways may contribute to the learning and memory deficits observed in FXS.  相似文献   

5.
Fragile X syndrome, the most common form of inherited mental retardation, is caused by the absence of the RNA-binding protein fragile X mental retardation protein (FMRP). FMRP regulates local protein synthesis in dendritic spines. Dopamine (DA) is involved in the modulation of synaptic plasticity. Activation of DA receptors can regulate higher brain functions in a protein synthesis-dependent manner. Our recent study has shown that FMRP acts as a key messenger for DA modulation in forebrain neurons. Here, we demonstrate that FMRP is critical for DA D1 receptor-mediated synthesis of synapse-associated protein 90/PSD-95-associated protein 3 (SAPAP3) in the prefrontal cortex (PFC). DA D1 receptor stimulation induced dynamic changes of FMRP phosphorylation. The changes in FMRP phosphorylation temporally correspond with the expression of SAPAP3 after D1 receptor stimulation. Protein phosphatase 2A, ribosomal protein S6 kinase, and mammalian target of rapamycin are the key signaling molecules for FMRP linking DA D1 receptors to SAPAP3. Knockdown of SAPAP3 did not affect surface expression of α-amino-3-hydroxyl-5-methyl-4-isoxazole-4-propionate (AMPA) GluR1 receptors induced by D1 receptor activation but impaired their subsequent internalization in cultured PFC neurons; the subsequent internalization of GluR1 was also impaired in Fmr1 knock-out PFC neurons, suggesting that FMRP may be involved in subsequent internalization of GluR1 through regulating the abundance of SAPAP3 after DA D1 receptor stimulation. Our study thus provides further insights into FMRP involvement in DA modulation and may help to reveal the molecular mechanisms underlying impaired learning and memory in fragile X syndrome.  相似文献   

6.
Behavioral intervention therapy has proven beneficial in the treatment of autism and intellectual disabilities (ID), raising the possibility of certain changes in molecular mechanisms activated by these interventions that may promote learning. Fragile X syndrome (FXS) is a neurodevelopmental disorder characterized by autistic features and intellectual disability and can serve as a model to examine mechanisms that promote learning. FXS results from mutations in the fragile X mental retardation 1 gene (Fmr1) that prevents expression of the Fmr1 protein (FMRP), a messenger RNA (mRNA) translation regulator at synapses. Among many other functions, FMRP organizes a complex with the actin cytoskeleton-regulating small Rho GTPase Rac1. As in humans, Fmr1 KO mice lacking FMRP display autistic-like behaviors and deformities of actin-rich synaptic structures in addition to impaired hippocampal learning and synaptic plasticity. These features have been previously linked to proper function of actin remodeling proteins that includes Rac1. An important step in Rac1 activation and function is its translocation to the membrane, where it can influence synaptic actin cytoskeleton remodeling during hippocampus-dependent learning. Herein, we report that Fmr1 KO mouse hippocampus exhibits increased levels of membrane-bound Rac1, which may prevent proper learning-induced synaptic changes. We also determine that increasing training intensity during fear conditioning (FC) training restores contextual memory in Fmr1 KO mice and reduces membrane-bound Rac1 in Fmr1 KO hippocampus. Increased training intensity also results in normalized long-term potentiation in hippocampal slices taken from Fmr1 KO mice. These results point to interventional treatments providing new therapeutic options for FXS-related cognitive dysfunction.  相似文献   

7.
Association of PKA with the AMPA receptor GluR1 subunit via the A kinase anchor protein AKAP150 is crucial for GluR1 phosphorylation. Mutating the AKAP150 gene to specifically prevent PKA binding reduced PKA within postsynaptic densities (>70%). It abolished hippocampal LTP in 7-12 but not 4-week-old mice. Inhibitors of PKA and of GluR2-lacking AMPA receptors blocked single tetanus LTP in hippocampal slices of 8 but not 4-week-old WT mice. Inhibitors of GluR2-lacking AMPA receptors also prevented LTP in 2 but not 3-week-old mice. Other studies demonstrate that GluR1 homomeric AMPA receptors are the main GluR2-lacking AMPA receptors in adult hippocampus and require PKA for their functional postsynaptic expression during potentiation. AKAP150-anchored PKA might thus critically contribute to LTP in adult hippocampus in part by phosphorylating GluR1 to foster postsynaptic accumulation of homomeric GluR1 AMPA receptors during initial LTP in 8-week-old mice.  相似文献   

8.
Fragile X syndrome (FXS) is a form of inherited mental retardation in humans that results from expansion of a CGG repeat in the Fmr1 gene. Recent studies suggest a role of astrocytes in neuronal development. However, the mechanisms involved in the regulation process of astrocytes from FXS remain unclear. In this study, we found that astrocytes derived from a Fragile X model, the Fmr1 knockout (KO) mouse which lacks FMRP expression, inhibited the proper elaboration of dendritic processes of neurons in vitro. Furthermore, astrocytic conditioned medium (ACM) from KO astrocytes inhibited proper dendritic growth of both wild-type (WT) and KO neurons. Inducing expression of FMRP by transfection of FMRP vectors in KO astrocytes restored dendritic morphology and levels of synaptic proteins. Further experiments revealed elevated levels of the neurotrophin-3 (NT-3) in KO ACM and the prefrontal cortex of Fmr1 KO mice. However, the levels of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF), and ciliary neurotrophic factor (CNTF) were normal. FMRP has multiple RNA–binding motifs and is involved in translational regulation. RNA–binding protein immunoprecipitation (RIP) showed the NT-3 mRNA interacted with FMRP in WT astrocytes. Addition of high concentrations of exogenous NT-3 to culture medium reduced the dendrites of neurons and synaptic protein levels, whereas these measures were ameliorated by neutralizing antibody to NT-3 or knockdown of NT-3 expression in KO astrocytes through short hairpin RNAs (shRNAs). Prefrontal cortex microinjection of WT astrocytes or NT-3 shRNA infected KO astrocytes rescued the deficit of trace fear memory in KO mice, concomitantly decreased the NT-3 levels in the prefrontal cortex. This study indicates that excessive NT-3 from astrocytes contributes to the abnormal neuronal dendritic development and that astrocytes could be a potential therapeutic target for FXS.  相似文献   

9.
The fragile X mental retardation 1 mutant mouse (Fmr1 KO) recapitulates several of the neurologic deficits associated with Fragile X syndrome (FXS). As tactile hypersensitivity is a hallmark of FXS, we examined the sensory representation of individual whiskers in somatosensory barrel cortex of Fmr1 KO and wild-type (WT) mice and compared their performance in a whisker-dependent learning paradigm, the gap cross assay. Fmr1 KO mice exhibited elevated responses to stimulation of individual whiskers as measured by optical imaging of intrinsic signals. In the gap cross task, initial performance of Fmr1 KO mice was indistinguishable from WT controls. However, while WT mice improved significantly with experience at all gap distances, Fmr1 KO mice displayed significant and specific deficits in improvement at longer distances which rely solely on tactile information from whiskers. Thus, Fmr1 KO mice possess altered cortical responses to sensory input that correlates with a deficit in tactile learning.  相似文献   

10.

Background

Fragile X Syndrome is the most common known genetic cause of autism. The Fmr1-KO mouse, lacks the fragile X mental retardation protein (FMRP), and is used as a model of the syndrome. The core behavioral deficits of autism may be conceptualized either as excessive adherence to patterns as seen in repetitive actions and aberrant language, or as insensitivity to subtle but socially important changes in patterns. The hippocampus receives information from the entorhinal cortex and plays a crucial role in the processing of patterned information. To gain more insight into the physiological function of FMRP and the neuronal mechanisms underlying fragile X syndrome, we examined the electrophysiological response of the hippocampus to pair pulse stimulation as a measure of patterned information processing and how it is affected in the Fmr1-KO mouse.

Methods

In this study, we used paired-pulse stimulation of the afferent perforant path and recorded from the CA1 region of the hippocampus. Two-month-old FVB/NJ male mice and age-matched Fmr1-KO mice were used in this study. Hippocampal slices were prepared, equilibrated in artificial cerebrospinal fluid (aCSF), and excitatory post synaptic potentials (EPSPs) measured by stimulating the perforant path of the dentate gyrus (DG) while recording from the molecular layer of CA1. Stimulation occurred by setting current and pulse width to evoke a fixed percentage of maximal EPSP amplitude. This stimulation paradigm allowed us to examine the processing capabilities of the hippocampus as a function of increasing interstimulus intervals (ISI) and how taurine, a GABAA receptor agonist, affects such information processing.

Results

We found that hippocampal slices from wild type (WT) showed pair-pulse facilitation at ISI of 100-300 ms whereas slices from Fmr1-KO brains showed a consistent pair-pulse depression at a comparable ISI. Addition of 10 μM taurine to WT slices resulted in a drastic decrease of the peak response to the second stimulus, resulting in an initial depression at 100 ms ISI followed by potentiation at higher ISI (150 ms and above). In the presence of taurine, the amplitude of the second response remained significantly lower than in its absence. Fmr1-KO mice however, were completely insensitive to taurine application and pair-pulse stimulation always resulted in a depression of the response to the second stimulus.

Conclusions

Previously we reported that Fmr1-KO mice have reduced beta subunits of the GABAA receptors. We also showed as well as others that taurine acts as an agonist or a modulator for GABAA receptors. Therefore, the insensitivity of Fmr1-KO slices to taurine application could be due to the reduced binding sites on the GABAA receptors in the Fmr1-KO mice.
  相似文献   

11.
Fragile X syndrome (FXS) is the most common form of inherited mental retardation (MR). FXS is typically caused by a mutation of the Fmr1 gene (Verkerk et al. 1991, Cell 65, 905-914). To better understand the role of Fmr1 and its gene product fragile X mental-retardation protein (FMRP) in central nervous system function, researchers have turned to the use of animal model systems to generate an Fmr1 knockout (KO) mouse that is deficient in FMRP (Bakker et al. 1994, Cell 78, 23-33). Unfortunately, a number of studies have found no consistent, robust learning and memory impairment in the Fmr1 KO mice. We conducted a study to assess the performance of Fmr1 KO and wildtype (WT) animals in a leverpress escape/avoidance paradigm. Fmr1 KO and WT littermates were studied in four daily 1-h sessions. The Fmr1 KO mice performed fewer avoidance and total responses than WT mice. The KO animals were not simply deficient in avoidance, but a within-factor ANOVA revealed that they did not acquire the leverpress response to any appreciable degree. Observation during the sessions indicated that the Fmr1 KO animals clearly responded to the shock, eliminating an obvious sensory explanation for the deficit. The fact that other studies have found that the KO mice displayed increased exploratory and locomotor activity compared with WT controls argues against a motoric deficit. Future studies will attempt to delineate the nature of the behavioral deficit as well as attempt to rescue the response with glutamatergic or dopaminergic agents.  相似文献   

12.
Fragile X syndrome is a developmental disorder that affects sensory systems. A null mutation of the Fragile X Mental Retardation protein 1 (Fmr1) gene in mice has varied effects on developmental plasticity in different sensory systems, including normal barrel cortical plasticity, altered ocular dominance plasticity and grossly impaired auditory frequency map plasticity. The mutation also has different effects on long-term synaptic plasticity in somatosensory and visual cortical neurons, providing insights on how it may differentially affect the sensory systems. Here we present evidence that long-term potentiation (LTP) is impaired in the developing auditory cortex of the Fmr1 knockout (KO) mice. This impairment of synaptic plasticity is consistent with impaired frequency map plasticity in the Fmr1 KO mouse. Together, these results suggest a potential role of LTP in sensory map plasticity during early sensory development.  相似文献   

13.
14.
15.
The present study investigated the role of O-linked β-N-acetylglucosamine (O-GlcNAc) glycosylation (O-GlcNAcylation) in AMPA receptor trafficking. Alloxan, an inhibitor of O-GlcNAc transferase, potentiated responses of AMPA receptors composed of the GluR1 subunit expressed in Xenopus oocytes. No potentiating effect of alloxan was obtained with mutant GluR1 (S831A) receptor lacking CaMKII phosphorylation site. Alloxan facilitated basal synaptic transmission to approximately 120% of basal levels and enhanced Schaffer collateral-CA1 long-term potentiation (LTP) in rat hippocampal slices, especially in the late phase of the LTP. Alloxan stimulated translocation of the GluR1 and GluR2 subunit from the cytosol towards the plasma membrane in rat hippocampal slices with the LTP, although it had no effect on subcellular distribution of the NR1 subunit. Taken together, the results of the present study show that alloxan regulates AMPA receptor trafficking by inhibiting O-GlcNAcylation, to modulate hippocampal synaptic transmission and synaptic plasticity.  相似文献   

16.
Fragile X syndrome, caused by a mutation in the Fmr1 gene, is characterized by mental retardation. Several studies reported the absence of long-term potentiation (LTP) at neocortical synapses in Fmr1 knockout (FMR1-KO) mice, but underlying cellular mechanisms are unknown. We find that in the prefrontal cortex (PFC) of FMR1-KO mice, spike-timing-dependent LTP (tLTP) is not so much absent, but rather, the threshold for tLTP induction is increased. Calcium signaling in dendrites and spines is compromised. First, dendrites and spines more often fail to show calcium transients. Second, the activity of L-type calcium channels is absent in spines. tLTP could be restored by improving reliability and amplitude of calcium signaling by increasing neuronal activity. In FMR1-KO mice that were raised in enriched environments, tLTP was restored to WT levels. Our results show that mechanisms for synaptic plasticity are in place in the FMR1-KO mouse PFC, but require stronger neuronal activity to be triggered.  相似文献   

17.
The anterior cingulate cortex (ACC) is critical for brain functions including learning, memory, fear and pain. Long-term synaptic potentiation (LTP), a cellular model for learning and memory, has been reported in the ACC neurons. Unlike LTP in the hippocampus and amygdala, two key structures for memory and fear, little is known about the synaptic mechanism for the expression of LTP in the ACC. Here we use whole-cell patch clamp recordings to demonstrate that cingulate LTP requires the functional recruitment of GluR1 AMPA receptors; and such events are rapid and completed within 5-10 min after LTP induction. Our results demonstrate that the GluR1 subunit is essential for synaptic plasticity in the ACC and may play critical roles under physiological and pathological conditions.  相似文献   

18.
19.
Methamphetamine (METH) is an addictive psychostimulant whose societal impact is on the rise. Emerging evidence suggests that psychostimulants alter synaptic plasticity in the brain—which may partly account for their adverse effects. While it is known that METH increases the extracellular concentration of monoamines dopamine, serotonin, and norepinephrine, it is not clear how METH alters glutamatergic transmission. Within this context, the aim of the present study was to investigate the effects of acute and systemic METH on basal synaptic transmission and long-term potentiation (LTP; an activity-induced increase in synaptic efficacy) in CA1 sub-field in the hippocampus. Both the acute ex vivo application of METH to hippocampal slices and systemic administration of METH decreased LTP. Interestingly, the acute ex vivo application of METH at a concentration of 30 or 60 µM increased baseline synaptic transmission as well as decreased LTP. Pretreatment with eticlopride (D2-like receptor antagonist) did not alter the effects of METH on synaptic transmission or LTP. In contrast, pretreatment with D1/D5 dopamine receptor antagonist SCH23390 or 5-HT1A receptor antagonist NAN-190 abrogated the effect of METH on synaptic transmission. Furthermore, METH did not increase baseline synaptic transmission in D1 dopamine receptor haploinsufficient mice. Our findings suggest that METH affects excitatory synaptic transmission via activation of dopamine and serotonin receptor systems in the hippocampus. This modulation may contribute to synaptic maladaption induced by METH addiction and/or METH-mediated cognitive dysfunction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号