首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We developed and validated a real-time quantitative polymerase chain reaction (qPCR) assay to determine Mycoplasma genitalium bacterial load in endocervical swabs, based on amplification of the pdhD gene which encodes dihydrolipoamide dehydrogenase, using the Rotor-Gene platform. We first determined the qPCR assay sensitivity, limit of detection, reproducibility and specificity, and then determined the ability of the qPCR assay to quantify M. genitalium in stored endocervical specimens collected from Zimbabwean women participating in clinical research undertaken between 1999 and 2007. The qPCR assay had a detection limit of 300 genome copies/mL and demonstrated low intra- and inter-assay variability. The assay was specific for M. genitalium DNA and did not amplify the DNA from other mycoplasma and ureaplasma species. We quantified M. genitalium in 119 of 1600 endocervical swabs that tested positive for M. genitalium using the commercial Sacace M. genitalium real-time PCR, as well as 156 randomly selected swabs that were negative for M. genitalium by the same assay. The M. genitalium loads ranged between < 300 and 3,240,000 copies/mL. Overall, the qPCR assay demonstrated good range of detection, reproducibility and specificity and can be used for both qualitative and quantitative analyses of M. genitalium in endocervical specimens and potentially other genital specimens.  相似文献   

2.
With a genome size of ∼580 kb and approximately 480 protein coding regions, Mycoplasma genitalium is one of the smallest known self-replicating organisms and, additionally, has extremely fastidious nutrient requirements. The reduced genomic content of M. genitalium has led researchers to suggest that the molecular assembly contained in this organism may be a close approximation to the minimal set of genes required for bacterial growth. Here, we introduce a systematic approach for the construction and curation of a genome-scale in silico metabolic model for M. genitalium. Key challenges included estimation of biomass composition, handling of enzymes with broad specificities, and the lack of a defined medium. Computational tools were subsequently employed to identify and resolve connectivity gaps in the model as well as growth prediction inconsistencies with gene essentiality experimental data. The curated model, M. genitalium iPS189 (262 reactions, 274 metabolites), is 87% accurate in recapitulating in vivo gene essentiality results for M. genitalium. Approaches and tools described herein provide a roadmap for the automated construction of in silico metabolic models of other organisms.  相似文献   

3.
《Gene》1997,195(2):113-120
The malate (MDH) and lactate (LDH) dehydrogenases belong to the homologous class of 2-ketoacid dehydrogenases. The specificity for their respective substrates depends on residues differing at two or three regions within each molecule. Theoretical peptide-mass fingerprinting and PROSITE analysis of nine MDH and six LDH molecules were used to describe conserved sites related to function. A unique LDH is described which probably also confers MDH activity within the 580 kbp genome of Mycoplasma genitalium (class: Mollicutes). A single hydrophilic arginine residue was found in the active site of the M. genitalium LDH enzyme, differing from an hydrophobic residue normally present in these molecules. The effect of this residue may be to alter active site substrate specificity, allowing the enzyme to perform two closely related tasks. Evidence for a single gene affording dual enzymatic function is discussed in terms of genome size reduction in the simplest of free-living organisms. Since Mollicutes are thought to lack enzymes of the tricarboxylic acid cycle that would otherwise bind and interact with MDH in bacterial species possessing this pathway, active site modification of M. genitalium LDH is the sole requirement for MDH activity of this molecule. The closely related helical Mollicute, Spiroplasma melliferum, was shown to possess two distinct gene products for MDH/LDH activity.  相似文献   

4.
In this study, we identified and characterized the enzymatic properties of MG_186, a calcium-dependent Mycoplasma genitalium nuclease. MG_186 displays the hallmarks of nucleases, as indicated by its amino acid sequence similarity to other nucleases. We cloned, UGA corrected, expressed, purified, and demonstrated that recombinant MG_186 (rMG_186) exhibits nuclease activity similar to that of typical sugar-nonspecific endonucleases and exonucleases. Biochemical characterization indicated that Ca2+ alone enhances its activity, which was inhibited by divalent cations, such as Zn2+ and Mn2+. Chelating agents EGTA and EDTA also inhibited nuclease activity. Mycoplasma membrane fractionation and Triton X-114 phase separation showed that MG_186 was a membrane-associated lipoprotein, and electron microscopy revealed its surface membrane location. Incubation of purified human endometrial cell nuclei with rMG_186 resulted in DNA degradation and morphological changes typical of apoptosis. Further, immunofluorescence analysis of rMG_186-treated nuclei indicated that morphological changes were linked to the disintegration of lamin and the internalization of rMG_186. Since M. genitalium has the capacity to invade eukaryotic cells and localize to the perinuclear and nuclear region of parasitized target cells, MG_186 has the potential to provide M. genitalium, which possesses the smallest genome of any self-replicating cell, with the ability to degrade host nucleic acids both as a source of nucleotide precursors for growth and for pathogenic purposes.Mycoplasma genitalium was first identified as a urogenital tract pathogen in men and subsequently implicated in a range of women pathologies, including pelvic inflammatory diseases, cervicitis, endometritis, salpingitis, and tubal factor infertility (5, 37, 40). In addition to its urogenital niche, M. genitalium has been detected in synovial and respiratory tract specimens (3, 39). M. genitalium DNA sequencing revealed a reduced genome size of 580 kb and a low GC content, along with 482 protein-encoding genes, of which 76 were categorized as hypothetical proteins (18). The streamlined genome of M. genitalium results in gene deficits that dramatically limit its biosynthetic capabilities, leading to a complete dependence on the host for metabolic precursors, such as nucleotides, amino acids, fatty acids, and sterols.Since M. genitalium, like most mollicutes, is unable to synthesize de novo purine and pyrimidine bases (27), it must scavenge nucleotides from the host in order to replicate and persist. Only Mycoplasma penetrans has an orotate-related pathway for converting carbamoyl-phosphate to uridine-5′-monophosphate (34). The importance of nucleases in the life cycle of mycoplasmas is reinforced by their detection in at least 20 Mycoplasma species (26). Purification of membrane-associated Ca2+/Mg2+-dependent M. penetrans and Mycoplasma hyorhinis nucleases and their relation to mycoplasma survival and pathogenesis have been reported (7, 8, 29, 30). Also, a membrane nuclease gene, mnuA, was identified and cloned from Mycoplasma pulmonis (20, 25). mnuA orthologous sequences were found in M. penetrans, Mycoplasma pneumoniae, Mycoplasma hyopneumoniae, Mycoplasma gallisepticum, and Ureaplasma urealyticum but not in M. genitalium. However, recent nuclease studies with M. hyopneumoniae (nuclease gene designated mhp379) revealed the existence of orthologous sequences in M. genitalium as well as in M. pneumoniae, M. pulmonis, M. gallisepticum, and Mycoplasma synoviae (35).M. genitalium was initially described as an extracellular pathogen. Subsequently, we reported that M. genitalium can be observed in the cytoplasmic and perinuclear regions of infected mammalian cells and can persist long-term within these compartments (4, 13, 24). The latter supports the contention that M. genitalium is capable of intracellular replication and survival. Furthermore, our recent evidence suggests that M. genitalium and its protein products are capable of intranuclear localization within infected endometrial cells (41). Therefore, understanding how M. genitalium overcomes its biosynthetic deficiencies and successfully parasitizes host tissues may provide insights into its biological uniqueness as the smallest pathogen capable of “independent” growth. In this report, we characterized a putative lipoprotein, MG_186, that retains the thermostable nuclease motif found in other bacterial nucleases. The gene encoding MG_186 was cloned and expressed in Escherichia coli, and the biochemical properties of purified recombinant MG_186 (rMG_186) nuclease protein were examined along with its impact on intact nuclei isolated from endometrial cells.  相似文献   

5.
Genomic repeats, genome plasticity and the dynamics of Mycoplasma evolution   总被引:8,自引:0,他引:8  
Mycoplasmas evolved by a drastic reduction in genome size, but their genomes contain numerous repeated sequences with important roles in their evolution. We have established a bioinformatic strategy to detect the major recombination hot-spots in the genomes of Mycoplasma pneumoniae, Mycoplasma genitalium, Ureaplasma urealyticum and Mycoplasma pulmonis. This allowed the identification of large numbers of potentially variable regions, as well as a comparison of the relative recombination potentials of different genomic regions. Different trends are perceptible among mycoplasmas, probably due to different functional and structural constraints. The largest potential for illegitimate recombination in M.pulmonis is found at the vsa locus and its comparison in two different strains reveals numerous changes since divergence. On the other hand, the main M.pneumoniae and M.genitalium adhesins rely on large distant repeats and, hence, homologous recombination for variation. However, the relation between the existence of repeats and antigenic variation is not necessarily straightforward, since repeats of P1 adhesin were found to be anti-correlated with epitopes recognized by patient antibodies. These different strategies have important consequences for the structures of genomes, since large distant repeats correlate well with the major chromosomal rearrangements. Probably to avoid such events, mycoplasmas strongly avoid inverse repeats, in comparison to co-oriented repeats.  相似文献   

6.

Background  

Several methods have been reported for strain typing of Mycoplasma genitalium. The value of these methods has never been comparatively assessed. The aims of this study were: 1) to identify new potential genetic markers based on an analysis of short tandem repeat (STR) sequences in the published M. genitalium genome sequence; 2) to apply previously and newly identified markers to a panel of clinical strains in order to determine the optimal combination for an efficient multi-locus genotyping system; 3) to further confirm sexual transmission of M. genitalium using the newly developed system.  相似文献   

7.
《Genomics》2021,113(4):2730-2743
Mycoplasma genitalium is an obligate intracellular bacterium that is responsible for several sexually transmitted infections, including non-gonococcal urethritis in men and several inflammatory reproductive tract syndromes in women. Here, we applied subtractive genomics and reverse vaccinology approaches for in silico prediction of potential vaccine and drug targets against five strains of M. genitalium. We identified 403 genes shared by all five strains, from which 104 non-host homologous proteins were selected, comprising of 44 exposed/secreted/membrane proteins and 60 cytoplasmic proteins. Based on the essentiality, functionality, and structure-based binding affinity, we finally predicted 19 (14 novel) putative vaccine and 7 (2 novel) candidate drug targets. The docking analysis showed six molecules from the ZINC database as promising drug candidates against the identified targets. Altogether, both vaccine candidates and drug targets identified here may contribute to the future development of therapeutic strategies to control the spread of M. genitalium worldwide.  相似文献   

8.
9.

Objectives

To evaluate therapy for Mycoplasma genitalium infection with doxycycline or azithromycin 1 g compared to five days of azithromycin (total dose 1.5 g).

Methods

A retrospective case study was performed among patients attending the STD-clinic in Falun, Sweden 1998–2005. All patients with a positive PCR test for M. genitalium were routinely offered a test of cure (toc). Response to doxycycline for 9 days, azithromycin 1 g single dose and extended azithromycin (500 mg on day 1 followed by 250 mg o.d. for 4 days) was determined. In patients with treatment failure after azithromycin, macrolide resistance was monitored before and after treatment. Furthermore, the rate of macrolide resistance was monitored for positive specimens available from 2006–2011.

Results

The eradication rate after doxycycline was 43% (48% for women and 38% for men), for azithromycin 1 g 91% (96% for women and 88% for men) and for extended azithromycin 99% (100% for women and 93% for men). Macrolide resistance developed in 7/7 examined (100%) of those testing positive after azithromycin 1 g, but in none of those treated with extended azithromycin. Macrolide resistance before treatment increased from 0% in 2006 and 2007 to 18% in 2011.

Conclusions

These findings confirm the results from other studies showing that doxycycline is inefficient in eradicating M. genitalium. Although azithromycin 1 g was not significantly less efficient than extended dosage, it was associated with selection of macrolide resistant M. genitalium strains and should not be used as first line therapy for M. genitalium. Monitoring of M. genitalium macrolide resistance should be encouraged.  相似文献   

10.
11.
The branched M33 antimicrobial peptide was previously shown to be very active against Gram-negative bacterial pathogens, including multidrug-resistant strains. In an attempt to produce back-up molecules, we synthesized an M33 peptide isomer consisting of D-aminoacids (M33-D). This isomeric version showed 4 to 16-fold higher activity against Gram-positive pathogens, including Staphylococcus aureus and Staphylococcus epidermidis, than the original peptide, while retaining strong activity against Gram-negative bacteria. The antimicrobial activity of both peptides was influenced by their differential sensitivity to bacterial proteases. The better activity shown by M33-D against S. aureus compared to M33-L was confirmed in biofilm eradication experiments where M33-L showed 12% activity with respect to M33-D, and in vivo models where Balb-c mice infected with S. aureus showed 100% and 0% survival when treated with M33-D and M33-L, respectively. M33-D appears to be an interesting candidate for the development of novel broad-spectrum antimicrobials active against bacterial pathogens of clinical importance.  相似文献   

12.

Background

To determine clinical outcomes and cure rates for M.genitalium genital infection in men and women following azithromycin 1 g.

Methodology

Patients attending Melbourne Sexual Health Centre between March 2005 and November 2007 with urethritis/epididymitis, cervicitis/pelvic inflammatory disease and sexual contacts of M.genitalium were tested for M.genitalium by polymerase chain reaction (PCR). M.genitalium-infection was treated with 1 g of azithromycin and a test-of-cure (toc) was performed one month post-azithromycin. Response to azithromycin, and response to moxifloxacin (400 mg daily for 10 days) in individuals with persistent infection post-azithromycin, was determined.

Principal Findings

Of 1538 males and 313 females tested, 161 males (11%) and 30 females (10%) were infected with M.genitalium. A toc was available on 131 (69%) infected individuals (median = 36 days [range 12-373]). Of 120 individuals prescribed azithromycin only pre-toc, M.genitalium was eradicated in 101 (84%, 95% confidence intervals [CI]: 77–90%) and persisted in 19 (16%, 95% CI: 10–23%). Eleven individuals with persistent infection (9%, 95% CI: 5–15%) had no risk of reinfection from untreated-partners, while eight (7%, 95% CI: 3–12%) may have been at risk of reinfection from doxycycline-treated or untreated-partners. Moxifloxacin was effective in eradicating persistent infection in all cases not responding to azithromycin. Patients with persistent-M.genitalium were more likely to experience persistent symptoms (91%), compared to patients in whom M.genitalium was eradicated (17%), p<0.0001.

Conclusion

Use of azithromycin 1 g in M.genitalium-infected patients was associated with unacceptable rates of persistent infection, which was eradicated with moxifloxacin. These findings highlight the importance of follow-up in M.genitalium-infected patients prescribed azithromycin, and the need to monitor for the development of resistance. Research to determine optimal first and second-line therapeutic agents for M.genitalium is needed.  相似文献   

13.

Background  

Mycoplasma genitalium is an emerging sexually transmitted pathogen that has been associated with significant reproductive tract inflammatory syndromes in women. In addition, the strong association between severity of M. genitalium infection and Human Immunodeficiency Virus type 1 (HIV-1) shedding from the cervix suggests that innate responses to M. genitalium may influence pathogenesis of other sexually transmitted infections. Epithelial cells (ECs) of the reproductive mucosa are the first cells contacted by sexually transmitted pathogens. Therefore, we first characterized the dynamics of intracellular and extracellular localization and resultant innate immune responses from human vaginal, ecto- and endocervical ECs to M. genitalium type strain G37 and a low-pass contemporary isolate, M2300.  相似文献   

14.
Mycoplasma hominis is an opportunistic human mycoplasma. Two other pathogenic human species, M. genitalium and Ureaplasma parvum, reside within the same natural niche as M. hominis: the urogenital tract. These three species have overlapping, but distinct, pathogenic roles. They have minimal genomes and, thus, reduced metabolic capabilities characterized by distinct energy-generating pathways. Analysis of the M. hominis PG21 genome sequence revealed that it is the second smallest genome among self-replicating free living organisms (665,445 bp, 537 coding sequences (CDSs)). Five clusters of genes were predicted to have undergone horizontal gene transfer (HGT) between M. hominis and the phylogenetically distant U. parvum species. We reconstructed M. hominis metabolic pathways from the predicted genes, with particular emphasis on energy-generating pathways. The Embden–Meyerhoff–Parnas pathway was incomplete, with a single enzyme absent. We identified the three proteins constituting the arginine dihydrolase pathway. This pathway was found essential to promote growth in vivo. The predicted presence of dimethylarginine dimethylaminohydrolase suggested that arginine catabolism is more complex than initially described. This enzyme may have been acquired by HGT from non-mollicute bacteria. Comparison of the three minimal mollicute genomes showed that 247 CDSs were common to all three genomes, whereas 220 CDSs were specific to M. hominis, 172 CDSs were specific to M. genitalium, and 280 CDSs were specific to U. parvum. Within these species-specific genes, two major sets of genes could be identified: one including genes involved in various energy-generating pathways, depending on the energy source used (glucose, urea, or arginine) and another involved in cytadherence and virulence. Therefore, a minimal mycoplasma cell, not including cytadherence and virulence-related genes, could be envisaged containing a core genome (247 genes), plus a set of genes required for providing energy. For M. hominis, this set would include 247+9 genes, resulting in a theoretical minimal genome of 256 genes.  相似文献   

15.
Cervicitis is predominantly caused by Neisseria gonorrhoeae and Chlamydia trachomatis, which accounts for almost half of all the cases of cervicitis. The role of newer organisms like Mycoplasma genitalium and Ureaplasma sp. and association of bacterial load with cervicitis are also not well established. So the study aimed to determine the relative frequency of these organisms and their load in association with cervicitis cases from north India. A case–control study involving 300 women was conducted using quantitative real-time PCR from endocervical swabs for identification of organisms and quantification of bacterial load. Among 150 cervicitis cases, C. trachomatis, N. gonorrhoeae, M. genitalium and Ureaplasma parvum were detected in 5 (3·3%), 10 (6·6%), 37(24·6%) and 47 (31·3%) respectively. Old age (<0·001, chi-squared test) and irregular menstrual cycles (<0·001, chi-squared test) were significantly associated with cervicitis. M genitalium was the only organism to be associated significantly with cervicitis with regard to age (<0·031) and symptoms like discharge (P < 0·033, chi-squared test) and dysuria (P < 0·044, chi-squared test) in multivariate analysis. Our finding suggests that the bacterial load of these organisms is not significantly associated with cervicitis. However, we found significant association of M. genitalium infection with clinical characteristics of cervicitis cases.  相似文献   

16.
Minimally processed fresh produce has been implicated as a major source of foodborne microbial pathogens globally. These pathogens must attach to the produce in order to be transmitted. Cut surfaces of produce that expose cell walls are particularly vulnerable. Little is known about the roles that different structural components (cellulose, pectin, and xyloglucan) of plant cell walls play in the attachment of foodborne bacterial pathogens. Using bacterial cellulose-derived plant cell wall models, we showed that the presence of pectin alone or xyloglucan alone affected the attachment of three Salmonella enterica strains (Salmonella enterica subsp. enterica serovar Enteritidis ATCC 13076, Salmonella enterica subsp. enterica serovar Typhimurium ATCC 14028, and Salmonella enterica subsp. indica M4) and Listeria monocytogenes ATCC 7644. In addition, we showed that this effect was modulated in the presence of both polysaccharides. Assays using pairwise combinations of S. Typhimurium ATCC 14028 and L. monocytogenes ATCC 7644 showed that bacterial attachment to all plant cell wall models was dependent on the characteristics of the individual bacterial strains and was not directly proportional to the initial concentration of the bacterial inoculum. This work showed that bacterial attachment was not determined directly by the plant cell wall model or bacterial physicochemical properties. We suggest that attachment of the Salmonella strains may be influenced by the effects of these polysaccharides on physical and structural properties of the plant cell wall model. Our findings improve the understanding of how Salmonella enterica and Listeria monocytogenes attach to plant cell walls, which may facilitate the development of better ways to prevent the attachment of these pathogens to such surfaces.  相似文献   

17.
18.
Advances in genome sequencing have produced hundreds of thousands of bacterial genome sequences, many of which have integrated prophages derived from temperate bacteriophages. These prophages play key roles by influencing bacterial metabolism, pathogenicity, antibiotic resistance, and defense against viral attack. However, they vary considerably even among related bacterial strains, and they are challenging to identify computationally and to extract precisely for comparative genomic analyses. Here, we describe DEPhT, a multimodal tool for prophage discovery and extraction. It has three run modes that facilitate rapid screening of large numbers of bacterial genomes, precise extraction of prophage sequences, and prophage annotation. DEPhT uses genomic architectural features that discriminate between phage and bacterial sequences for efficient prophage discovery, and targeted homology searches for precise prophage extraction. DEPhT is designed for prophage discovery in Mycobacterium genomes but can be adapted broadly to other bacteria. We deploy DEPhT to demonstrate that prophages are prevalent in Mycobacterium strains but are absent not only from the few well-characterized Mycobacterium tuberculosis strains, but also are absent from all ∼30 000 sequenced M. tuberculosis strains.  相似文献   

19.
Mycobacterium is a genus within the order Actinomycetales that comprises of a large number of well-characterized species, several of which includes pathogens known to cause serious disease in human and animal. Here, we report the whole genome sequence of Mycobacterium sp. strain 012931 isolated from the marine fish, yellowtail (Seriola quinqueradiata). Mycobacterium sp. 012931 is a fish pathogen causing serious damage to aquaculture farms in Japan. DNA dot plot analysis showed that Mycobacterium sp. 012931 was more closely related to Mycobacterium marinum when compared across several Mycobacterium species. However, little conservation of the gene order was observed between Mycobacterium sp. 012931 and M. marinum genome. The annotated 5,464 genes of Mycobacterium sp. 012931 was classified into 26 subsystems. The insertion/deletion gene analysis shows Mycobacterium sp. 012931 had 643 unique genes that were not found in the M. marinum strains. In the virulence, disease, and defense subsystem, both insertion and deletion genes of Mycobacterium sp. 012931 were associated with the PPE gene cluster of Mycobacteria. Of seven plcB genes in Mycobacterium sp. 012931, plcB_2 and plcB_3 showed low identities with those of M. marinum strains. Therefore, Mycobacterium sp. 012931 has differences on genetic and virulence from M. marinum and may induce different interaction mechanisms between host and pathogen.  相似文献   

20.
RNase HII removes RNA from RNA/DNA hybrids, such as single ribonucleotides and RNA primers generated during DNA synthesis. Both, RNase HII substrates and RNase HII deficiency have been associated with genome instability in several organisms, and genome instability is a major force leading to the acquisition of drug resistance in bacteria. Understanding the mechanisms that underlie this phenomenon is one of the challenges in identifying efficient methods to combat bacterial pathogens. The aim of the present study was set to investigate the role of rnhB, presumably encoding RNase HII, in maintaining genome stability in the M. tuberculosis model organism Mycobacterium smegmatis. We performed gene replacement through homologous recombination to obtain mutant strains of Mycobacterium smegmatis lacking the rnhB gene. The mutants did not present an altered phenotype, according to the growth rate in liquid culture or susceptibility to hydroxyurea, and did not show an increase in the spontaneous mutation rate, determined using the Luria-Delbrück fluctuation test for streptomycin resistance in bacteria. The mutants also did not present an increase in the level of RNase HII substrates, measured as the level of alkaline degradation of chromosomal DNA or determined through immunodetection. We conclude that proteins other than RnhB proteins efficiently remove RNase HII substrates in M. smegmatis. These results highlight differences in the basic biology between Mycobacteria and eukaryotes and between different species of bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号