首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
X Wang  C Luo  Z Chen 《Journal of bacteriology》2012,194(19):5467-5468
Bacillus sp. strain 916, isolated from the soil, showed strong activity against Rhizoctonia solani. Here, we present the high-quality draft genome sequence of Bacillus sp. strain 916. Its 3.9-Mb genome reveals a number of genes whose products are possibly involved in promotion of plant growth or antibiosis.  相似文献   

2.
Following transposon Tn5 mutagenesis of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2, mutants that were able to grow in the presence of the tryptophan analog 5-fluorotryptophan were selected. Seven of the 50 5-fluorotryptophan-resistant mutants overproduced the phytohormone indoleacetic acid (IAA). Of these seven mutants, the highest level of IAA was observed with strain P. putida GR12-2/aux1, which produced four times the amount of indoleacetic acid synthesized by the wild-type strain. Strain P. putida GR12-2/aux1, in contrast to the wild type, lost the ability to stimulate the elongation of the roots of canola seedlings under gnotobiotic conditions. The growth rate, siderophore production, and 1-aminocyclopropane-1-carboxylate deaminase activity of mutant strain P. putida GR12-2/aux1 were identical to those of the wild-type strain. The role of IAA in the mechanism of plant growth stimulation by P. putida GR12-2 and other plant growth-promoting rhizobacteria is discussed.  相似文献   

3.
The plant growth-promoting bacterium (PGPB) Pseudomonas sp. UW4, previously isolated from the rhizosphere of common reeds growing on the campus of the University of Waterloo, promotes plant growth in the presence of different environmental stresses, such as flooding, high concentrations of salt, cold, heavy metals, drought and phytopathogens. In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps between the contigs were closed by directed PCR. The P. sp. UW4 genome contains a single circular chromosome that is 6,183,388 bp with a 60.05% G+C content. The bacterial genome contains 5,423 predicted protein-coding sequences that occupy 87.2% of the genome. Nineteen genomic islands (GIs) were predicted and thirty one complete putative insertion sequences were identified. Genes potentially involved in plant growth promotion such as indole-3-acetic acid (IAA) biosynthesis, trehalose production, siderophore production, acetoin synthesis, and phosphate solubilization were determined. Moreover, genes that contribute to the environmental fitness of UW4 were also observed including genes responsible for heavy metal resistance such as nickel, copper, cadmium, zinc, molybdate, cobalt, arsenate, and chromate. Whole-genome comparison with other completely sequenced Pseudomonas strains and phylogeny of four concatenated “housekeeping” genes (16S rRNA, gyrB, rpoB and rpoD) of 128 Pseudomonas strains revealed that UW4 belongs to the fluorescens group, jessenii subgroup.  相似文献   

4.
Here, we present the genome sequence of Enterobacter cloacae GS1. This strain proficiently colonizes rice roots and promotes plant growth by improving plant nutrition. Analyses of the E. cloacae GS1 genome will throw light on the genetic factors involved in root colonization, growth promotion, and ecological success of this rhizobacterium.  相似文献   

5.
Rahnella aquatilis strain HX2 is a plant growth-promoting, disease-suppressive rhizobacterium that was isolated from a vineyard soil in Beijing, China. Here, we report the genome sequence of this strain, which provides a valuable resource for future research examining the mechanisms of traits associated with plant growth promotion and biocontrol.  相似文献   

6.
S Li  H Zhao  Y Li  S Niu  B Cai 《Journal of bacteriology》2012,194(18):5154-5155
Pseudomonas putida strain ND6 is an efficient naphthalene-degrading bacterium. The complete genome of strain ND6 was sequenced and annotated. The genes encoding the enzymes involved in catechol degradation by the ortho-cleavage pathway were found in the chromosomal sequence, which indicated that strain ND6 is able to metabolize naphthalene by the catechol meta- and ortho-cleavage pathways.  相似文献   

7.
Monoclonal antibodies to ferric pseudobactin, the siderophore (microbial iron transport agent) of plant growth-promoting Pseudomonas putida B10, have been developed. Three immunoglobulin G subclass 1-type monoclonal antibodies have been characterized. Each antibody appears to be unique on the basis of their reactions with ferric pseudobactin and with culture supernatants from other pseudomonads. None of the three cross-reacts with ferric pseudobactin-type siderophores produced by seven other pseudomonads. However, P. aeruginosa ATCC 15692 and P. fluorescens ATCC 17400 produced relatively high-molecular-mass compounds (mass greater than approximately 30,000 daltons) that did react with the antibodies. The compound from P. aeruginosa was not iron regulated, while the compound from P. fluorescens was produced only under iron-limiting conditions. A competitive assay using these antibodies has a detection limit of 5 x 10 mol of ferric pseudobactin. This is, to our knowledge, the first report of monoclonal antibodies reactive with siderophores.  相似文献   

8.
Enterobacter radicincitans sp. nov. DSM16656(T) represents a new species of the genus Enterobacter which is a biological nitrogen-fixing endophytic bacterium with growth-promoting effects on a variety of crop and model plant species. The presence of genes for nitrogen fixation, phosphorous mobilization, and phytohormone production reflects this microbe's potential plant growth-promoting activity.  相似文献   

9.
Paenibacillus polymyxa E681, a spore-forming, low-G+C, Gram-positive bacterium isolated from the rhizosphere of winter barley grown in South Korea, has great potential for agricultural applications due to its ability to promote plant growth and suppress plant diseases. Here we present the complete genome sequence of P. polymyxa E681. Its 5.4-Mb genome encodes functions specialized to the plant-associated lifestyle and characteristics that are beneficial to plants, such as the production of a plant growth hormone, antibiotics, and hydrolytic enzymes.Among the plant-associated microbes, some are beneficial to plants, as they antagonize various plant pathogens, induce immunity, or even promote growth (2, 21, 29). These “plant-probiotic” bacteria (15, 16, 19, 22, 23, 28) have been isolated and commercially developed for use in the biological control of plant diseases or biofertilization (7, 10). Spore-forming bacteria, in particular, members of the phylum Firmicutes and streptomycetes, are considered advantageous in product formulation and stable maintenance in soil (9).The genus Paenibacillus (1) has grown to encompass more than 110 species (http://www.bacterio.cict.fr/p/paenibacillus.html), but its genome information is severely underrepresented. Paenibacillus spp. are important members of soil- or plant-associated ecosystems (3, 8, 20), with Paenibacillus polymyxa as one of the most industrially significant bacteria (13, 17, 25, 31). P. polymyxa E681, an endospore former isolated from the rhizosphere of winter barley in South Korea (14, 27), suppresses plant diseases, produces antibiotics and a plant hormone, secretes a variety of hydrolytic enzymes, and has good root-colonizing ability (4, 26).We determined the genome sequence of a rifampin-resistant clone of E681. About 62,000 chromatograms (∼6.7-fold genome coverage) were produced from plasmid/fosmid/bacterial artificial chromosome libraries with an AB 3700/377 DNA analyzer. Base calling, fragment assembly, contig/scaffold editing, and finishing were performed with Phred/Phrap/Consed. Gaps were closed by primer walking. To improve the sequence quality, 2.4 Gb of 76-bp single-ended sequences were obtained from Illumina Genome Analyzer IIx. Errors were identified using Maq/MapView and rectified by confirmatory sequencing. Yacop-predicted coding sequences were translated and subjected to transitive annotation by searches against UniProt, COG, KEGG Genes, and TIGRFAMs.The genome is composed of one circular chromosome of 5,394,884 bp (45.8% G+C). It has as many as 12 rRNA operons. No plasmid was found. Three-quarters of the 4,805 genes were assigned putative functions. Protein-coding genes are distributed preferentially on the leading strand. Apparently to cope with an ever-changing environment in the rhizosphere, the genome hosts at least 13 extracytoplasmic function sigma factors (12). There are 19 complete/disrupted insertion sequence elements but few phage-related genes.Some antibiotic-biosynthetic genes have been characterized. Polymyxin, produced and transported by PmxA to -E (5), is a potent antimicrobial that recently attracted attention for the treatment of multidrug-resistant Gram-negative bacteria (11, 18, 30). Fusaricidin, an antifungal antibiotic consisting of six amino acids, is synthesized by a single-chain nonribosomal peptide synthetase (6). E681 may also synthesize a polyketide, a tridecaptin-like nonribosomal peptide, and a hybrid of polyketide and nonribosomal peptide. A gene cluster is responsible for the production of a novel lantibiotic.Based on sequence investigation and biochemical analysis, auxin biosynthesis via the indole-3-pyruvic acid pathway was proposed as the only possible mechanism (24). The bacterium also produces volatile compounds that may promote growth and induce resistance of plants and one or more N-acyl-l-homoserine lactonases. Genome analysis revealed a rich set of secreted enzymes that degrade various plant-derived polysaccharides. They include xylanases, pectic enzymes, cellulases, and amylases. Genes involved in nitrogen fixation were not identified.  相似文献   

10.
Pseudomonas putida strain S12, a well-studied solvent-tolerant bacterium, is considered a platform strain for the production of many chemicals. Here, we present a 6.28-Mb assembly of its genome sequence. We have annotated 32 coding sequences (CDSs) encoding efflux systems of organic compounds and 195 CDSs responsible for the metabolism of aromatic compounds.  相似文献   

11.
Pseudomonas syringae pv. panici is a phytopathogenic bacterium causing brown stripe disease in economically important crops worldwide. Here, we announce the draft genome sequence of Pseudomonas syringae pv. panici LMG2367 to provide further valuable insights for comparison of the pathovars among species Pseudomonas syringae.  相似文献   

12.
Our previous work showed that a consortium of three plant growth-promoting rhizobacterium (PGPR) strains (Bacillus cereus AR156, Bacillus subtilis SM21, and Serratia sp. XY21), termed as BBS for short, was a promising biocontrol agent. The present study investigated its effect on drought tolerance in cucumber plants. After withholding watering for 13 days, BBS-treated cucumber plants had much darker green leaves and substantially lighter wilt symptoms than control plants. Compared to the control, the BBS treatment decreased the leaf monodehydroascorbate (MDA) content and relative electrical conductivity by 40% and 15%, respectively; increased the leaf proline content and the root recovery intension by 3.45-fold and 50%, respectively; and also maintained the leaf chlorophyll content in cucumber plants under drought stress. Besides, in relation to the control, the BBS treatment significantly enhanced the superoxide dismutase (SOD) activity and mitigated the drought-triggered down-regulation of the expression of the genes cAPX, rbcL, and rbcS encoding cytosolic ascorbate peroxidase, and ribulose-1,5-bisphosphate carboxy/oxygenase (Rubisco) large and small subunits, respectively, in cucumber leaves. However, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity was undetected in none of the culture solutions of three BBS constituent strains. These results indicated that BBS conferred induced systemic tolerance to drought stress in cucumber plants, by protecting plant cells, maintaining photosynthetic efficiency and root vigor and increasing some of antioxidase activities, without involving the action of ACC deaminase to lower plant ethylene levels.  相似文献   

13.
水稻矮缩病毒第11号组分基因序列和编码蛋白的功能分析   总被引:10,自引:0,他引:10  
水稻矮缩病毒(Rice Dwarf Virus-RDV)广泛分布于中国、日本及东南亚地区,侵染水稻和禾本科其它一些作物,是造成水稻减产的主要原因之一,对农作物危害极大。RDV属于呼肠孤病毒科(Re-oviridae)中的植物呼肠孤病毒属(Phytoreovirus)成员,其病毒粒子直径70nm,为20面体,有双层  相似文献   

14.
Fluorescent pseudomonads catabolize glucose simultaneously by two different pathways, namely, the oxidative pathway in periplasm and the phosphorylative pathway in cytoplasm. This study provides evidence for the role of glucose metabolism in the regulation of pyoverdine synthesis in Pseudomonas putida S11. We have characterized the influence of direct oxidation of glucose in periplasm on pyoverdine synthesis in P. putida S11. We identified a Tn5 transposon mutant of P. putida S11 showing increased pyoverdine production in minimal glucose medium (MGM). This mutant designated as IST1 had Tn5 insertion in glucose dehydrogenase (gcd) gene. To verify the role of periplasmic oxidation of glucose on pyoverdine synthesis, we constructed mutants S11 Gcd? and S11 PqqF? by antibiotic cassette mutagenesis. These mutants of P. putida S11 with loss of glucose dehydrogenase gene (gcd) or cofactor pyrroloquinoline quinone biosynthesis gene (pqqF) showed increased pyoverdine synthesis and impaired acid production in MGM. In minimal gluconate medium, the pyoverdine production of wild-type strain S11 and mutants S11 Gcd? and S11 PqqF? was higher than in MGM indicating that gluconate did not affect pyoverdine synthesis. In MGM containing PIPES–NaOH (pH?7.5) buffer which prevent pH changes due to gluconic acid production, strain S11 produced higher amount of pyoverdine similar to mutants S11 Gcd? and S11 PqqF?. Therefore, it is proposed that periplasmic oxidation of glucose to gluconic acid decreases the pH of MGM and thereby influences pyoverdine synthesis of strain S11. The increased pyoverdine synthesis enhanced biotic and abiotic surface colonization of the strain S11.  相似文献   

15.
C Gao  C Hu  C Ma  F Su  H Yu  T Jiang  P Dou  Y Wang  T Qin  M Lv  P Xu 《Journal of bacteriology》2012,194(17):4751-4752
Pseudomonas aeruginosa XMG, isolated from soil, utilizes lactate. Here we present a 6.45-Mb assembly of its genome sequence. Besides the lactate utilization mechanism of the strain, the genome sequence may also provide other useful information related to P. aeruginosa, such as identifying genes involved in virulence, drug resistance, and aromatic catabolism.  相似文献   

16.
In vitro inoculation of Vitis vinifera L. cv. Chardonnay explants with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN, increased grapevine growth and physiological activity at a low temperature. There was a relationship between endophytic bacterial colonization of the grapevine plantlets and their growth at both ambient (26°C) and low (4°C) temperatures and their sensitivities to chilling. The major benefits of bacterization were observed on root growth (11.8- and 10.7-fold increases at 26°C and 4°C, respectively) and plantlet biomass (6- and 2.2-fold increases at 26°C and 4°C, respectively). The inoculation with PsJN also significantly improved plantlet cold tolerance compared to that of the nonbacterized control. In nonchilled plantlets, bacterization enhanced CO2 fixation and O2 evolution 1.3 and 2.2 times, respectively. The nonbacterized controls were more sensitive to exposure to low temperatures than were the bacterized plantlets, as indicated by several measured parameters. Moreover, relative to the noninoculated controls, bacterized plantlets had significantly increased levels of starch, proline, and phenolics. These increases correlated with the enhancement of cold tolerance of the grapevine plantlets. In summary, B. phytofirmans strain PsJN inoculation stimulates grapevine growth and improves its ability to withstand cold stress.  相似文献   

17.
Pseudomonas fluorescens PCL1751 is a rod-shaped Gram-negative bacterium isolated from the rhizosphere of a greenhouse-grown tomato plant in Uzbekistan. It controls several plant root diseases caused by Fusarium fungi through the mechanism of competition for nutrients and niches (CNN). This mechanism does not rely on the production of antibiotics, so it avoids the concerns of resistance development and is environmentally safe. Additionally, this bacterium promotes plant growth by alleviating salt stress for its plant host. To investigate the genetic mechanisms that may explain these observations, we determined the complete genome sequence of this bacterium, examined its gene content, and performed comparative genomics analysis with other Pseudomonas strains. The genome of P. fluorescens PCL1751 consisted of one circular chromosome that is 6,143,950 base-pairs (bp) in size; no plasmid was found. The annotation included 19 rRNA, 70 tRNA, and 5,534 protein-coding genes. The gene content analysis identified a large number of genes involved in chemotaxis and motility, colonization of the rhizosphere, siderophore biosynthesis, and osmoprotectant production. In contrast, the pathways involved in the biosynthesis of phytohormones or antibiotics were not found. Comparison with other Pseudomonas genomes revealed extensive variations in their genome size and gene content. The presence and absence of secretion system genes were highly variable. As expected, the synteny conservation among strains decreased as a function of phylogenetic divergence. The integration of prophages appeared to be an important driver for genome rearrangements. The whole-genome gene content analysis of this plant growth-promoting rhizobacterium (PGPR) provided some genetic explanations to its phenotypic characteristics. The extensive and versatile substrate utilization pathways, together with the presence of many genes involved in competitive root colonization, provided further support for the finding that this strain achieves biological control of pathogens through effective competition for nutrients and niches.  相似文献   

18.
Pseudomonas putida is a member of the fluorescent pseudomonads known to produce the yellow-green fluorescent pyoverdine siderophore. P. putida W15Oct28, isolated from a stream in Brussels, was found to produce compound(s) with antimicrobial activity against the opportunistic pathogens Staphylococcus aureus, Pseudomonas aeruginosa, and the plant pathogen Pseudomonas syringae, an unusual characteristic for P. putida. The active compound production only occurred in media with low iron content and without organic nitrogen sources. Transposon mutants which lost their antimicrobial activity had the majority of insertions in genes involved in the biosynthesis of pyoverdine, although purified pyoverdine was not responsible for the antagonism. Separation of compounds present in culture supernatants revealed the presence of two fractions containing highly hydrophobic molecules active against P. aeruginosa. Analysis of the draft genome confirmed the presence of putisolvin biosynthesis genes and the corresponding lipopeptides were found to contribute to the antimicrobial activity. One cluster of ten genes was detected, comprising a NAD-dependent epimerase, an acetylornithine aminotransferase, an acyl CoA dehydrogenase, a short chain dehydrogenase, a fatty acid desaturase and three genes for a RND efflux pump. P. putida W15Oct28 genome also contains 56 genes encoding TonB-dependent receptors, conferring a high capacity to utilize pyoverdines from other pseudomonads. One unique feature of W15Oct28 is also the presence of different secretion systems including a full set of genes for type IV secretion, and several genes for type VI secretion and their VgrG effectors.  相似文献   

19.
R Liang  H Liu  F Tao  Y Liu  C Ma  X Liu  J Liu 《Journal of bacteriology》2012,194(17):4781-4782
Pseudomonas putida strain SJTE-1 can utilize 17β-estradiol and other environmental estrogens/toxicants, such as estrone, and naphthalene as sole carbon sources. We report the draft genome sequence of strain SJTE-1 (5,551,505 bp, with a GC content of 62.25%) and major findings from its annotation, which could provide insights into its biodegradation mechanisms.  相似文献   

20.
Tao F  Tang H  Gai Z  Su F  Wang X  He X  Xu P 《Journal of bacteriology》2011,193(24):7011-7012
Pseudomonas putida Idaho is an organic-solvent-tolerant strain which can degrade and adapt to high concentrations of organic solvents. Here, we announce its first draft genome sequence (6,363,067 bp). We annotated 192 coding sequences (CDSs) responsible for aromatic compound metabolism, 40 CDSs encoding phospholipid synthesis, and 212 CDSs related to stress response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号