首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
R Zhou  S Wang  X Zhu 《PloS one》2012,7(8):e42443
Prenatal exposure to high-level ethanol (EtOH) has been reported to produce hyperlocomotion in offspring. Previous studies have demonstrated synaptic plasticity in cortical afferent to the dorsolateral (DL) striatum is involved in the pathogensis of hyperlocomotion. Here, prenatal EtOH-exposed rat offspring were used to investigate whether maternal EtOH exposure affected synaptic plasticity in the DL striatum. We found high-frequency stimulation (HFS) induced a weaker long-term potentiation (LTP) in EtOH rats than that in control rats at postnatal day (PD) 15. The same protocol of HFS induced long-term depression (LTD) in control group but still LTP in EtOH group at PD 30 or PD 40. Furthermore, enhancement of basal synaptic transmission accompanied by the decrease of pair-pulse facilitation (PPF) was observed in PD 30 EtOH offspring. The perfusion with D1-type receptors (D1R) antagonist SCH23390 recovered synaptic transmission and blocked the induction of abnormal LTP in PD 30 EtOH offspring. The perfusion with D2-type receptors (D2R) agonist quinpirole reversed EtOH-induced LTP into D1R- and metabotropic glutamate receptor-dependent LTD. The data provide the functional evidence that prenatal ethanol exposure led to the persistent abnormal synaptic plasticity in the DL striatum via disturbing the balance between D1R and D2R.  相似文献   

2.
Long-term plasticity typically relies on postsynaptic NMDA receptors to detect the coincidence of pre- and postsynaptic activity. Recent studies, however, have revealed forms of plasticity that depend on coincidence detection by presynaptic NMDA receptors. In the amygdala, cortical afferent associative presynaptic long-term potentiation (LTP) requires activation of presynaptic NMDA receptors by simultaneous thalamic and cortical afferents. Surprisingly, both types of afferent can also undergo postsynaptically induced NMDA-receptor-dependent LTP. In the neocortex, spike-timing-dependent long-term depression (LTD) requires simultaneous activation of presynaptic NMDA autoreceptors and retrograde signalling by endocannabinoids. In cerebellar LTD, presynaptic NMDA receptor activation suggests that similar presynaptic mechanisms may exist. Recent studies also indicate the existence of presynaptic coincidence detection that is independent of NMDA receptors, suggesting that such mechanisms have a widespread role in plasticity.  相似文献   

3.
Aquaporin-4 (AQP4) is the major water channel expressed in the central nervous system (CNS) and is primarily expressed in glial cells. Many studies have shown that AQP4 regulates the response of the CNS to insults or injury, but far less is known about the potential for AQP4 to influence synaptic plasticity or behavior. Recent studies have examined long-term potentiation (LTP), long-term depression (LTD), and behavior in AQP4 knockout (KO) and wild-type mice to gain more insight into its potential role. The results showed a selective effect of AQP4 deletion on LTP of the Schaffer collateral pathway in hippocampus using an LTP induction protocol that simulates pyramidal cell firing during theta oscillations (theta-burst stimulation; TBS). However, LTP produced by a different induction protocol was unaffected. There was also a defect in LTD after low frequency stimulation (LFS) in AQP4 KO mice. Interestingly, some slices from AQP4 KO mice exhibited LTD after TBS instead of LTP, or LTP following LFS instead of LTD. These data suggest that AQP4 and astrocytes influence the polarity of long-term synaptic plasticity (potentiation or depression). These potentially powerful roles expand the influence of AQP4 and astrocytes beyond the original suggestions related to regulation of extracellular potassium and water balance. Remarkably, AQP4 KO mice did not show deficits in basal transmission, suggesting specificity for long-term synaptic plasticity. The mechanism appears to be related to neurotrophins and specifically brain-derived neurotrophic factor (BDNF) because pharmacological blockade of neurotrophin trk receptors or scavenging ligands such as BDNF restored plasticity. The in vitro studies predicted effects in vivo of AQP4 deletion because AQP4 KO mice performed worse using a task that requires memory for the location of objects (object placement). However, performance on other hippocampal-dependent tasks was spared. The results suggest an unanticipated and selective role of AQP4 in synaptic plasticity and spatial memory, and underscore the growing appreciation of the role of glial cells in functions typically attributed to neurons. Implications for epilepsy are discussed because of the previous evidence that AQP4 influences seizures, and the role of synaptic plasticity in epileptogenesis.  相似文献   

4.
Neuromodulatory input, acting on G protein-coupled receptors, is essential for the induction of experience-dependent cortical plasticity. Here we report that G-coupled receptors in layer II/III of visual cortex control the polarity of synaptic plasticity through a pull-push regulation of LTP and LTD. In slices, receptors coupled to Gs promote LTP while suppressing LTD; conversely, receptors coupled to Gq11 promote LTD and suppress LTP. In vivo, the selective stimulation of Gs- or Gq11-coupled receptors brings the cortex into LTP-only or LTD-only states, which allows the potentiation or depression of targeted synapses with visual stimulation. The pull-push regulation of LTP/LTD occurs via direct control of the synaptic plasticity machinery and it is independent of changes in NMDAR activation or neuronal excitability. We propose these simple rules governing the pull-push control of LTP/LTD form a general metaplasticity mechanism that may contribute to neuromodulation of plasticity in other cortical circuits.  相似文献   

5.
Near coincidental pre- and postsynaptic action potentials induce associative long-term potentiation (LTP) or long-term depression (LTD), depending on the order of their timing. Here, we show that in visual cortex the rules of this spike-timing-dependent plasticity are not rigid, but shaped by neuromodulator receptors coupled to adenylyl cyclase (AC) and phospholipase C (PLC) signaling cascades. Activation of the AC and PLC cascades results in phosphorylation of postsynaptic glutamate receptors at sites that serve as specific "tags" for LTP and LTD. As a consequence, the outcome (i.e., whether LTP or LTD) of a given pattern of pre- and postsynaptic firing depends not only on the order of the timing, but also on the relative activation of neuromodulator receptors coupled to AC and PLC. These findings indicate that cholinergic and adrenergic neuromodulation associated with the behavioral state of the animal can control the gating and the polarity of cortical plasticity.  相似文献   

6.
Gangliosides (sialic acid-containing glycosphingolipids) play important roles in many physiological functions, including synaptic plasticity in the hippocampus, which is considered as a cellular mechanism of learning and memory. In the present study, three types of synaptic plasticity, long-term potentiation (LTP), long-term depression (LTD) and reversal of LTP (depotentiation, DP), in the field excitatory post-synaptic potential in CA1 hippocampal neurons and learning behavior were examined in β1,4-N-acetylgalactosaminyltransferase (β1,4 GalNAc-T; GM2/GD2 synthase) gene transgenic (TG) mice, which showed a marked decrease in b-pathway gangliosides (GQ1b, GT1b and GD1b) in the brain and isolated hippocampus compared with wild-type (WT) mice. The magnitude of the LTP induced by tetanus (100 pulses at 100?Hz) in TG mice was significantly smaller than that in control WT mice, whereas there was no difference in the magnitude of the LTD induced by three short trains of low-frequency stimulation (LFS) (200 pulses at 1?Hz) at 20?min intervals between the two groups of mice. The reduction in the LTP produced by delivering three trains of LFS (200 pulses at 1?Hz, 20?min intervals) was significantly greater in the TG mice than in the WT mice. Learning was impaired in the four-pellet taking test (4PTT) in TG mice, with no significant difference in daily activity or activity during the 4PTT between TG and WT mice. These results suggest that the overexpression of β1,4 GalNAc-T resulted in altered synaptic plasticity of LTP and DP in hippocampal CA1 neurons and learning in the 4PTT, and this is attributable to the shift from b-pathway gangliosides to a-pathway gangliosides.  相似文献   

7.
Yu SY  Wu DC  Liu L  Ge Y  Wang YT 《Journal of neurochemistry》2008,106(2):889-899
Stimulated exocytosis and endocytosis of post-synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid subtype of glutamate receptors (AMPARs) have been proposed as primary mechanisms for the expression of hippocampal CA1 long-term potentiation (LTP) and long-term depression (LTD), respectively. LTP and LTD, the two most well characterized forms of synaptic plasticity, are thought to be important for learning and memory in behaving animals. Both LTP and LTD can also be induced in the lateral amygdala (LA), a critical structure involved in fear conditioning. However, the role of AMPAR trafficking in the expression of either LTP or LTD in this structure remains unclear. In this study, we show that NMDA receptor-dependent LTP and LTD can be reliably induced at the synapses of the auditory thalamic inputs to the LA in brain slices. The expression of LTP was prevented by post-synaptic blockade of vesicle-mediated exocytosis with application of a light chain of Clostridium tetanus neurotoxin and was associated with increased cell-surface AMPAR expression. In contrast, the expression of LTD was prevented by post-synaptic application of a glutamate receptor 2-derived interference peptide, which specifically blocks the stimulated clathrin-dependent endocytosis of AMPARs, and was correlated with a reduction in plasma membrane-surface expression of AMPARs. These results strongly suggest that regulated trafficking of post-synaptic AMPARs is also involved in the expression of LTP and LTD in the LA.  相似文献   

8.
Although nerve growth factor (NGF) is a crucial factor in the activity-dependent development and plasticity of visual cortex, its role in synaptic efficacy changes is largely undefined. We demonstrate that the maintenance phase of long-term potentiation (LTP) is blocked by local application of exogenous NGF in rat visual cortex at an early stage of postnatal development. Long-term depression (LTD) and bidirectional plasticity are unaffected. At later postnatal ages, blockade of either endogenous NGF by immunoadhesin (TrkA-IgG) or TrkA receptors by monoclonal antibody rescues LTP. Muscarinic receptor activation/inhibition suggests that LTP dependence on NGF is mediated by the cholinergic system. These results indicate that NGF regulates synaptic strength in well-characterized cortical circuitries.  相似文献   

9.
Estrogenic and androgenic steroids can be synthesised in the brain and rapidly modulate synaptic transmission and plasticity through direct interaction with membrane receptors for estrogens (ERs) and androgens (ARs). We used whole cell patch clamp recordings in brainstem slices of male rats to explore the influence of ER and AR activation and local synthesis of 17β-estradiol (E2) and 5α-dihydrotestosterone (DHT) on the long-term synaptic changes induced in the neurons of the medial vestibular nucleus (MVN). Long-term depression (LTD) and long-term potentiation (LTP) caused by different patterns of high frequency stimulation (HFS) of the primary vestibular afferents were assayed under the blockade of ARs and ERs or in the presence of inhibitors for enzymes synthesizing DHT (5α-reductase) and E2 (P450-aromatase) from testosterone (T). We found that LTD is mediated by interaction of locally produced androgens with ARs and LTP by interaction of locally synthesized E2 with ERs. In fact, the AR block with flutamide prevented LTD while did not affect LTP, and the blockade of ERs with ICI 182,780 abolished LTP without influencing LTD. Moreover, the block of P450-aromatase with letrozole not only prevented the LTP induction, but inverted LTP into LTD. This LTD is likely due to the local activation of androgens, since it was abolished under blockade of ARs. Conversely, LTD was still induced in the presence of finasteride the inhibitor of 5α-reductase demonstrating that T is able to activate ARs and induce LTD even when DHT is not synthesized. This study demonstrates a key and opposite role of sex neurosteroids in the long-term synaptic changes of the MVN with a specific role of T-DHT for LTD and of E2 for LTP. Moreover, it suggests that different stimulation patterns can lead to LTD or LTP by specifically activating the enzymes involved in the synthesis of androgenic or estrogenic neurosteroids.  相似文献   

10.
Possible mechanisms of amplification/attenuation of cortical signals opening or not opening NMDA-channels in striatal spine cells while passing through basal ganglio-thalamocortical network and relegated to either "strong" or "weak" signals, are considered. In absence of dopamine, a relative increase in intensity of the "strong" or "weak" cortical signals should result in the LTP/LTD on both striatonigral and striatopallidal cells, the thalamic cells being affected in the opposite way. Activation of the dopamine receptors on the striatonigral (striatopallidal) cells prompts the LTP/LTD expression. Thereof, the "strong" cortical signals are synergistically amplified whereas the "weak" signals are synergistically attenuated at the thalamic output.  相似文献   

11.
Plasticity of feedforward inhibition in the hippocampal mossy fiber (MF) pathway can dramatically influence dentate gyrus-CA3 dialog. Interestingly, MF inputs to CA3 stratum lucidum interneurons (SLINs) undergo long-term depression (LTD) following high-frequency stimulation (HFS), in contrast to MF-pyramid (PYR) synapses, where long-term potentiation (LTP) occurs. Furthermore, activity-induced potentiation of MF-SLIN transmission has not previously been observed. Here we report that metabotropic glutamate receptor subtype 7 (mGluR7) is a metaplastic switch at MF-SLIN synapses, whose activation and surface expression governs the direction of plasticity. In naive slices, mGluR7 activation during HFS generates MF-SLIN LTD, depressing presynaptic release through a PKC-dependent mechanism. Following agonist exposure, mGluR7 undergoes internalization, unmasking the ability of MF-SLIN synapses to undergo presynaptic potentiation in response to the same HFS that induces LTD in naive slices. Thus, selective mGluR7 targeting to MF terminals contacting SLINs and not PYRs provides cell target-specific plasticity and bidirectional control of feedforward inhibition.  相似文献   

12.
Gong B  Wang YT 《The EMBO journal》2012,31(4):783-785
EMBO J 31 4, 805–816 (2012); published online December202011Synaptic plasticity, the activity-dependent modification of synaptic strength, plays a fundamental role in learning and memory as well as in developmental maturation of neuronal circuitry. However, how synaptic plasticity is induced and regulated remains poorly understood. In this issue of The EMBO Journal, Yang and colleagues present sets of exciting data, suggesting that G-protein-coupled receptors (GPCRs) selectively execute distinct signalling pathways to differentially regulate induction thresholds of hippocampal long-term potentiation (LTP) and long-term depression (LTD), thereby governing the direction of synaptic plasticity. These results shed significant light on our current understanding of how bidirectional synaptic plasticity is regulated.Synaptic plasticity has been demonstrated at synapses in various brain regions; the most well-characterized forms are LTP and LTD at hippocampal CA1 glutamatergic synapses (Collingridge et al, 2004). In experimental models, LTP and LTD can be, respectively, induced by high-frequency stimulation (HFS) and low-frequency stimulation (LFS) via activation of the N-methyl-D-aspartic acid (NMDA) subtype ionotropic glutamate receptor (NMDAR). However, how HFS and LFS activate NMDARs and thereby lead to synaptic plasticity remains poorly understood and highly controversial. It is even more unclear how the bidirectional synaptic plasticity is produced and regulated in response to physiological or pathological changes.Functional NMDARs consist primarily of two GluN1 subunits and two GluN2 subunits, with GluN2A and GluN2B subunits being the most common NMDAR subunits found in the cortical and hippocampal regions of the adult brain (Cull-Candy et al, 2001). GluN2A and GluN2B subunits may confer distinct gating and pharmacological properties to NMDARs and couple them to distinct intracellular signalling machineries (Cull-Candy et al, 2001). Moreover, the ratio of these two subpopulations of NMDARs at the glutamatergic synapse is dynamically regulated in an activity-dependent manner (Bellone and Nicoll, 2007; Cho et al, 2009; Xu et al, 2009). Although controversial, GluN2A- and GluN2B-containing NMDARs have been suggested to have differential roles in regulating the direction of synaptic plasticity (Collingridge et al, 2004; Morishita et al, 2007). Among the factors shown to regulate NMDAR function, Src family tyrosine kinases may be the best characterized, with both Src and Fyn able to upregulate NMDAR function, and thus LTP induction (Salter and Kalia, 2004). However, if these kinases modulate NMDAR function in a NMDAR subunit-specific manner remains unknown. To explore this concept, Yang et al (2012) investigated the potential subunit-specific regulation of NMDARs by Src and Fyn using whole-cell patch clamp recording of NMDAR-mediated currents from acutely dissociated CA1 hippocampal neurons or from rat hippocampal slices. They found that intracellular perfusion of recombinant Src or Fyn increased the NMDAR-mediated currents. By applying subunit-preferential antagonists of GluN2A- or GluN2B-containing NMDARs, or by using neurons obtained from GluN2A knockout mice, they discovered that Src and Fyn differentially enhanced currents gated through GluN2A- and GluN2B-containing NMDARs, respectively.Can physiological or pathological factors differentially activate Src or Fyn, thereby exerting subunit-specific regulation of NMDAR function? To answer this question, Yang et al focused their investigation on the role of GPCRs, specifically pituitary adenylate cyclase activating peptide receptor (PAC1R) and dopamine D1 receptor (D1R), both of which have recently been shown to potentiate NMDARs through Src family kinases (Macdonald et al, 2005; Hu et al, 2010). Indeed, they found that activation of PAC1R specifically increased GluN2A-NMDAR-mediated currents without affecting currents gated through GluN2B-NMDARs, and this potentiation was prevented by the Src-specific inhibitory peptide Src(40–58) (Salter and Kalia, 2004). To rule out the contribution of Fyn, the authors developed a novel-specific Fyn inhibitory peptide Fyn(39–57), and demonstrated that it had little effect on PAC1R potentiation. In contrast, activation of D1R potentiated GluN2B- (but not GluN2A-) NMDAR-mediated currents, and this potentiation was specifically eliminated by Fyn(39–57), but not by Src(40–58). The authors further demonstrated that stimulation of PAC1Rs resulted in a selective activation of Src kinase and consequent tyrosine phosphorylation of the GluN2A subunit, whereas activation of D1Rs led to a specific increase in Fyn-mediated tyrosine phosphorylation of the GluN2B subunit. To provide convincing evidence that these subunit-differential modulations are indeed the result of tyrosine phosphorylation of the respective NMDAR subunits, the authors then performed electrophysiological experiments using neurons from two knockin mouse lines GluN2A(Y1325F) and GluN2B(Y1472F), in which the tyrosine phosphorylation residues in native GluN2A and GluN2B subunits were, respectively, replaced with non-phosphorylatable phenylalanine residues. As expected, the authors found that PAC1R-mediated potentiation of NMDA currents was lost in neurons from GluN2A(Y1325F) mice (but maintained in neurons from GluN2B(Y1472F) mice), while D1R-mediated enhancement of NMDA currents was only observed in neurons from GluN2A(Y1325F) mice. Together, as illustrated in Figure 1, the authors have made a very convincing case that PAC1R and D1R, respectively, enhance function of GluN2A- and GluN2B-containing NMDARs by differentially activating Src- and Fyn-mediated phosphorylation of respective NMDAR subunits.Open in a separate windowFigure 1GPCRs regulate the direction of synaptic plasticity via activating distinct signalling pathways. Synaptic NMDA receptors, both GluN2A- and GluN2B-containing, play key roles in the induction of various forms of synaptic plasticity at the hippocampal CA1 glutamatergic synapse. Under the basal level of GluN2A and GluN2B ratio, stimulation with a train of pulses at frequencies from 1 to 100 Hz produces a frequency and plasticity (LTD–LTP) curve, with maximum LTD and LTP being, respectively, induced at 1 and 100 Hz. Activation of PAC1R with its agonist PACAP38 activates Src and thereby results in tyrosine phosphorylation and consequent functional upregulation of GluN2A-containing NMDARs, resulting in an increase in the ratio of functional GluN2A and GluN2B. The increased ratio in turn causes a left shift of frequency and plasticity curve, favouring LTP induction. In contrast, activation of D1R by the receptor agonist SKF81297 triggers Fyn-specific tyrosine phosphorylation and functional upregulation of GluN2B, causing a reduction of GluN2A and GluN2B ratio. This decreased ratio results in a right shift of the curve, favouring LTD induction. The ability of GPCRs to differentially activate distinct downstream signalling pathways involved in synaptic plasticity suggests the potential roles of GPCRs in governing the direction of synaptic plasticity.Given the coupling of NMDARs to the induction of synaptic plasticity, it is then reasonable to ask if activation of the two GPCRs can selectively affect the induction of LTP or LTD at CA1 synapses. Yang and colleagues investigated the effects of pharmacological activation of PAC1R and D1R on the induction of LTP and LTD by recording the field excitatory postsynaptic potentials from hippocampal slices. Consistent with differential roles of NMDAR subunits in governing directions of synaptic plasticity, the authors observed that activation of PAC1Rs reduces the induction threshold of LTP, while stimulation of D1Rs favours LTD induction (Figure 1). Facilitation of LTP by PAC1R and LTD by D1R were, respectively, prevented in the brain slices obtained from GluN2A(Y1325F) and GluN2B(Y1472F) knockin mice, supporting the differential involvements of Src-mediated GluN2A phosphorylation and Fyn-mediated GluN2B phosphorylation.Taken together, the authors'' results have demonstrated that activation of PAC1R and D1R can control the direction of synaptic plasticity at the hippocampal CA1 synapse by differentially regulating NMDAREPSCs in a subunit-specific fashion (Figure 1). Specifically, PAC1R enhances the function of GluN2A-containing NMDARs by increasing Src phosphorylation of GluN2A subunit at Y1325, whereas D1R upregulates GluN2B-containing NMDARs through increased Fyn phosphorylation of GluN2B at Y1472. Moreover, by regulating the ratio of functional GluN2A- and GluN2B-containing NMDARs, PAC1R and D1R in turn modulate the direction of synaptic plasticity, favouring the production of LTP and LTD, respectively.While consistent with the recently proposed hypothesis that GluN2A and GluN2B may have preferential roles in the induction of hippocampal CA1 LTP and LTD (Collingridge et al, 2004; but see also Morishita et al, 2007), the current study further emphasizes the importance of GluN2A/GluN2B ratios in regulating LTP and LTD thresholds: increased ratio favours LTP, while reduced ratio promotes LTD. However, this seems to contradict some recent studies where the reduction and increase in the GluN2A/GluN2B ratio appeared to, respectively, favour LTP (Cho et al, 2009; Xu et al, 2009) and LTD (Xu et al, 2009). Therefore, the direction of plasticity change is likely modulated not only by the GluN2A/GluN2B ratio, but also by additional factors such as experimental conditions, developmental stages, and brain regions.Under many experimental conditions, LTP and LTD are usually induced by HFS and LFS stimulating protocols, respectively, but it remains essentially unknown how LTP and LTD are physiologically or pathologically generated in animals. To this end, the identification of different GPCRs as the endogenous upstream regulators of NMDA receptor subpopulations, and hence regulators of synaptic plasticity, is the major novelty of Yang and colleagues'' work. Future studies are needed to investigate if and how PAC1R and/or D1R are critically involved in the production of LTP or LTD in animals under physiological or pathological conditions. Given the fact that Src family kinases may be required for LTP induced by HFS in hippocampal slices (Salter and Kalia, 2004), an equally intriguing question would be whether these GPCRs are actually required for LTP/LTD induced by HFS/LFS experimental paradigms. In line with this conjecture, it would be interesting to determine if ligands for various GPCRs co-exist in the glutamatergic presynaptic terminals and, if so, can be differentially co-released with glutamate in a frequency-dependent manner, thereby contributing to either HFS-induced LTP or LFS-induced LTD.The findings by Yang and colleagues establish an exciting mechanistic model by which GPCRs can govern the direction of synaptic plasticity by determining the contributions of GluN2A- and GluN2B-NMDARs through differential tyrosine phosphorylation of respective NMDA receptor subtypes. Additional studies further validating this model under physiological and pathological conditions will greatly improve our understanding of the molecular mechanisms underlying synaptic plasticity and cognitive brain functions. In addition, NMDARs, depending on their subunit composition and/or subcellular localization, may also have complex roles in mediating neuronal survival and death (Lai et al, 2011). Considering that neurotoxicity produced by over-activation of NMDARs is widely accepted to be a common mechanism for neuronal loss in a number of acute brain injuries and chronic neurodegenerative diseases, Yang and colleagues'' finding of the differential regulation of NMDAR subunits by different GPCRs could have wider implications beyond synaptic plasticity.  相似文献   

13.
Insulin and its receptor are both present in the central nervous system and are implicated in neuronal survival and hippocampal synaptic plasticity. Here we show that insulin activates phosphatidylinositol 3-kinase (PI3K) and protein kinase B (PKB), and results in an induction of long-term depression (LTD) in hippocampal CA1 neurones. Evaluation of the frequency-response curve of synaptic plasticity revealed that insulin induced LTD at 0.033 Hz and LTP at 10 Hz, whereas in the absence of insulin, 1 Hz induced LTD and 100 Hz induced LTP. LTD induction in the presence of insulin required low frequency synaptic stimulation (0.033 Hz) and blockade of GABAergic transmission. The LTD or LTP induced in the presence of insulin was N-methyl-d-aspartate (NMDA) receptor specific as it could be inhibited by alpha-amino-5-phosphonopentanoic acid (APV), a specific NMDA receptor antagonist. LTD induction was also facilitated by lowering the extracellular Mg(2+) concentration, indicating an involvement of NMDA receptors. Inhibition of PI3K signalling or discontinuing synaptic stimulation also prevented this LTD. These results show that insulin modulates activity-dependent synaptic plasticity, which requires activation of NMDA receptors and the PI3K pathway. The results obtained provide a mechanistic link between insulin and synaptic plasticity, and explain how insulin functions as a neuromodulator.  相似文献   

14.

Background

Associative high-frequency electrical stimulation (HFS) of the supraorbital nerve in five healthy individuals induced long-term potentiation (LTP)-like or depression (LTD)-like changes in the human blink reflex circuit according to the rules of spike timing-dependent plasticity (Mao and Evinger, 2001). HFS given at the onset of the R2 component of the blink reflex (HFSLTP) produced a lasting facilitation of the R2, whereas HFS given shortly before R2 (HFSLTD) caused a lasting suppression of the R2. In patients with benign essential blepharospasm (BEB), a focal dystonia affecting the orbicularis oculi muscles, HFSLTP induced excessive LTP-like associative plasticity relative to healthy controls, which was normalized after botulinum toxin (BTX) injections (Quartarone et al, 2006).

Methodology/Principal Findings

We used HFS conditioning of the supraorbital nerve to study homeostatic metaplasticity of the blink reflex circuit in healthy subjects and dystonic patients. On separate days, we tested the conditioning effects on the R2 response and paired-pulse R2 inhibition after (i) HFSLTP, (ii) HFSLTP followed by HFSLTP, and (iii) HFSLTP followed by HFSLTD. Controls also received (iv) HFSLTD alone and (v) a non-intervention protocol. In BEB patients, HFSLTP followed by HFSLTD was given before and after BTX treatment. We were not able to replicate the bidirectional timing-dependent effects of HFSLTP and HFSLTD alone. All HFS protocols produced a non-specific reduction of the R2 response and a relative decrease in paired-pulse inhibition. These R2 changes also occurred in controls when no HFS was applied. There was also no trace of a homeostatic response pattern in BEB patients before or after BTX treatment.

Conclusion/Significance

Our data challenge the efficacy of associative HFS to produce bidirectional plasticity in the human blink reflex circuit. The non-specific decrease of the R2 response might indicate habituation of the blink reflex following repeated electrical supraorbital stimulation. The increase of inhibition after paired pulse stimulation might reflect homeostatic behaviour to prevent further down regulation of the R2 response to preserve the protection of this adverse-effects reflex.  相似文献   

15.
经验改变大鼠听皮层神经元的特征频率   总被引:3,自引:1,他引:2  
应用常规电生理学技术,以神经元的特征频率和频率调谐曲线为指标,研究大鼠听皮层神经元特征频率的可塑性. 结果表明,在给予的条件刺激频率和神经元特征频率相差1.0 kHz范围内,条件刺激可诱导50%以上神经元特征频率发生完全偏移,并可分为向频率调谐曲线的低频端偏移、高频端偏移,或两侧均可偏移三种类型. 其中,神经元的特征频率高、Q10-dB值大和频率调谐曲线对称指数大于零的神经元,其特征频率偏向频率调谐曲线高频端的概率更高. 结果提示,经验可改变大鼠听皮层神经元的特征频率,为深入研究中枢神经元功能活动可塑性的机制提供了重要实验资料.  相似文献   

16.
Changes in synaptic efficacies need to be long-lasting in order to serve as a substrate for memory. Experimentally, synaptic plasticity exhibits phases covering the induction of long-term potentiation and depression (LTP/LTD) during the early phase of synaptic plasticity, the setting of synaptic tags, a trigger process for protein synthesis, and a slow transition leading to synaptic consolidation during the late phase of synaptic plasticity. We present a mathematical model that describes these different phases of synaptic plasticity. The model explains a large body of experimental data on synaptic tagging and capture, cross-tagging, and the late phases of LTP and LTD. Moreover, the model accounts for the dependence of LTP and LTD induction on voltage and presynaptic stimulation frequency. The stabilization of potentiated synapses during the transition from early to late LTP occurs by protein synthesis dynamics that are shared by groups of synapses. The functional consequence of this shared process is that previously stabilized patterns of strong or weak synapses onto the same postsynaptic neuron are well protected against later changes induced by LTP/LTD protocols at individual synapses.  相似文献   

17.
Corticostriatal synapse plasticity of medium spiny neurons is regulated by glutamate input from the cortex and dopamine input from the substantia nigra. While cortical stimulation alone results in long-term depression (LTD), the combination with dopamine switches LTD to long-term potentiation (LTP), which is known as dopamine-dependent plasticity. LTP is also induced by cortical stimulation in magnesium-free solution, which leads to massive calcium influx through NMDA-type receptors and is regarded as calcium-dependent plasticity. Signaling cascades in the corticostriatal spines are currently under investigation. However, because of the existence of multiple excitatory and inhibitory pathways with loops, the mechanisms regulating the two types of plasticity remain poorly understood. A signaling pathway model of spines that express D1-type dopamine receptors was constructed to analyze the dynamic mechanisms of dopamine- and calcium-dependent plasticity. The model incorporated all major signaling molecules, including dopamine- and cyclic AMP-regulated phosphoprotein with a molecular weight of 32 kDa (DARPP32), as well as AMPA receptor trafficking in the post-synaptic membrane. Simulations with dopamine and calcium inputs reproduced dopamine- and calcium-dependent plasticity. Further in silico experiments revealed that the positive feedback loop consisted of protein kinase A (PKA), protein phosphatase 2A (PP2A), and the phosphorylation site at threonine 75 of DARPP-32 (Thr75) served as the major switch for inducing LTD and LTP. Calcium input modulated this loop through the PP2B (phosphatase 2B)-CK1 (casein kinase 1)-Cdk5 (cyclin-dependent kinase 5)-Thr75 pathway and PP2A, whereas calcium and dopamine input activated the loop via PKA activation by cyclic AMP (cAMP). The positive feedback loop displayed robust bi-stable responses following changes in the reaction parameters. Increased basal dopamine levels disrupted this dopamine-dependent plasticity. The present model elucidated the mechanisms involved in bidirectional regulation of corticostriatal synapses and will allow for further exploration into causes and therapies for dysfunctions such as drug addiction.  相似文献   

18.
The effects of intracerebroventricular pretreatment with muscarinic (scopolamine or methylscopolamine; 2.7 nmol or 5.4 nmol) or nicotinic (mecamylamine, 2.7 nmol or 5.4 nmol) cholinergic receptor antagonists on plasma free fatty acid increases induced by intracerebroventricular injections of carbachol in conscious resting pigeons (Columba livia) were examined. Plasma glucose levels were also measured throughout the experiments. Pretreatment with methylscopolamine suppressed the lipolytic effect of carbachol injections, while mecamylamine left this response unchanged. Neither carbachol treatment alone, nor the pretreatments with cholinergic agents affected glucose levels. Subsequently, the effects of intracerebroventricular injections of methylscopolamine were investigated in 24-h food-deprived pigeons. The increase in free fatty acid levels after fasting was of a magnitude similar to that observed after carbachol treatment; intracerebroventricular injections of methylscopolamine (5.4 nmol) transiently but powerfully decreased plasma free fatty acids in 24-h food-deprived pigeons to levels comparable to those of free-feeding animals. The fasting-induced decrease in glucose levels was not affected by this treatment. These data indicate that the lipolytic response induced by carbachol may be mediated by central muscarinic cholinergic receptors and that this central cholinergic mechanism partially contributes to plasma free fatty acid increases observed during fasting. Furthermore, the absence of effects on glucose levels suggests that these cholinergic mechanisms participate selectively in the lipolytic component of the metabolic response to fasting.  相似文献   

19.
Gu Z  Yakel JL 《Neuron》2011,71(1):155-165
Cholinergic modulation of hippocampal synaptic plasticity has been studied extensively by applying receptor agonists or blockers; however, the effect of rapid physiological cholinergic stimuli on plasticity is largely unknown. Here, we report that septal cholinergic input, activated either by electrical stimulation or via an optogenetic approach, induced different types of hippocampal Schaffer collateral (SC) to CA1 synaptic plasticity, depending on the timing of cholinergic input relative to the SC input. When the cholinergic input was activated 100 or 10 ms prior to SC stimulation, it resulted in α7 nAChR-dependent long-term potentiation (LTP) or short-term depression, respectively. When the cholinergic stimulation was delayed until 10 ms after the SC stimulation, a muscarinic AChR-dependent LTP was induced. Moreover, these various forms of plasticity were disrupted by Aβ exposure. These results have revealed the remarkable temporal precision of cholinergic functions, providing a novel mechanism for information processing in cholinergic-dependent higher cognitive functions.  相似文献   

20.
Hippocampal mossy fibers (MFs) innervate CA3 targets via anatomically distinct presynaptic elements: MF boutons (MFBs) innervate pyramidal cells (PYRs), whereas filopodial extensions (Fils) of MFBs innervate st. lucidum interneurons (SLINs). Surprisingly, the same high-frequency stimulation (HFS) protocol induces presynaptically expressed LTP and LTD at PYR and SLIN inputs, respectively. This differential distribution of plasticity indicates that neighboring, functionally divergent presynaptic elements along the same axon serve as autonomous computational elements capable of modifying release independently. Indeed we report that HFS persistently depresses voltage-gated calcium channel (VGCC) function in Fil terminals, leaving MFB VGCCs unchanged despite similar contributions of N- and P/Q-type VGCCs to transmission at each terminal. Selective Fil VGCC depression results from HFS-induced mGluR7 activation leading to persistent P/Q-type VGCC inhibition. Thus, mGluR7 localization to MF-SLIN terminals and not MFBs allows for MF-SLIN LTD expression via depressed presynaptic VGCC function, whereas MF-PYR plasticity proceeds independently of VGCC alterations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号