首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The optical extinction spectra of micro- and nanoparticles made up of high-contrast dielectrics exhibit a set of very intense peaks due to the excitations of morphology-dependent resonances (MDRs). These kind of resonances are well known at the microscopic scale as whispering gallery modes. In this work, we study numerically the optical spectra corresponding to a core–shell structure composed by an infinite silicon nanowire coated with a silver shell. This structure shows a combination of both excitations: MDRs and the well-known surface plasmon resonances in dielectric metallic core–shell nanoparticles (Ekeroth Abraham and Lester, Plasmon 2012). We compute in an exact form the complete electromagnetic response for both bare and coated silicon nanowires in the range of 24–200 nm of cross-sectional sizes. We take into account an experimental bulk dielectric function of crystalline silicon and silver by using a correction by size of the metal dielectric function. In this paper, we consider small silver shells in the range of 1–10 nm of thickness as coatings. We analyze the optical response in both the far and near fields, involving wavelengths in the extended range of 300–2,400 nm. We show that the MDRs excited at the core are selectively perturbated by the metallic shell through the bonding and antibonding surface plasmons (SPs). This perturbation depends on both the size of the core and the thickness of the shell, and, as a consequence, we get an efficient tuneable and detectable simple system. Our calculations apply perfectly to long nanotubes compared to the wavelength for the two fundamental polarizations (s, p).  相似文献   

2.

We numerically study plasmonic solar cells in which a square periodic array of core–shell Ag@SiO2 nanospheres (NSs) are placed on top of the indium tin oxide (ITO) layer using a 3D finite-difference time-domain (FDTD) method. We investigate the influence of various parameters such as the periodicity of the array, the Ag core diameter, the active layer thickness, the shell thickness, and the refractive index of the shell materials on the optical performance of the organic solar cells (OSC). Our results show that the optimal periodicity of the array of NSs is dependent on the size of Ag core NSs in order to maximize optical absorption in the active layer. A very thin active layer (<70 nm) and an ultrathin (<5 nm) SiO2 shell are needed in order to obtain the highest optical absorption enhancement. Strong electric field localization is observed around the plasmonic core–shell nanoparticles as a result of localized surface plasmon resonance (LSPR) excited by Ag NSs with and without silica shell. Embedding 50 nm Ag NSs with 1-nm-thick SiO2 shell thickness on top of ITO leads to an enhanced intrinsic optical absorption in a 40-nm-thick poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) active layer by 24.7% relative to that without the NSs. The use of 1-nm-thick ZnO shell instead of SiO2 leads to an enhanced intrinsic absorption in a 40-nm-thick P3HT:PCBM active layer by 27%.

  相似文献   

3.
Yolk‐like TiO2 are prepared through an asymmetric Ostwald ripening, which is simultaneously doped by nitrogen and wrapped by carbon from core to shell. It presents a high specific surface area (144.9 m2 g?1), well‐defined yolk‐like structure (600–700 nm), covered with interweaved nanosheets (3–5 nm) and tailored porosity (5–10 nm) configuration. When first utilized as anode material for sodium‐ion batteries (SIBs), it delivers a high reversible specific capacity of 242.7 mA h g?1 at 0.5 C and maintains a considerable capacity of 115.9 mA h g?1 especially at rate 20 C. Moreover, the reversible capacity can still reach 200.7 mA h g?1 after 550 cycles with full capacity retention at 1 C. Even cycled at extremely high rate 25 C, the capacity retention of 95.5% after 3000 cycles is acquired. Notably, an ultrahigh initial coulombic efficiency of 59.1% is achieved. The incorporation of nitrogen with narrowing the band gap accompanied with carbon uniformly coating from core to shell make the NC TiO2‐Y favor a bulk type conductor, resulting in fast electron transfer, which is beneficial to long‐term cycling stability and remarkable rate capability. It is of great significance to improve the energy‐storage properties through development of the bulk type conductor as anode materials in SIBs.  相似文献   

4.
The scattering and absorption efficiencies of light by individual silicon/gold core/shell spherical nanoparticles in air are analysed theoretically in the framework of Lorenz-Mie formalism. We have addressed the influence of particle-diameter and gold-shell thickness on the scattering and absorption efficiencies of such nano-heterostructures. For comparison, we also considered the famous silica/gold core/shell nanoparticle and pure gold nanoparticle. Our simulation clearly shows that the optical response of the illuminated Si/Au core/shell nanoparticle differs markedly from that of the famous SiO2/Au heterostructure which in turn does not show a significant difference with that of the pure gold nanoparticle. This difference is clearly evident for shell thickness to outer particle radius ratio of less than 0.5. It manifests itself essentially by the occurrence of a strong and sharp absorption resonance beyond the wavelength of 600 nm where the silica/gold and the pure gold nanoparticles never absorb. The characteristics of this resonance are found to be sensitive to the particle diameter and the shell thickness. In particular, its spectral position can be adjusted over a wide spectral range from the visible to the mid-IR by varying the particle diameter and/or the shell thickness.  相似文献   

5.
To create core/shell/shell quantum dots (QDs) with high stability against a harmful chemical environment, CdTe/CdS QDs were coated with a ZnO shell in an aqueous solution. An interfaced CdS layer sandwiched between a CdTe core and ZnO shell provided relaxation of the strain at the core/shell interface since lattice parameters of CdS are intermediate between those of CdTe and ZnO. The photoluminescence (PL) peak wavelength of the core/shell/shell QDs was shifted from 569 to 615 nm by adjusting the size of CdTe cores and thickness of CdS and ZnO shells, along with the highest PL quantum yield of the core/shell/shell QDs reaching 80%, which implies promising applications in the field of biomedical labeling. Due to the decrease of surface defects, it was observed that PL lifetimes significantly increased at room temperature as follows: 29.6 34.2, and 47.5 ns for CdTe (537 nm), CdTe/CdS (555 nm) and CdTe/CdS/ZnO (581 nm) QDs, respectively. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
Graphene, new generation advance material of two dimensional hexagonal lattice having extraordinary optical signatures, is used as coating material to enhance the surface plasmon resonance (SPR) effect of core@shell metal nanospheres. In a core@shell nanosphere, we have chosen metal as a core and graphene monolayer (GML) as a shell. We have analysed optical signature of coated and non-coated nanospheres in terms of extinction efficiency (Q ext) and tunabilty of surface plasmon resonances using electrostatic model, where particle size is much smaller than the wavelength of incident light. We analysed this model over different metals (silver, gold and aluminium) core, coated with different thickness of GML (d?=?0.1 to 0.5 nm). These core@shell nanospheres are embedded in refractive index media of air (n em?=?1), SiO2 (n em?=?1.47) and TiO2 (n em?=?2.79). The Q ext has been calculated by varying both the core radii as well as the GML shell thickness. Graphene-coated metal nanosphere exhibits SPRs that have wide range tunability from 300 to 1500 nm. In the presenting work, we also analysed that extinction efficiency for metal@GML is higher in TiO2 than others. The optimum value of GML shell thickness is 0.4 nm for TiO2, the magnitude of extinction efficiency is maximum for the optimum thickness. The tunability of these plasmonic resonances is highly dependent on the core@shell material, thickness of Graphene shell and surrounding environment while non-coated metal nano-spheres do not show appropriate SPR tunability.  相似文献   

7.
Liu X  Ma R  Shen J  Xu Y  An Y  Shi L 《Biomacromolecules》2012,13(5):1307-1314
Oral administration of ionic drugs generally encounters with significant fluctuation in plasma concentration due to the large variation of pH value in the gastrointestinal tract and the pH-dependent solubility of ionic drugs. Polymeric complex micelles with charged channels on the surface provided us with an effective way to reduce the difference in the drug release rate upon change in pH value. The complex micelles were prepared by self-assembly of PCL-b-PAsp and PCL-b-PNIPAM in water at room temperature with PCL as the core and PAsp/PNIPAM as the mixed shell. With an increase in temperature, PNIPAM collapsed and enclosed the PCL core, while PAsp penetrated through the PNIPAM shell, leading to the formation of negatively charged PAsp channels on the micelle surface. Release behavior of ionic drugs from the complex micelles was remarkably different from that of usual core-shell micelles where diffusion and solubility of drugs played a key role. Specifically, it was mainly dependent on the conformation of the PAsp chains and the electrostatic interaction between PAsp and drugs, which could partially counteract the influence of pH-dependent diffusion and solubility of drugs. As a result, the variation of drug release rate with pH value was suppressed, which was favorable for acquiring relatively steady plasma drug concentration.  相似文献   

8.
In the present study, we have investigated the extinction spectra of coated sphere (using dipole model) with different core–shell radius, in which the core is TiO2 and the shell is made up of silver or gold nanoparticles. Nanoparticles exhibit surface plasmon resonance peak; these plasmonic peaks are highly tunable in wavelength range of 300 to 1,100 nm; in fact, the blue and red shifting of resonance peak highly depends on the core–shell thickness. The broadness of resonance peaks are analysed in terms of full width at half maxima (FWHM), and the width of these resonance peaks is also the function of core–shell radius.  相似文献   

9.
Au/Ag core/shell nanoparticles are fabricated by laser-ablating Ag plates in Au colloid solution. The absorption band is found to blue shift with increasing ablation time. Mie theory calculations show that the shift is caused by the increase of the Ag shell thickness. The average Ag shell thickness can be determined from the measured absorption peak. Using the plasmon hybridization approach, we show that the absorption band around 510 nm originates from an anti-bonding mode ω ?+ caused by the interaction between a bonding Ag shell mode ω ?? and Au sphere mode ω S-Au. The blue shift of the ω ?+ mode with the increase of Ag shell thickness is also well predicted by the hybridization theory.  相似文献   

10.
Absorption and scattering efficiencies of semiconductor-coated Au nanoshell have been studied by the extended Mie theory for their possible solar cell, optical imaging, and photothermal applications, etc. The effect of Au shell layer thickness, core size, and surrounding medium on the absorption and scattering efficiencies at the localized surface plasmon resonance (LSPR) wavelengths has been reported. It has been found that both the absorption and scattering efficiencies get blue-shifted with an increase in Au shell layer thickness from 2 to 10 nm and with an increase in surrounding refractive index whereas the corresponding LSPR peaks shift towards red. It has also been found that the spectra are red-shifted with an increase in the core radius from 20 to 40 nm while keeping the shell thickness same. The effect of shell thickness on the absorption peak position and absorption linewidth has also been studied. Hence, the optical response of both CdSe- and CdTe-coated Au nanoshells can be tuned and controlled from the visible to the near-infrared (NIR) region of the electromagnetic (EM) spectrum. Finally, the CdSe-coated Au nanoshell exhibits high scattering and absorption efficiencies in comparison to the CdTe-coated nanoshell.  相似文献   

11.
Yuki Tamura 《Molecular simulation》2015,41(10-12):905-912
Core–shell nanoparticles are nanosized particles that consist of a core and a shell, constructed from different metallic elements. Core–shell nanoparticles have received extensive attention, owing to their various potential applications such as paints, optical films and catalysts. Herein, we investigate the melting behaviours of different core–shell nanoparticles under continuous heating using molecular dynamics simulation. Different metallic elements were examined as core–shell and pure nanoparticles. Five different processes were observed during the melting of core–shell nanoparticles. In contrast, only one process was identified during the melting of pure nanoparticles. These processes were influenced by the nanoparticle size, shell thickness and differences between the lattice constants and melting point temperatures of the metallic elements. Our simulation provides microscopic insights into the melting behaviours of existing and proposed core–shell nanoparticles that would be highly beneficial towards the fabrication of materials with different chemical coatings.  相似文献   

12.
We here present novel insights into the dynamic changes of a nanosized lipid film during enzymatic degradation. When adding an aqueous solution containing a triacylglycerol lipase to an approximately 100nm thin triolein film, which is supported on a hard surface, the film thickness, elasticity, viscosity, and chemical composition were obtained continuously. Both a mechanical technique (quartz crystal microbalance with dissipation monitoring) and a spectroscopic technique (attenuated total reflection Fourier transform infrared spectroscopy) were utilised for this study. Detailed data revealed the effects of pH, Ca(2+), and catalytic rate on lipolysis, including product release from the film. It was found that under basic conditions and without Ca(2+), the lipolytic activity commence instantaneously upon addition of enzyme, whereas product release from the substrate film awaits conditions that favours release. A model for removal of degradation products from the film is introduced, including a novel interpretation of the lag phase phenomenon.  相似文献   

13.
目的:以猪胸腺肽为芯材、壳聚糖为壁材,采用乳化交联结合单凝聚法制备猪胸腺肽壳聚糖口服微球。方法:以壁材浓度、交联剂含量、油水比值、芯材壁材比值为四因素设计正交实验,确定微球最佳制备条件,并对其体外释放及稳定性进行研究。结果:制备微球最优化条件为壳聚糖浓度1%、25%戊二醛含量7%、油水比值2:1、壳聚糖与胸腺肽比值1:1;微球在pH1.5的HC1溶液中2h释放30%,在pH6.8及7.4的PBS缓冲液中最终释放度约80%,并在24h达到释放终点;微球30rain突释率约为10%,1h释放率约为20%,其后缓慢而持续地释放;猪胸腺肽壳聚糖微球在0℃保存8个月时微球外观及形态没有差异,药物剩余率约为91.8%。结论:采用乳化交联结合单凝聚法制备的猪胸腺肽壳聚糖口服微球为缓释给药系统的临床应用奠定了理论基础,具有重要的实际应用价值和社会意义。  相似文献   

14.
Structure and assembly of filamentous bacterial viruses.   总被引:6,自引:0,他引:6  
Filamentous bacterial viruses are flexible nucleoprotein rods, about 6 nm in diameter by 1000-2000 nm in length (depending on the virus strain). A protein shell encloses a central core of single-stranded circular DNA. The coat protein subunits forming the shell are largely alpha-helix, elongated in an axial direction, and also sloping radially, so as to overlap each other and give an arrangement of subunits reminiscent of scales on a fish. This arrangement of alpha-helices is rather like some models of myosin filaments. An early step in assembly of the virion is the formation of a complex between the viral DNA and an intracellular packaging protein that is not found in completed virions. Newly synthesized coat protein becomes associated with the plasma membrane of the cell. During the final steps of assembly, the packaging protein is displaced from the DNA and replaced by coat protein as the virion passes out through the plasma membrane of the host cell.  相似文献   

15.
Wang C  Ye S  Dai L  Liu X  Tong Z 《Biomacromolecules》2007,8(5):1739-1744
Polyelectrolyte multilayer films were prepared through layer-by-layer (LbL) self-assembly using polysaccharide sodium alginate (ALG) and chitosan (CHI). After incubation in an enzyme pepsin solution, the multilayer film was partially destroyed as detected by the decrease in fluorescent intensity because of the enzymatic degradation of CHI. The enzymatic desorption was also observed from the microcapsule wall made of the ALG/CHI multilayer film directly deposited on indomethacin (IDM) microcrystals through LbL self-assembly. After pepsin erosion, the IDM release from the microcapsules monitored by UV absorbance was obviously accelerated because of desorption. To enhance the stability of the ALG/CHI multilayer film to the enzymatic erosion, some physical and chemical methods were established to increase film thickness or to cross-link the polysaccharides within the film. Increasing the layer number and raising the deposition temperature effectively slowed down the enzymatic desorption and release rate. Especially, increasing deposition temperature was more effective because of producing a more perfect structure in the ALG/CHI multilayer film. Cross-linking the neighboring layers of ALG and CHI with 1-ethyl-3-(3-dimethylamino-propyl)carbodiimide in the ALG/CHI multilayer film significantly reduced the enzymatic desorption and release rate. Therefore, increasing deposition temperature and cross-linking neighboring layers are effective methods to protect the multilayer film fabricated using LbL assembly from the enzymatic erosion and to prolong the release of the encapsulated drug.  相似文献   

16.
The purpose of this research was to develop and evaluate different preparations of sustained delivery systems, using Carbopols as carriers, in the form of matrices and three-layer tablets with isosorbite mononitrate. Matrix tablets were prepared by direct compression whereas three-layer tablets were prepared by compressing polymer barrier layers on both sides of the core containing the drug. The findings of the study indicated that all systems demonstrated sustained release. The properties of the polymer used and the structure of each formulation appear to considerably affect drug release and its release rate. The three-layer formulations exhibit lower drug release compared to the matrices. This was due to the fact that the barrier-layers hindered the penetration of liquid into the core and modified drug dissolution and release. The geometrical characteristics/structure of the tablets as well as the weight/thickness of the barriers-layers considerably influence the rate of drug release and the release mechanisms. Kinetic analysis of the data indicated that drug release from matrices was mainly attributed to Fickian diffusion while three-layer tablets exhibited either anomalous diffusion or erosion/relaxation mechanisms. The advantage of Carbopol formulations is that a range of release profiles can easily be obtained through variations in tablet structure and thus Carbopols are appropriate carriers of oral sustained drug delivery systems for soluble drugs such as the isosorbite mononitrate.  相似文献   

17.
Virions of mouse leukemia virus spread on glass substrates were visualized by atomic force microscopy. The size distribution mode was 145 nm, significantly larger than that for human immunodeficiency virus particles. The distribution of particle sizes is broad, indicating that no two particles are likely identical in content or surface features. Virions possess knoblike protrusions, which may represent vestiges of budding from cell membranes. Particles which split open allowed imaging of intact cores with diameters of 65 nm. They also permitted estimation of viral shell thickness (35 to 40 nm) and showed the presence of a distinct trough between the shell and the core surface.  相似文献   

18.
Organic photovoltaic (OPV) materials are inherently inhomogeneous at the nanometer scale. Nanoscale inhomogeneity of OPV materials affects performance of photovoltaic devices. Thus, understanding of spatial variations in composition as well as electrical properties of OPV materials is of paramount importance for moving PV technology forward.1,2 In this paper, we describe a protocol for quantitative measurements of electrical and mechanical properties of OPV materials with sub-100 nm resolution. Currently, materials properties measurements performed using commercially available AFM-based techniques (PeakForce, conductive AFM) generally provide only qualitative information. The values for resistance as well as Young''s modulus measured using our method on the prototypical ITO/PEDOT:PSS/P3HT:PC61BM system correspond well with literature data. The P3HT:PC61BM blend separates onto PC61BM-rich and P3HT-rich domains. Mechanical properties of PC61BM-rich and P3HT-rich domains are different, which allows for domain attribution on the surface of the film. Importantly, combining mechanical and electrical data allows for correlation of the domain structure on the surface of the film with electrical properties variation measured through the thickness of the film.  相似文献   

19.
We describe investigations of thermally triggered insulin release from poly(N-isopropylacrylamide-co-acrylic acid) microgel thin films prepared by layer-by-layer (LbL) polyelectrolyte assembly. The thermoresponsivity of these films was confirmed using light scattering techniques. Simultaneous monitoring of film collapse and insulin release kinetics shows that deswelling of the films is partially decoupled from macromolecule release and that release is mainly governed by partitioning effects. We hypothesize, however, that film thermoresponsivity plays an important role in that subjection to many thermal cycles enables the embedded peptide to solubilize and subsequently partition through film layers. Direct pulsatile and extended release studies confirm the capability of these films to release bursts of insulin over many cycles, and confirm that the magnitude of the release can be controlled based on film thickness. These insulin-impregnated films are extremely stable with the potential to release constant pulses of peptide for more than 1 month at a time.  相似文献   

20.
From the liver of fish Dasyatis akajei, ferritin has been isolated by thermal denaturation and ammonium sulfate fractionation and then further purified by anion exchange chromatography and gel exclusion chromatography. The molecular weight of the liver ferritin of D. akajei (DALF) was measured to be 400 kDa by PAGE. Moreover, SDS-PAGE experimentation indicates that protein shell of DALF consists of the H and L subunits with molecular weight of 18 and 13 kDa, respectively. Using isoelectric focusing with pH ranging from 5.0 to 6.0, the ferritin purified by the PAGE exhibited three bands with different pI values in the gel slab. Diameters of the protein shell and iron core were also investigated by transmission electron microscope and determined to be 10–12 nm and 5–8 nm, respectively. A kinetic study of DALF reveals that the rate of self-regulation of the protein shell rather than the complex surface of the iron core plays an important role in forming a process for iron release with mixed orders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号