首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
2.
3.
Hepatitis C virus (HCV) frequently establishes persistent infections in the liver, leading to the development of chronic hepatitis and, potentially, to liver cirrhosis and hepatocellular carcinoma at later stages. The objective of this study was to test the ability of five Dicer substrate siRNAs (DsiRNA) to inhibit HCV replication and to compare these molecules to canonical 21 nt siRNA. DsiRNA molecules were designed to target five distinct regions of the HCV genome – the 5’ UTR and the coding regions for NS3, NS4B, NS5A or NS5B. These molecules were transfected into Huh7.5 cells that stably harboured an HCV subgenomic replicon expressing a firefly luciferase/neoR reporter (SGR-Feo-JFH-1) and were also tested on HCVcc-infected cells. All of the DsiRNAs inhibited HCV replication in both the subgenomic system and HCVcc-infected cells. When DsiRNAs were transfected prior to infection with HCVcc, the inhibition levels reached 99.5%. When directly compared, canonical siRNA and DsiRNA exhibited similar potency of virus inhibition. Furthermore, both types of molecules exhibited similar dynamics of inhibition and frequencies of resistant mutants after 21 days of treatment. Thus, DsiRNA molecules are as potent as 21 nt siRNAs for the inhibition of HCV replication and may provide future approaches for HCV therapy if the emergence of resistant mutants can be addressed.  相似文献   

4.
Nonstructural protein 4B (NS4B) is a key organizer of hepatitis C virus (HCV) replication complex formation. In concert with other nonstructural proteins, it induces a specific membrane rearrangement, designated as membranous web, which serves as a scaffold for the HCV replicase. The N-terminal part of NS4B comprises a predicted and a structurally resolved amphipathic α-helix, designated as AH1 and AH2, respectively. Here, we report a detailed structure-function analysis of NS4B AH1. Circular dichroism and nuclear magnetic resonance structural analyses revealed that AH1 folds into an amphipathic α-helix extending from NS4B amino acid 4 to 32, with positively charged residues flanking the helix. These residues are conserved among hepaciviruses. Mutagenesis and selection of pseudorevertants revealed an important role of these residues in RNA replication by affecting the biogenesis of double-membrane vesicles making up the membranous web. Moreover, alanine substitution of conserved acidic residues on the hydrophilic side of the helix reduced infectivity without significantly affecting RNA replication, indicating that AH1 is also involved in virus production. Selective membrane permeabilization and immunofluorescence microscopy analyses of a functional replicon harboring an epitope tag between NS4B AH1 and AH2 revealed a dual membrane topology of the N-terminal part of NS4B during HCV RNA replication. Luminal translocation was unaffected by the mutations introduced into AH1, but was abrogated by mutations introduced into AH2. In conclusion, our study reports the three-dimensional structure of AH1 from HCV NS4B, and highlights the importance of positively charged amino acid residues flanking this amphipathic α-helix in membranous web formation and RNA replication. In addition, we demonstrate that AH1 possesses a dual role in RNA replication and virus production, potentially governed by different topologies of the N-terminal part of NS4B.  相似文献   

5.
In hepatitis C virus (HCV) infection, morbidity and mortality often result from extrahepatic disease manifestations. We provide evidence for a role of receptors of the innate immune system in virally induced inflammation of the endothelium in vitro and in vivo. Corresponding to the in vitro finding of an HCV-dependent induction of proinflammatory mediators in endothelial cells, mice treated with poly (I:C) exhibit a significant reduction in leukocyte rolling velocity, an increase in leukocyte adhesion to the vessel wall and an increased extravasation of leukocytes. HCV directly promotes activation, adhesion and infiltration of inflammatory cells into the vessel wall by activation of endothelial viral receptors. Poly (I:C) induces the expression of TLR3 in vivo and hereby allows for amplification of all of the aforementioned responses upon viral infection. Proinflammatory effects of viral RNA are specifically mediated by TLR3 and significantly enhanced by tumor necrosis factor alpha (TNFα). HCV-RNA induces the endothelial expression of TNFα and TNFα receptor subtype 2 and we provide evidence that leucocyte adhesion and transmigration in response to activation of viral RNA receptors seem to depend on expression of functional TNFR2. Our results demonstrate that endothelial cells actively participate in immune mediated vascular inflammation caused by viral infections.  相似文献   

6.
7.
Although information regarding morphogenesis of the hepatitis C virus (HCV) is accumulating, the mechanism(s) by which the HCV genome encapsidated remains unknown. In the present study, in cell cultures producing HCV, the molecular ratios of 3’ end- to 5’ end-regions of the viral RNA population in the culture medium were markedly higher than those in the cells, and the ratio was highest in the virion-rich fraction. The interaction of the 3’ untranslated region (UTR) with Core in vitro was stronger than that of the interaction of other stable RNA structure elements across the HCV genome. A foreign gene flanked by the 3’ UTR was encapsidated by supplying both viral NS3-NS5B proteins and Core-NS2 in trans. Mutations within the conserved stem-loops of the 3’ UTR were observed to dramatically diminish packaging efficiency, suggesting that the conserved apical motifs of the 3´ X region are important for HCV genome packaging. This study provides evidence of selective packaging of the HCV genome into viral particles and identified that the 3’ UTR acts as a cis-acting element for encapsidation.  相似文献   

8.
Phosphatidylinositol 4,5-bisphosphate (PIP2) has many essential functions and its homeostasis is highly regulated. We previously found that hypertonic stress increases PIP2 by selectively activating the β isoform of the type I phosphatidylinositol phosphate 5-kinase (PIP5Kβ) through Ser/Thr dephosphorylation and promoting its translocation to the plasma membrane. Here we report that hydrogen peroxide (H2O2) also induces PIP5Kβ Ser/Thr dephosphorylation, but it has the opposite effect on PIP2 homeostasis, PIP5Kβ function, and the actin cytoskeleton. Brief H2O2 treatments decrease cellular PIP2 in a PIP5Kβ-dependent manner. PIP5Kβ is tyrosine phosphorylated, dissociates from the plasma membrane, and has decreased lipid kinase activity. In contrast, the other two PIP5K isoforms are not inhibited by H2O2. We identified spleen tyrosine kinase (Syk), which is activated by oxidants, as a candidate PIP5Kβ kinase in this pathway, and mapped the oxidant-sensitive tyrosine phosphorylation site to residue 105. The PIP5KβY105E phosphomimetic is catalytically inactive and cytosolic, whereas the Y105F non-phosphorylatable mutant has higher intrinsic lipid kinase activity and is much more membrane associated than wild type PIP5Kβ. These results suggest that during oxidative stress, as modeled by H2O2 treatment, Syk-dependent tyrosine phosphorylation of PIP5Kβ is the dominant post-translational modification that is responsible for the decrease in cellular PIP2.Oxygen-derived free radicals are by-products of metabolic reactions in eukaryotic cells. Reactive oxygen species (ROS)4 act as endogenous signaling molecules (1). However, excessive ROS production leads to deleterious effects on cellular homeostasis by inducing DNA damage, lipid/protein oxidation, and ultimately apoptosis or necrosis. Acute and chronic oxidative stress have been implicated in the pathophysiology of shock and sepsis associated with traumatic injuries such as massive thermal burn (24), Alzheimer disease, diabetes mellitus, and atherosclerosis (57).Phosphatidylinositol 4,5-bisphosphate (PIP2) has emerged as an integral component of the stress response. This is concordant with its essential role in the regulation of the actin cytoskeleton, endocytosis, exocytosis, plasma membrane (PM) scaffolding, and ion channels/transporter (8). PIP2 is also essential for InsP3-mediated Ca2+ generation, protein kinase C activation, and PIP3 generation (9, 10). PIP2 synthesis is depressed in the heart sarcolemma during oxidative stress, suggesting that PIP2 depletion may contribute to cardiac dysfunctions (11). Recently, Divecha and colleagues (12) reported that prolonged (many hours) treatment of HeLa cells with hydrogen peroxide (H2O2) induces apoptosis by depleting PIP2. Apoptosis can be attenuated by overexpression of a type I phosphatidylinositol-4-phosphate 5-kinase (PIP5Kβ). We found using isoform-specific PIP5K knockdown by RNA interference (RNAi) that PIP5Kβ synthesizes a large fraction of the ambient PIP2 pool in HeLa cells (13). Hypertonicity is another type of stress that increases PIP2 and may be protective against cell injury (14, 15) by activating PIP5Kβ through Ser/Thr dephosphorylation (16). This effect is specific for PIP5Kβ, because depletion of the other two PIP5K isoforms (α and γ) individually does not substantially abrogate the hypertonicity induced PIP2 increase.In the present study, we used H2O2 to model oxidative stress in tissue culture cells, and examined the effect on PIP2 homeostasis and PIP5Kβ function. We found that a brief H2O2 treatment decreases cellular PIP2 and inactivates PIP5Kβ through tyrosine phosphorylation. We identified spleen tyrosine kinase (Syk) as a candidate kinase in this pathway. Syk is a member of the Syk/Zap-70 nonreceptor tyrosine kinase family that is abundant in hematopoietic cells (17) but is also found in nonhematopoietic lineages (18), including HeLa and COS cells (19, 20).  相似文献   

9.
10.

Objectives

CD100, also known as Sema4D, is a member of the semaphorin family and has important regulatory functions that promote immune cell activation and responses. The role of CD100 expression on B cells in immune regulation during chronic hepatitis C virus (HCV) infection remains unclear.

Materials and Methods

We longitudinally investigated the altered expression of CD100, its receptor CD72, and other activation markers CD69 and CD86 on B cells in 20 chronic HCV-infected patients before and after treatment with pegylated interferon-alpha (Peg-IFN-α) and ribavirin (RBV) by flow cytometry.

Results

The frequency of CD5+ B cells as well as the expression levels of CD100, CD69 and CD86 was significantly increased in chronic HCV patients and returned to normal in patients with sustained virological response after discontinuation of IFN-α/RBV therapy. Upon IFN-α treatment, CD100 expression on B cells and the two subsets was further up-regulated in patients who achieved early virological response, and this was confirmed by in vitro experiments. Moreover, the increased CD100 expression via IFN-α was inversely correlated with the decline of the HCV-RNA titer during early-phase treatment.

Conclusions

Peripheral B cells show an activated phenotype during chronic HCV infection. Moreover, IFN-α therapy facilitates the reversion of disrupted B cell homeostasis, and up-regulated expression of CD100 may be indirectly related to HCV clearance.  相似文献   

11.
12.
13.
14.
15.
Abstract

β-L-ddAMP-bis(tbutylSATE) is a potent inhibitor of HBV replication with an EC50 = 0.1 μM. Following a 0-to72-hrs exposure of human hepatocytes to a 10 μM [2′,3′?3H] β-L-ddAMP-bis(tbutylSATE), the pharmacologically active β-L-ddATP was the predominant metabolite attaining a concentration of 268.53 ± 107.97 pmoles/106 cells at 2 hrs. In Hep-G2 cell, β-L-ddATP accounted for 146.8 ± 29.8 pmoles/106 cells at 2 hrs with an half life of approximately 5.4 hrs. This study reveals that extensive intracellular concentrations of β-L-ddATP after incubation of cells to the parent drug is accounting for its potent antiviral activity.  相似文献   

16.
17.
Risk of transmission of hepatitis C virus (HCV) by clinical plasma remains high in countries with a high prevalence of hepatitis C, justifying the implementation of viral inactivation treatments. In this study, we assessed the extent of inactivation of HCV during minipool solvent/detergent (SD; 1% TnBP / 1% Triton X-45) treatment of human plasma. Luciferase-tagged infectious cell culture-derived HCV (HCVcc) particles were used to spike human plasma prior to treatment by SD at 31 ± 0.5°C for 30 min. Samples were taken before and after SD treatment and filtered on a Sep-Pak Plus C18 cartridge to remove the SD agents. Risk of cytotoxicity was assessed by XTT cell viability assay. Viral infectivity was analyzed based on the luciferase signals, 50% tissue culture infectious dose viral titer, and immunofluorescence staining for HCV NS5A protein. Total protein, cholesterol, and triglyceride contents were determined before and after SD treatment and C18 cartridge filtration. Binding analysis, using patient-derived HCV clinical isolates, was also examined to validate the efficacy of the inactivation by SD. SD treatment effectively inactivated HCVcc within 30 min, as demonstrated by the baseline level of reporter signals, total loss of viral infectivity, and absence of viral protein NS5A. SD specifically targeted HCV particles to render them inactive, with essentially no effect on plasma protein content and hemostatic function. More importantly, the efficacy of the SD inactivation method was confirmed against various genotypes of patient-derived HCV clinical isolates and against HCVcc infection of primary human hepatocytes. Therefore, treatment by 1% TnBP / 1% Triton X-45 at 31°C is highly efficient to inactivate HCV in plasma for transfusion, showing its capacity to enhance the safety of therapeutic plasma products. We propose that the methodology used here to study HCV infectivity can be valuable in the validation of viral inactivation and removal processes of human plasma-derived products.  相似文献   

18.
19.
Novel 4?′α-trifluoromethyl-2?′β-methyl carbocyclic nucleoside analogs have been prepared and evaluated for inhibition of hepatitis C virus (HCV) RNA replication in cell cultures. Construction of cyclopentene intermediate 10a was achieved via sequential Johnson–Claisen orthoester rearrangement and ring-closing metathesis starting from the α-trifluoromethyl-α,β-unsaturated ester 5. Stereoselective dihydroxylation and desilylation yielded the target carbodine analogs. The synthesized nucleoside analogs mentioned above (18 and 19) were assayed for their ability to inhibit HCV RNA replication in a subgenomic replicon Huh7 cell line (LucNeo#2). However, the synthesized nucleosides showed neither significant antiviral activity nor toxicity up to 50 μM.  相似文献   

20.
Combination antiretroviral therapy (cART) can effectively suppress HIV-1 replication, but the latent viral reservoir in resting memory CD4+ T cells is impervious to cART and represents a major barrier to curing HIV-1 infection. Reactivation of latent HIV-1 represents a possible strategy for elimination of this reservoir. In this study we describe the discovery of 1,2,9,10-tetramethoxy-7H-dibenzo[de,g]quinolin-7-one (57704) which reactivates latent HIV-1 in several cell-line models of latency (J89GFP, U1 and ACH-2). 57704 also increased HIV-1 expression in 3 of 4 CD8+-depleted blood mononuclear cell preparations isolated from HIV-1-infected individuals on suppressive cART. In contrast, vorinostat increased HIV-1 expression in only 1 of the 4 donors tested. Importantly, 57704 does not induce global T cell activation. Mechanistic studies revealed that 57704 reactivates latent HIV-1 via the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway. 57704 was found to be an agonist of PI3K with specificity to the p110α isoform, but not the p110β, δ or γ isoforms. Taken together, our work suggests that 57704 could serve as a scaffold for the development of more potent activators of latent HIV-1. Furthermore, it highlights the involvement of the PI3K/Akt pathway in the maintenance of HIV-1 latency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号