首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Six species of Gastrocopta have been identified from the Pilbara region, Western Australia, by means of comparative analyses of shell and mtDNA variation. Three of these species, Gastrocopta hedleyi, Gastrocopta larapinta and Gastrocopta servilis, have been recorded in the Pilbara for the first time. Gastrocopta sp. CW1 is probably new to science and might be endemic to the region. By contrast, Gastrocopta hedleyi, Gastrocopta larapinta and Gastrocopta mussoni are shown to be widespread.  相似文献   

3.
The genera Odontacolus Kieffer and Cyphacolus Priesner are among the most distinctive platygastroid wasps because of their laterally compressed metasomal horn; however, their generic status has remained unclear. We present a morphological phylogenetic analysis comprising all 38 Old World and four Neotropical Odontacolus species and 13 Cyphacolus species, which demonstrates that the latter is monophyletic but nested within a somewhat poorly resolved Odontacolus. Based on these results Cyphacolus syn. n. is placed as a junior synonym of Odontacolus which is here redefined. The taxonomy of Old World Odontacolus s.str. is revised; the previously known species Odontacolus longiceps Kieffer (Seychelles), Odontacolus markadicus Veenakumari (India), Odontacolus spinosus (Dodd) (Australia) and Odontacolus hackeri (Dodd) (Australia) are re-described, and 32 new species are described: Odontacolus africanus Valerio & Austin sp. n. (Congo, Guinea, Kenya, Madagascar, Mozambique, South Africa, Uganda, Zimbabwe), Odontacolus aldrovandii Valerio & Austin sp. n. (Nepal), Odontacolus anningae Valerio & Austin sp. n. (Cameroon), Odontacolus australiensis Valerio & Austin sp. n. (Australia), Odontacolus baeri Valerio & Austin sp. n. (Australia), Odontacolus berryae Valerio & Austin sp. n. (Australia, New Zealand, Norfolk Island), Odontacolus bosei Valerio & Austin sp. n. (India, Malaysia, Sri Lanka), Odontacolus cardaleae Valerio & Austin sp. n. (Australia), Odontacolus darwini Valerio & Austin sp. n. (Thailand), Odontacolus dayi Valerio & Austin sp. n. (Indonesia), Odontacolus gallowayi Valerio & Austin sp. n. (Australia), Odontacolus gentingensis Valerio & Austin sp. n. (Malaysia), Odontacolus guineensis Valerio & Austin sp. n. (Guinea), Odontacolus harveyi Valerio & Austin sp. n. (Australia), Odontacolus heratyi Valerio & Austin sp. n. (Fiji), Odontacolus heydoni Valerio & Austin sp. n. (Malaysia, Thailand), Odontacolus irwini Valerio & Austin sp. n. (Fiji), Odontacolus jacksonae Valerio & Austin sp. n. (Cameroon, Guinea, Madagascar), Odontacolus kiau Valerio & Austin sp. n. (Papua New Guinea), Odontacolus lamarcki Valerio & Austin sp. n. (Thailand), Odontacolus madagascarensis Valerio & Austin sp. n. (Madagascar), Odontacolus mayri Valerio & Austin sp. n. (Indonesia, Thailand), Odontacolus mot Valerio & Austin sp. n. (India), Odontacolus noyesi Valerio & Austin sp. n. (India, Indonesia), Odontacolus pintoi Valerio & Austin sp. n. (Australia, New Zealand, Norfolk Island), Odontacolus schlingeri Valerio & Austin sp. n. (Fiji), Odontacolus sharkeyi Valerio & Austin sp. n. (Thailand), Odontacolus veroae Valerio & Austin sp. n. (Fiji), Odontacolus wallacei Valerio & Austin sp. n. (Australia, Indonesia, Malawi, Papua New Guinea), Odontacolus whitfieldi Valerio & Austin sp. n. (China, India, Indonesia, Sulawesi, Malaysia, Thailand, Vietnam), Odontacolus zborowskii Valerio & Austin sp. n. (Australia), and Odontacolus zimi Valerio & Austin sp. n. (Madagascar). In addition, all species of Cyphacolus are here transferred to Odontacolus: Odontacolus asheri (Valerio, Masner & Austin) comb. n. (Sri Lanka), Odontacolus axfordi (Valerio, Masner & Austin) comb. n. (Australia), Odontacolus bhowaliensis (Mani & Mukerjee) comb. n. (India), Odontacolus bouceki (Austin & Iqbal) comb. n. (Australia), Odontacolus copelandi (Valerio, Masner & Austin) comb. n. (Kenya, Nigeria, Zimbabwe, Thailand), Odontacolus diazae (Valerio, Masner & Austin) comb. n. (Kenya), Odontacolus harteni (Valerio, Masner & Austin) comb. n. (Yemen, Ivory Coast, Paskistan), Odontacolus jenningsi (Valerio, Masner & Austin) comb. n. (Australia), Odontacolus leblanci (Valerio, Masner & Austin) comb. n. (Guinea), Odontacolus lucianae (Valerio, Masner & Austin) comb. n. (Ivory Coast, Madagascar, South Africa, Swaziland, Zimbabwe), Odontacolus normani (Valerio, Masner & Austin) comb. n. (India, United Arab Emirates), Odontacolus sallyae (Valerio, Masner & Austin) comb. n. (Australia), Odontacolus tessae (Valerio, Masner & Austin) comb. n. (Australia), Odontacolus tullyae (Valerio, Masner & Austin) comb. n. (Australia), Odontacolus veniprivus (Priesner) comb. n. (Egypt), and Odontacolus watshami (Valerio, Masner & Austin) comb. n. (Africa, Madagascar). Two species of Odontacolus are transferred to the genus Idris Förster: Idris longispinosus (Girault) comb. n. and Idris amoenus (Kononova) comb. n., and Odontacolus doddi Austin syn. n. is placed as a junior synonym of Odontacolus spinosus (Dodd). Odontacolus markadicus, previously only known from India, is here recorded from Brunei, Malaysia, Sri Lanka, Thailand and Vietnam. The relationships, distribution and biology of Odontacolus are discussed, and a key is provided to identify all species.  相似文献   

4.
A new genus of Isotomidae, Bellisotoma gen. n., is described. The new genus is a member of the Proisotoma genus complex and is characterized by a combination of having a bidentate mucro with wide dorsal lamellae that join clearly before the end of mucronal axis without forming a tooth and one strong ventral rib with basal notch that articulates with dens; having abundant chaetotaxy on both faces of dens; and abundant tergal sensilla. Bellisotoma gen. n. shows a furcula adapted to a neustonic mode of life, and may be a Isotopenola-like derivative adapted to neustonic habitats. Subisotoma joycei Soto-Adames & Giordano, 2011 and Ballistura ewingi James, 1933 are transferred to the new genus.  相似文献   

5.
A new species of Profundulus, Profundulus kreiseri (Cyprinodontiformes: Profundulidae), is described from the Chamelecón and Ulúa Rivers in the northwestern Honduran highlands. Based on a phylogenetic analysis using cytochrome b and the presence of synapomorphic characters (dark humeral spot, a scaled preorbital region and between 32-34 vertebrae), this new species is placed in the subgenus Profundulus, which also includes Profundulus (Profundulus) oaxacae, Profundulus (Profundulus) punctatus and Profundulus (Profundulus) guatemalensis. Profundulus kreiseri can be distinguished from other members of the subgenus Profundulus by having less than half of its caudal fin densely scaled. Profundulus kreiseri can further be differentiated from Profundulus (Profundulus) oaxacae and Profundulus (Profundulus) punctatus by the absence of rows of dark spots on its flanks. The new species can further be differentiated from Profundulus (Profundulus) guatemalensis by the presence of fewer caudal- and pectoral-fin rays. The new species is distinguished from congeners of the profundulid subgenus Tlaloc (viz., Profundulus (Tlaloc) hildebrandi, Profundulus (Tlaloc) labialis, Profundulus (Tlaloc) candalarius and Profundulus (Tlaloc) portillorum) by having a scaled preorbital region and a dark humeral spot. Profundulus kreiseri and Profundulus portillorum are the only two species of Profundulus that are endemic to the region south of the Motagua River drainage in southern Guatemala and northwestern Honduras.  相似文献   

6.
In Brazil, the entomological surveillance of Aedes (Stegomyia) aegypti is performed by government-mandated larval surveys. In this study, the sensitivities of an adult sticky trap and traditional surveillance methodologies were compared. The study was performed over a 12-week period in a residential neighbourhood of the municipality of Pedro Leopoldo, state of Minas Gerais, Brazil. An ovitrap and a MosquiTRAP were placed at opposite ends of each neighbourhood block (60 traps in total) and inspections were performed weekly. The study revealed significant correlations of moderate strength between the larval survey, ovitrap and MosquiTRAP measurements. A positive relationship was observed between temperature, adult capture measurements and egg collections, whereas precipitation and frequency of rainy days exhibited a negative relationship.  相似文献   

7.
Calliostoma tupinamba isa new species from Southeastern Brazil, ranging from southern Rio de Janeiro to northern São Paulo, and found only on coastal islands, on rocks and sessile invertebrates at 3 to 5 meters of depth. Shell and soft part morphology is described here in detail. Calliostoma tupinamba is mainly characterized by a depressed trochoid shell; eight slightly convex whorls; a sharply suprasutural carina starting on the third whorl and forming a peripheral rounded keel; and a whitish, funnel-shaped and deep umbilicus, measuring about 5%–10% of maximum shell width. Calliostoma tupinamba resembles Calliostoma bullisi Clench & Turner, 1960 in shape, but differs from it in being taller and wider, having a smaller umbilicus and lacking a strong and large innermost spiral cord at its base. Finally, an identification key of Brazilian Calliostoma species is presented.  相似文献   

8.
We present here three expression plasmids for Trypanosoma cruzi adapted to the Gateway® recombination cloning system. Two of these plasmids were designed to express trypanosomal proteins fused to a double tag for tandem affinity purification (TAPtag). The TAPtag and Gateway® cassette were introduced into an episomal (pTEX) and an integrative (pTREX) plasmid. Both plasmids were assayed by introducing green fluorescent protein (GFP) by recombination and the integrity of the double-tagged protein was determined by western blotting and immunofluorescence microscopy. The third Gateway adapted vector assayed was the inducible pTcINDEX. When tested with GFP, pTcINDEX-GW showed a good response to tetracycline, being less leaky than its precursor (pTcINDEX).  相似文献   

9.
10.
A new species, Distenia orientalis sp. n. is described from Southeastern China. It was misidentified as Distenia gracilis (Blessig, 1872) but can be separated from the latter by the color of antennae and legs, structure differences on scape, maxillary palp, pronotum, tibiae, punctures on elytra, etc. Three related species are carefully diagnosed and treated.  相似文献   

11.
The aim of this study was to analyse the infection dynamics ofAngiostrongylus cantonensis in its possible intermediate hosts over two years in an urban area in the state of Rio de Janeiro where the presence ofA. cantonensis had been previously recorded in molluscs. Four of the seven mollusc species found in the study were exotic.Bradybaena similaris was the most abundant, followed byAchatina fulica, Streptaxis sp., Subulina octona, Bulimulus tenuissimus, Sarasinula linguaeformis and Leptinaria unilamellata. Only A. fulica and B. similaris were parasitised by A. cantonensis and both presented co-infection with other helminths. The prevalence of A. cantonensisin A. fulica was more than 50% throughout the study. There was an inverse correlation between the population size ofA. fulica and the prevalence of A. cantonensis and abundance of the latter was negatively related to rainfall. The overall prevalence of A. cantonensis in B. similariswas 24.6%. A. fulica was the most important intermediary host of A. cantonensis in the studied area andB. similaris was secondary in importance for A. cantonensis transmission dynamics.  相似文献   

12.
The European bone-skippers (Diptera: Piophilidae: Thyreophorina), long considered extinct, have recently been the object of much interest by dipterists after their unexpected rediscovery. Considerable faunistic work has been done on these flies in recent years. However, some nomenclatural and taxonomic issues still require attention. A neotype is designated for Thyreophora anthropophaga Robineau-Desvoidy, 1830 (now in the genus Centrophlebomyia Hendel, 1903) to fix the identity of this nominal species. Centrophlebomyia anthropophaga is recognized as a valid species. It is described and illustrated in detail, and information on its preimaginal instars is provided for the first time. Four Palaearctic species of Centrophlebomyia are recognized and reviewed and a key is provided for their identification. Centrophlebomyia orientalis Hendel, 1907 from northern India, is removed from synonymy with Centrophlebomyia anthropophaga and recognized as a valid species of Centrophlebomyia, stat. r. The nominal genus Protothyreophora Ozerov, 1984 is considered a junior synonym of Centrophlebomyia, syn. n.  相似文献   

13.
Here we describe and illustrate a new parasitoid wasp species, Lathrolestes gauldi sp. n. from the lowland rainforest of eastern Ecuador and provide a key to the Neotropical species of the genus. This is the first record of the subfamily Ctenopelmatinae from Ecuador.  相似文献   

14.
Duvalius (sg. Neoduvalius) gejzadunayi sp. n. from Pećina u Dubokom potoku cave ( Donje Biševo village near Rožaje, Montenegro), the first known representative of this subgenus from the territory of Montenegro is described, illustrated and compared with the related species of the subgenus Neoduvalius Müller, 1913. This new species is characterised by depigmented, medium sized body, totally reduced eyes, deep and complete frontal furrows, 3–4 pairs of discal setae in third elytral stria, as well as by the shape of aedeagus. Data on the distribution and the ecology of this remarkable species, as well as a check-list of the subgenus Neoduvalius are also provided. Recently described genera Serboduvalius Ćurčić, S. B. Pavićević & Ćurčić, B.P.M., 2001, Rascioduvalius Ćurčić, S. B. Brajković, Mitić & Ćurčić, B.P.M., 2003, Javorella Ćurčić, S. B. Brajković, Ćurčić, B.P.M. & Mitić, 2003 and Curcicia Ćurčić, S. B. & Brajković, 2003 are regarded as junior synonyms of the genus Duvalius Delarouzée.  相似文献   

15.
The species of the genus Brulleia Szépligeti, 1904 (Hymenoptera, Braconidae, Helconinae) from China are revised. Four new species, namely Brulleia fanjingensis YanandChen, sp. n., Brulleia longipalpis YanandChen, sp. n., Brulleia noncarinata YanandChen, sp. n. andBrulleia punctata Yan andChen, sp. n. are described and illustrated. A key to the Chinese species of the genus Brulleia is included.  相似文献   

16.
17.
This paper report on a new species of mites of the genus Myrmozercon associated with ant in Iran – Myrmozercon cyrusi Ghafarian and Joharchi sp. n. was collected associated of the Monomorium sp. in Kenevist Rural District in the Central District of Mashhad County, Khorasan Razavi Province, Iran. This new species is described and illustrations provided. Myrmozercon ovatum Karawajew, 1909 is suspected to be a junior synonym of Myrmozercon brevipes Berlese, 1902 and host-specificity and host range of Myrmozercon are also reviewed.  相似文献   

18.
19.
Four new taxa from New Guinea are proposed in the dung beetle genus Onthophagus Latreille, 1802, all in the operational group of Onthophagus catenatus Lansberge, 1883. The group is discussed, defined, and the five taxa included are listed, keyed, and diagnosed. Three new species are described: Onthophagus abmisibilus (from West New Guinea, Indonesia), Onthophagus kokodanus, Onthophagus kokosquamatus (both from Papua New Guinea). One new species comprises a lowland and an upland subspecies: Onthophagus kokodanus kokodanus and kokodanus hagenaltus (both in Papua New Guinea).  相似文献   

20.
Tissue transglutaminase (tTG) has been implicated in the pathogenesis of Parkinson disease (PD). However, exactly how tTG modulates the structural and functional properties of α-synuclein (α-syn) and contributes to the pathogenesis of PD remains unknown. Using site-directed mutagenesis combined with detailed biophysical and mass spectrometry analyses, we sought to identify the exact residues involved in tTG-catalyzed cross-linking of wild-type α-syn and α-syn mutants associated with PD. To better understand the structural consequences of each cross-linking reaction, we determined the effect of tTG-catalyzed cross-linking on the oligomerization, fibrillization, and membrane binding of α-syn in vitro. Our findings show that tTG-catalyzed cross-linking of monomeric α-syn involves multiple cross-links (specifically 2-3). We subjected tTG-catalyzed cross-linked monomeric α-syn composed of either wild-type or Gln → Asn mutants to sequential proteolysis by multiple enzymes and peptide mapping by mass spectrometry. Using this approach, we identified the glutamine and lysine residues involved in tTG-catalyzed intramolecular cross-linking of α-syn. These studies demonstrate for the first time that Gln79 and Gln109 serve as the primary tTG reactive sites. Mutating both residues to asparagine abolishes tTG-catalyzed cross-linking of α-syn and tTG-induced inhibition of α-syn fibrillization in vitro. To further elucidate the sequence and structural basis underlying these effects, we identified the lysine residues that form isopeptide bonds with Gln79 and Gln109. This study provides mechanistic insight into the sequence and structural basis of the inhibitory effects of tTG on α-syn fibrillogenesis in vivo, and it sheds light on the potential role of tTG cross-linking on modulating the physiological and pathogenic properties of α-syn.Parkinson disease (PD)2 is a progressive movement disorder that is caused by the loss of dopaminergic neurons in the substantia nigra, the part of the brain responsible for controlling movement. Clinically, PD is manifested in symptoms that include tremors, rigidity, and difficulty in initiating movement (bradykinesia). Pathologically, PD is characterized by the presence of intraneuronal, cytoplasmic inclusions known as Lewy bodies (LB), which are composed primarily of the protein “α-synuclein” (α-syn) (1) and are seen in the post-mortem brains of PD patients with the sporadic or familial forms of the disease (2). α-Syn is a presynaptic protein of 140 residues with a “natively” unfolded structure (3). Three missense point mutations in α-syn (A30P, E46K, and A53T) are associated with the early-onset, dominant, inherited form of PD (4, 5). Moreover, duplication or triplication of the α-syn gene has been linked to the familial form of PD, suggesting that an increase in α-syn expression is sufficient to cause PD. Together, these findings suggest that α-syn plays a central role in the pathogenesis of PD.The molecular and cellular determinants that govern α-syn oligomerization and fibrillogenesis in vivo remain poorly understood. In vitro aggregation studies have shown that the mutations associated with PD (A30P, E46K, and A53T) accelerate α-syn oligomerization, but only E46K and A53T α-syn show higher propensity to fibrillize than wild-type (WT) α-syn (6-8). This suggests that oligomerization, rather than fibrillization, is linked to early-onset familial PD (9). Our understanding of the molecular composition and biochemical state of α-syn in LBs has provided important clues about protein-protein interactions and post-translational modifications that may play a role in modulating oligomerization, fibrillogenesis, and LB formation of the protein. In addition to ubiquitination (10), phosphorylation (11, 12), nitration (13, 14), and C-terminal truncation (15, 16), analysis of post-mortem brain tissues from PD and Lewy bodies in dementia patients has confirmed the colocalization of tissue transglutaminase (tTG)-catalyzed cross-linked α-syn monomers and higher molecular aggregates in LBs within dopaminergic neurons (17, 18). Tissue transglutaminase catalyzes a calcium-dependent transamidating reaction involving glutamine and lysine residues, which results in the formation of a covalent cross-link via ε-(γ-glutamyl) lysine bonds (Fig. 2F). To date, seven different isoforms of tTGs have been reported, of which only tTG2 seems to be expressed in the human brain (19), whereas tTG1 and tTG3 are more abundantly found in stratified squamous epithelia (20). Subsequent immuno-histochemical, colocalization, and immunoprecipitation studies have shown that the levels of tTG and cross-linked α-syn species are increased in the substantia nigra of PD brains (17). These findings, combined with the known role of tTG in cross-linking and stabilizing bimolecular assemblies, led to the hypothesis that tTG plays an important role in the initiation and propagation of α-syn fibril formation and that it contributes to fibril stability in LBs. This hypothesis was initially supported by in vitro studies demonstrating that tTG catalyzes the polymerization of the α-syn-derived non-amyloid component (NAC) peptide via intermolecular covalent cross-linking of residues Gln79 and Lys80 (21) and by other studies suggesting that tTG promotes the fibrillization of amyloidogenic proteins implicated in the pathogenesis of other neurodegenerative diseases such as Alzheimer disease, supranuclear palsy, Huntington disease, and other polyglutamine diseases (22-24). However, recent in vitro studies with full-length α-syn have shown that tTG catalyzes intramolecular cross-linking of monomeric α-syn and inhibits, rather than promotes, its fibrillization in vitro (25, 26). The structural basis of this inhibitory effect and the exact residues involved in tTG-mediated cross-linking of α-syn, as well as structural and functional consequences of these modifications, remain poorly understood.Open in a separate windowFIGURE 2.tTG-catalyzed cross-linking of α-syn involves one to three intramolecular cross-links. A-C, MALDI-TOF/TOF analysis of native (—) and cross-linked (- - -) α-syn, showing that most tTG-catalyzed cross-linking products of WT or disease-associated mutant forms of α-syn are intramolecularly linked (predominant peak with two cross-links), and up to three intramolecular cross-links can occur (left shoulder). The abbreviations M and m/cl are used to designate native and cross-linked α-synuclein, respectively. D and E, kinetic analysis of α-syn (A30P) cross-linking monitored by MALDI-TOF and SDS-PAGE. F, schematic depiction of the tTG-catalyzed chemical reaction (isodipeptide formation) between glutamine and lysine residues.In this study, we have identified the primary glutamine and lysine residues involved in tTG-catalyzed, intramolecularly cross-linked monomeric α-syn and investigated how cross-linking these residues affects the oligomerization, fibrillization, and membrane binding of α-syn in vitro. Using single-site mutagenesis and mass spectrometry applied to exhaustive proteolytic digests of native and cross-linked monomeric α-syn, we identified Gln109 and Gln79 as the major tTG substrates. We demonstrate that the altered electrophoretic mobility of the intramolecularly cross-linked α-syn in SDS-PAGE occurs as a result of tTG-catalyzed cross-linking of Gln109 to lysine residues in the N terminus of α-syn, which leads to the formation of more compact monomers. Consistent with previous studies, we show that intramolecularly cross-linked α-syn forms off-pathway oligomers that are distinct from those formed by the wild-type protein and that do not convert to fibrils within the time scale of our experiments (3-5 days). We also show that membrane-bound α-syn is a substrate of tTG and that intramolecular cross-linking does not interfere with the ability of monomeric α-syn to adopt an α-helical conformation upon binding to synthetic membranes. These studies provide novel mechanistic insight into the sequence and structural basis of events that allow tTG to inhibit α-syn fibrillogenesis, and they shed light on the potential role of tTG-catalyzed cross-linking in modulating the physiological and pathogenic properties of α-syn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号