首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Introduction

3,4-Methylenedioxymethamphetamine (MDMA, “ecstasy”) is a recreational club drug with supposed neurotoxic effects selectively on the serotonin system. MDMA users consistently exhibit memory dysfunction but there is an ongoing debate if these deficits are induced mainly by alterations in the prefrontal or mediotemporal cortex, especially the hippocampus. Thus, we investigated the relation of verbal memory deficits with alterations of regional cerebral brain glucose metabolism (rMRGlu) in recreational MDMA users.

Methods

Brain glucose metabolism in rest was assessed using 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography (18FDG PET) in 19 male recreational users of MDMA and 19 male drug-naïve controls. 18FDG PET data were correlated with memory performance assessed with a German version of the Rey Auditory Verbal Learning Test.

Results

As previously shown, MDMA users showed significant impairment in verbal declarative memory performance. PET scans revealed significantly decreased rMRGlu in the bilateral dorsolateral prefrontal and inferior parietal cortex, bilateral thalamus, right hippocampus, right precuneus, right cerebellum, and pons (at the level of raphe nuclei) of MDMA users. Among MDMA users, learning and recall were positively correlated with rMRGlu predominantly in bilateral frontal and parietal brain regions, while recognition was additionally related to rMRGlu in the right mediotemporal and bihemispheric lateral temporal cortex. Moreover, cumulative lifetime dose of MDMA was negatively correlated with rMRGlu in the left dorsolateral and bilateral orbital and medial PFC, left inferior parietal and right lateral temporal cortex.

Conclusions

Verbal learning and recall deficits of recreational MDMA users are correlated with glucose hypometabolism in prefrontal and parietal cortex, while word recognition was additionally correlated with mediotemporal hypometabolism. We conclude that memory deficits of MDMA users arise from combined fronto-parieto-mediotemporal dysfunction.  相似文献   

3.

Background

The apolipoprotein E epsilon 4 (APOE-4) is associated with a genetic vulnerability to Alzheimer''s disease (AD) and with AD-related abnormalities in cortical rhythms. However, it is unclear whether APOE-4 is linked to a specific pattern of intrinsic functional disintegration of the brain after the development of the disease or during its different stages. This study aimed at identifying spatial patterns and effects of APOE genotype on resting-state oscillations and functional connectivity in patients with AD, using a physiological connectivity index called “lagged phase synchronization”.

Methodology/Principal Findings

Resting EEG was recorded during awake, eyes-closed state in 125 patients with AD and 60 elderly controls. Source current density and functional connectivity were determined using eLORETA. Patients with AD exhibited reduced parieto-occipital alpha oscillations compared with controls, and those carrying the APOE-4 allele had reduced alpha activity in the left inferior parietal and temporo-occipital cortex relative to noncarriers. There was a decreased alpha2 connectivity pattern in AD, involving the left temporal and bilateral parietal cortex. Several brain regions exhibited increased lagged phase synchronization in low frequencies, specifically in the theta band, across and within hemispheres, where temporal lobe connections were particularly compromised. Areas with abnormal theta connectivity correlated with cognitive scores. In patients with early AD, we found an APOE-4-related decrease in interhemispheric alpha connectivity in frontal and parieto-temporal regions.

Conclusions/Significance

In addition to regional cortical dysfunction, as indicated by abnormal alpha oscillations, there are patterns of functional network disruption affecting theta and alpha bands in AD that associate with the level of cognitive disturbance or with the APOE genotype. These functional patterns of nonlinear connectivity may potentially represent neurophysiological or phenotypic markers of AD, and aid in early detection of the disorder.  相似文献   

4.

Background

It is unclear whether, like in schizophrenia, psychosis-related disruption in connectivity between certain regions, as an index of intrinsic functional disintegration, occurs in schizophrenia-like psychosis of epilepsy (SLPE). In this study, we sought to determine abnormal patterns of resting-state EEG oscillations and functional connectivity in patients with SLPE, compared with nonpsychotic epilepsy patients, and to assess correlations with psychopathological deficits.

Methodology/Principal Findings

Resting EEG was recorded in 21 patients with focal epilepsy and SLPE and in 21 clinically-matched non-psychotic epilepsy controls. Source current density and functional connectivity were determined using eLORETA software. For connectivity analysis, a novel nonlinear connectivity measure called “lagged phase synchronization” was used. We found increased theta oscillations in regions involved in the default mode network (DMN), namely the medial and lateral parietal cortex bilaterally in the psychotic patients relative to their nonpsychotic counterparts. In addition, patients with psychosis had increased beta temporo-prefrontal connectivity in the hemisphere with predominant seizure focus. This functional connectivity in temporo-prefrontal circuits correlated with positive symptoms. Additionally, there was increased interhemispheric phase synchronization between the auditory cortex of the affected temporal lobe and the Broca''s area correlating with auditory hallucination scores.

Conclusions/Significance

In addition to dysfunction of parietal regions that are part of the DMN, resting-state disrupted connectivity of the medial temporal cortex with prefrontal areas that are either involved in the DMN or implicated in psychopathological dysfunction may be critical to schizophrenia-like psychosis, especially in individuals with temporal lobe epilepsy. This suggests that DMN deficits might be a core neurobiological feature of the disorder, and that abnormalities in theta oscillations and beta phase synchronization represent the underlying neural activity.  相似文献   

5.
Greater sensory stimulation in advertising has been postulated to facilitate attention and persuasion. For this reason, video ads promoting health behaviors are often designed to be high in “message sensation value” (MSV), a standardized measure of sensory intensity of the audiovisual and content features of an ad. However, our previous functional Magnetic Resonance Imaging (fMRI) study showed that low MSV ads were better remembered and produced more prefrontal and temporal and less occipital cortex activation, suggesting that high MSV may divert cognitive resources from processing ad content. The present study aimed to determine whether these findings from anti-smoking ads generalize to other public health topics, such as safe sex. Thirty-nine healthy adults viewed high- and low MSV ads promoting safer sex through condom use, during an fMRI session. Recognition memory of the ads was tested immediately and 3 weeks after the session. We found that low MSV condom ads were better remembered than the high MSV ads at both time points and replicated the fMRI patterns previously reported for the anti-smoking ads. Occipital and superior temporal activation was negatively related to the attitudes favoring condom use (see Condom Attitudes Scale, Methods and Materials section). Psychophysiological interaction (PPI) analysis of the relation between occipital and fronto-temporal (middle temporal and inferior frontal gyri) cortices revealed weaker negative interactions between occipital and fronto-temporal cortices during viewing of the low MSV that high MSV ads. These findings confirm that the low MSV video health messages are better remembered than the high MSV messages and that this effect generalizes across public health domains. The greater engagement of the prefrontal and fronto-temporal cortices by low MSV ads and the greater occipital activation by high MSV ads suggest that that the “attention-grabbing” high MSV format could impede the learning and retention of public health messages.  相似文献   

6.

Background

Previous studies have indicated that type 1 diabetes may have an infectious origin. The presence of temporal clustering—an irregular temporal distribution of cases—would provide additional evidence that occurrence may be linked with an agent that displays epidemicity. We tested for the presence and form of temporal clustering using population-based data from northeast England.

Materials and Methods

The study analysed data on children aged 0–14 years diagnosed with type 1 diabetes during the period 1990–2007 and resident in a defined geographical region of northeast England (Northumberland, Newcastle upon Tyne, and North Tyneside). Tests for temporal clustering by time of diagnosis were applied using a modified version of the Potthoff-Whittinghill method.

Results

The study analysed 468 cases of children diagnosed with type 1 diabetes. There was highly statistically significant evidence of temporal clustering over periods of a few months and over longer time intervals (p<0.001). The clustering within years did not show a consistent seasonal pattern.

Conclusions

The study adds to the growing body of literature that supports the involvement of infectious agents in the aetiology of type 1 diabetes in children. Specifically it suggests that the precipitating agent or agents involved might be an infection that occurs in “mini-epidemics”.  相似文献   

7.
Integrating information across sensory domains to construct a unified representation of multi-sensory signals is a fundamental characteristic of perception in ecological contexts. One provocative hypothesis deriving from neurophysiology suggests that there exists early and direct cross-modal phase modulation. We provide evidence, based on magnetoencephalography (MEG) recordings from participants viewing audiovisual movies, that low-frequency neuronal information lies at the basis of the synergistic coordination of information across auditory and visual streams. In particular, the phase of the 2–7 Hz delta and theta band responses carries robust (in single trials) and usable information (for parsing the temporal structure) about stimulus dynamics in both sensory modalities concurrently. These experiments are the first to show in humans that a particular cortical mechanism, delta-theta phase modulation across early sensory areas, plays an important “active” role in continuously tracking naturalistic audio-visual streams, carrying dynamic multi-sensory information, and reflecting cross-sensory interaction in real time.  相似文献   

8.
In the premature infant, somatosensory and visual stimuli trigger an immature electroencephalographic (EEG) pattern, “delta-brushes,” in the corresponding sensory cortical areas. Whether auditory stimuli evoke delta-brushes in the premature auditory cortex has not been reported. Here, responses to auditory stimuli were studied in 46 premature infants without neurologic risk aged 31 to 38 postmenstrual weeks (PMW) during routine EEG recording. Stimuli consisted of either low-volume technogenic “clicks” near the background noise level of the neonatal care unit, or a human voice at conversational sound level. Stimuli were administrated pseudo-randomly during quiet and active sleep. In another protocol, the cortical response to a composite stimulus (“click” and voice) was manually triggered during EEG hypoactive periods of quiet sleep. Cortical responses were analyzed by event detection, power frequency analysis and stimulus locked averaging. Before 34 PMW, both voice and “click” stimuli evoked cortical responses with similar frequency-power topographic characteristics, namely a temporal negative slow-wave and rapid oscillations similar to spontaneous delta-brushes. Responses to composite stimuli also showed a maximal frequency-power increase in temporal areas before 35 PMW. From 34 PMW the topography of responses in quiet sleep was different for “click” and voice stimuli: responses to “clicks” became diffuse but responses to voice remained limited to temporal areas. After the age of 35 PMW auditory evoked delta-brushes progressively disappeared and were replaced by a low amplitude response in the same location. Our data show that auditory stimuli mimicking ambient sounds efficiently evoke delta-brushes in temporal areas in the premature infant before 35 PMW. Along with findings in other sensory modalities (visual and somatosensory), these findings suggest that sensory driven delta-brushes represent a ubiquitous feature of the human sensory cortex during fetal stages and provide a potential test of functional cortical maturation during fetal development.  相似文献   

9.
Monopolar evoked potentials (EPs) in the parietal and temporal leads were recorded in 23 young, healthy subjects in the process of selection of visual stimuli by shape and localization. Two different central stimuli (selection by shape) and two similar right and left stimuli (selection by localization) were presented in the first series. Two simple right and left stimuli were presented in the second series, and a subject had to respond either to their shape or their localization. During spatial attention and shape recognition in both tasks, characteristics of the prestimulus negativity (contingent negative variation (CNV)) and negative–positive N1–P3 complex pointed to the predominant activation of the parietal areas. The greatest differences were observed in the late P3b component, associated with the late selection, rather than in the early EP components. The dominance of parietal activation as compared to temporal activation was associated with attention demands; i.e., the dominance was highest in the case of target stimuli and was least pronounced during passive perception of stimuli. It is suggested that the parietooccipital visual system leads in tasks demanding spatial and nonspatial attention to stimuli in a simple visual environment (without surrounding elements).  相似文献   

10.
Olfaction based behavioral experiments are important for the investigation of sensory coding, perception, decision making and memory formation. The predominant experimental paradigms employ forced choice operant assays, which require associative learning and reinforced training. Animal performance in these assays not only reflects odor perception but also the confidence in decision making and memory. In this study, we describe a versatile and automated setup, “Poking-Registered Olfactory Behavior Evaluation System” (PROBES), which can be adapted to perform multiple olfactory assays. In addition to forced choice assays, we employ this system to examine animal’s innate ability for odor detection, discrimination and preference without elaborate training procedures. These assays provide quantitative measurements of odor discrimination and robust readouts of odor preference. Using PROBES, we find odor detection thresholds are at lower concentrations in naïve animals than those determined by forced choice assays. PROBES-based automated assays provide an efficient way of analyzing innate odor-triggered behaviors.  相似文献   

11.
12.
Processing of temporal information is critical to behaviour. Here, we review the phenomenology and mechanism of relative timing, ordinal comparisons between the timing of occurrence of events. Relative timing can be an implicit component of particular brain computations or can be an explicit, conscious judgement. Psychophysical measurements of explicit relative timing have revealed clues about the interaction of sensory signals in the brain as well as in the influence of internal states, such as attention, on those interactions. Evidence from human neurophysiological and functional imaging studies, neuropsychological examination in brain-lesioned patients, and temporary disruptive interventions such as transcranial magnetic stimulation (TMS), point to a role of the parietal cortex in relative timing. Relative timing has traditionally been modelled as a ‘race’ between competing neural signals. We propose an updated race process based on the integration of sensory evidence towards a decision threshold rather than simple signal propagation. The model suggests a general approach for identifying brain regions involved in relative timing, based on looking for trial-by-trial correlations between neural activity and temporal order judgements (TOJs). Finally, we show how the paradigm can be used to reveal signals related to TOJs in parietal cortex of monkeys trained in a TOJ task.  相似文献   

13.
14.
Synesthesia, the conscious, idiosyncratic, repeatable, and involuntary sensation of one sensory modality in response to another, is a condition that has puzzled both researchers and philosophers for centuries. Much time has been spent proving the condition’s existence as well as investigating its etiology, but what can be learned from synesthesia remains a poorly discussed topic. Here, synaesthesia is presented as a possible answer rather than a question to the current gaps in our understanding of sensory perception. By first appreciating the similarities between normal sensory perception and synesthesia, one can use what is known about synaesthesia, from behavioral and imaging studies, to inform our understanding of “normal” sensory perception. In particular, in considering synesthesia, one can better understand how and where the different sensory modalities interact in the brain, how different sensory modalities can interact without confusion ― the binding problem ― as well as how sensory perception develops.  相似文献   

15.
To investigate the fine-scale diversity of the polyphosphate-accumulating organisms (PAO) “Candidatus Accumulibacter phosphatis” (henceforth referred to as “Ca. Accumulibacter”), two laboratory-scale sequencing batch reactors (SBRs) for enhanced biological phosphorus removal (EBPR) were operated with sodium acetate as the sole carbon source. During SBR operations, activated sludge always contained morphologically different “Ca. Accumulibacter” strains showing typical EBPR performances, as confirmed by the combined technique of fluorescence in situ hybridization (FISH) and microautoradiography (MAR). Fragments of “Ca. Accumulibacter” 16S rRNA genes were retrieved from the sludge. Phylogenetic analyses together with sequences from the GenBank database showed that “Ca. Accumulibacter” 16S rRNA genes of the EBPR sludge were clearly differentiated into four “Ca. Accumulibacter” clades, Acc-SG1, Acc-SG2, Acc-SG3, and Acc-SG4. The specific FISH probes Acc444, Acc184, Acc72, and Acc119 targeting these clades and some helpers and competitors were designed by using the ARB program. Microbial characterization by FISH analysis using specific FISH probes also clearly indicated the presence of different “Ca. Accumulibacter” cell morphotypes. Especially, members of Acc-SG3, targeted by probe Acc72, were coccobacillus-shaped cells with a size of approximately 2 to 3 μm, while members of Acc-SG1, Acc-SG2, and Acc-SG4, targeted by Acc444, Acc184, and Acc119, respectively, were coccus-shaped cells approximately 1 μm in size. Subsequently, cells targeted by each FISH probe were sorted by use of a flow cytometer, and their polyphosphate kinase 1 (ppk1) gene homologs were amplified by using a ppk1-specific PCR primer set for “Ca. Accumulibacter.” The phylogenetic tree based on sequences of the ppk1 gene homologs was basically congruent with that of the 16S rRNA genes, but members of Acc-SG3 with a distinct morphology comprised two different ppk1 genes. These results suggest that “Ca. Accumulibacter” strains may be diverse physiologically and ecologically and represent distinct populations with genetically determined adaptations in EBPR systems.Enhanced biological phosphorus removal (EBPR) has been applied in many wastewater treatment plants to reduce the phosphorus that causes eutrophication in surface waters. EBPR employs polyphosphate-accumulating organisms (PAOs), which are enriched through alternating aerobic-anaerobic cycles (34). Since PAOs are essential for an understanding of EBPR, many candidates have been proposed as potential PAOs, such as Acinetobacter spp. (11), Tetrasphaera spp. (31), Microlunatus phosphovorus (36), Lampropedia spp. (40), and Gram-positive Actinobacteria (24). However, those organisms do not exhibit all of the characteristics of the EBPR biochemistry model. Recently developed culture-independent approaches such as PCR-clone libraries, fluorescence in situ hybridization (FISH), and microautoradiography (MAR) have highlighted an uncultured Rhodocyclus-related bacterium, “Candidatus Accumulibacter phosphatis” (henceforth referred to as “Ca. Accumulibacter”), as one of the most important PAO candidates (2, 5, 16, 22, 23, 27, 28, 47).Numerous studies have sought to investigate uncultured “Ca. Accumulibacter” and have shown the presence of genetically and physiologically different members with a global geographic distribution (3, 9, 22, 27, 39). For example, Kong et al. (22) identified two morphologically different “Ca. Accumulibacter” cells of small cocci and large coccobacilli labeled with PAOmix (PAO462, PAO651, and PAO846) in laboratory-scale EBPR reactors. Additional results showing phenotypic and morphological diversities of “Ca. Accumulibacter” cells also existed with respect to the different roles of denitrifying PAO (DPAO) in the EBPR process (3, 9, 23). Carvalho et al. (3) detected two different morphotypes of “Ca. Accumulibacter” with different nitrate reduction capabilities. The presence of other “Ca. Accumulibacter” strains with 15% genome sequence divergence from the dominant strains in metagenomic analyses is likely to explain these morphological and phenotypic differences (12). McMahon et al. (33) suggested the use of the polyphosphate kinase (ppk) gene, which is involved in the production of polyphosphate, for a finer elucidation of “Ca. Accumulibacter” diversity. He et al. (15) grouped “Ca. Accumulibacter” strains into five distinct clades, designated clades I, IIA, IIB, IIC, and IID, using ppk gene sequence information. Flowers and colleagues (9) previously reported that “Ca. Accumulibacter” cells of clade IA had nitrate reduction activity with phosphorus uptake but that “Ca. Accumulibacter” cells of clade IIA did not.FISH-fluorescence activated cell sorting (FACS) techniques have been used for the separation of specific microbial cells from complex microbial consortia and their metabolic gene analysis (14, 46). For example, Miyauchi et al. (35) sorted PAOmix probe-labeled “Ca. Accumulibacter” cells from EBPR sludge and analyzed their nitrite reductase gene (nirS) diversity. In the current study, we found that four different “Ca. Accumulibacter” clades (Acc-SG1, Acc-SG2, Acc-SG3, and Acc-SG4) were present in the EBPR sludge of laboratory-scale reactors supplied with acetate as the sole carbon source. We analyzed their morphological characteristics and ppk gene sequence information using a suite of FISH and FACS approaches and linked fine-scale phylogenetic diversities of “Ca. Accumulibacter” strains with their morphological characteristics and metabolic genes. This study will be useful for further genetic and physiological studies of different “Ca. Accumulibacter” clades.  相似文献   

16.

Background

One of the most debated issues in the cognitive neuroscience of language is whether distinct semantic domains are differentially represented in the brain. Clinical studies described several anomic dissociations with no clear neuroanatomical correlate. Neuroimaging studies have shown that memory retrieval is more demanding for proper than common nouns in that the former are purely arbitrary referential expressions. In this study a semantic relatedness paradigm was devised to investigate neural processing of proper and common nouns.

Methodology/Principal Findings

780 words (arranged in pairs of Italian nouns/adjectives and the first/last names of well known persons) were presented. Half pairs were semantically related (“Woody Allen” or “social security”), while the others were not (“Sigmund Parodi” or “judicial cream”). All items were balanced for length, frequency, familiarity and semantic relatedness. Participants were to decide about the semantic relatedness of the two items in a pair. RTs and N400 data suggest that the task was more demanding for common nouns. The LORETA neural generators for the related-unrelated contrast (for proper names) included the left fusiform gyrus, right medial temporal gyrus, limbic and parahippocampal regions, inferior parietal and inferior frontal areas, which are thought to be involved in the conjoined processing a familiar face with the relevant episodic information. Person name was more emotional and sensory vivid than common noun semantic access.

Conclusions/Significance

When memory retrieval is not required, proper name access (conspecifics knowledge) is not more demanding. The neural generators of N400 to unrelated items (unknown persons and things) did not differ as a function of lexical class, thus suggesting that proper and common nouns are not treated differently as belonging to different grammatical classes.  相似文献   

17.

Objectives

Patient satisfaction has emerged as a prerequisite to improving patients’ health behaviors leading to better health care outcomes. This study was to identify predictive determinants for patient satisfaction with pharmacy services using national-level data.

Methods

A cross-sectional evaluation was conducted using 2008 Korean National Health and Nutrition Examination Survey (KNHANES) data. To assess the predictive factors for patient satisfaction with pharmacy services, an ordinal logistic regression model was conducted adjusting for patient characteristics, clinical comorbidities, and perception of health.

Results

A total of 9,744 people, a representative sample of 48.2 million Koreans, participated in the 2008 KNHANES, of whom 2,188 (23.6%) reported visits to pharmacy within the last 2 weeks prior to the survey. Of the patients who visited the pharmacy, 74.6% reported to be either “very satisfied” or “satisfied,” and 25.4% responded as being “neutral,” “dissatisfied,” or “very dissatisfied.” A multivariate ordinal logistic regression analysis with weighted observations revealed that patients with fair perception of health (adjusted OR 1.32; 95% CI 1.01–1.74; p<0.05) and those with middle to low family incomes (adjusted OR 1.34; 95% CI 1.02–1.76; p<0.05) were more likely to be satisfied with pharmacy services, and employment-based insurers were less likely to be satisfied with pharmacy services (adjusted OR 0.80; 95% CI 0.65–0.97; p<0.05).

Conclusion

Our findings indicated that three out of four patients expressed satisfaction toward pharmacy services. Middle to low family incomes, fair perception of health, and employee insured individuals were significant predictors of patient satisfaction with pharmacy services.  相似文献   

18.
Candidatus Accumulibacter” and total bacterial community dynamics were studied in two lab-scale enhanced biological phosphorus removal (EBPR) reactors by using a community fingerprint technique, automated ribosomal intergenic spacer analysis (ARISA). We first evaluated the quantitative capability of ARISA compared to quantitative real-time PCR (qPCR). ARISA and qPCR provided comparable relative quantification of the two dominant “Ca. Accumulibacter” clades (IA and IIA) detected in our reactors. The quantification of total “Ca. Accumulibacter” 16S rRNA genes relative to that from the total bacterial community was highly correlated, with ARISA systematically underestimating “Ca. Accumulibacter” abundance, probably due to the different normalization techniques applied. During 6 months of normal (undisturbed) operation, the distribution of the two clades within the total “Ca. Accumulibacter” population was quite stable in one reactor while comparatively dynamic in the other reactor. However, the variance in the clade distribution did not appear to affect reactor performance. Instead, good EBPR activity was positively associated with the abundance of total “Ca. Accumulibacter.” Therefore, we concluded that the different clades in the system provided functional redundancy. We disturbed the reactor operation by adding nitrate together with acetate feeding in the anaerobic phase to reach initial reactor concentrations of 10 mg/liter NO3-N for 35 days. The reactor performance deteriorated with a concomitant decrease in the total “Ca. Accumulibacter” population, suggesting that a population shift was the cause of performance upset after a long exposure to nitrate in the anaerobic phase.Enhanced biological phosphorus removal (EBPR) has been widely applied to reduce phosphorus (P) levels in wastewater treatment effluents, through the transformation of soluble inorganic phosphate (Pi) to intracellular polyphosphate [poly(P)] by poly(P)-accumulating organisms (PAOs) under alternating anaerobic/aerobic conditions. Anaerobically, PAOs take up organic substrates such as acetate, coupled to P release, as a result of intracellular poly(P) degradation. Lacking an external electron acceptor, acetate is converted to polyhydroxybutyrate (PHB), which is depolymerized and oxidized under subsequent aerobic conditions, leading to ATP generation and poly(P) regeneration (21).A currently uncultured bacterial group in Betaproteobacteria, named “Candidatus Accumulibacter phosphatis” (13), was found to be the primary PAO in lab-scale and some full-scale EBPR systems (6, 37). Based on the phylogeny of polyphosphate kinase genes (ppk1), the “Ca. Accumulibacter” lineage is comprised of two major types, and each type contains a number of coherent clades (11, 23). Several studies suggested that these clades differ in their ability to reduce nitrate (5, 9) and the involvement of the tricarboxylic acid cycle in EBPR metabolism (33).Although “Ca. Accumulibacter” clades other than IA and IIA have been found in several lab-scale sequencing batch reactors (SBRs) (33), in our previous study we only detected IA and IIA in two acetate-fed SBRs operated under similar conditions but at different geographical locations with different inoculation sludge sources (11). In addition, we found that the identity of the dominant clade switched between two sampling events (i.e., changed from IIA to IA). This raises intriguing questions, such as, how frequently the population shift occurs, how the clade dynamics influences the reactor performance, and how reactor operating conditions affect the clade composition.To answer these questions, we studied “Ca. Accumulibacter” population composition and dynamics on a fine time scale. Since “Ca. Accumulibacter” clades may interact positively or negatively with each other, or with other bacterial groups, we searched for bacterial community composition patterns associated with shifts in the relative abundances of the two clades. For this purpose, we applied a community fingerprint method, automated ribosomal intergenic spacer analysis (ARISA) (8), which had been used to study bacterial community composition and dynamics in freshwater lakes (22, 27), activated sludge (34), and even environments with comparatively more complex microbial communities, such as soils (24). ARISA relies on the length heterogeneity of the internal transcribed spacer (ITS) region between 16S and 23S rRNA to distinguish different operational taxonomic units (OTUs). “Ca. Accumulibacter” clades IA and IIA detected in our reactors have distinct ITS lengths (12), thus allowing their unique detection by ARISA.In this study, we first evaluated the quantitative capability of ARISA, compared to quantitative real-time PCR (qPCR) assays previously developed (11), and then used ARISA to monitor bacterial community composition dynamics. We analyzed samples collected weekly from two lab-scale SBRs during a 6-month period, when both reactors were operated under undisturbed and nearly identical conditions. We also evaluated samples obtained under disturbed conditions, when nitrate was introduced in the anaerobic phase for a period of 35 days, as well as those collected from time points when the reactors experienced “Ca. Accumulibacter” clade shift or poor performance, in order to explore potential relationships between “Ca. Accumulibacter” clade dynamics, total bacterial community composition patterns, operating conditions, and reactor performance. An understanding of such relationships should bring us closer to a mechanistic understanding of EBPR ecology and therefore more rational process design and operation.  相似文献   

19.
Several areas of the brain are known to participate in temporal processing. Neurons in the prefrontal cortex (PFC) are thought to contribute to perception of time intervals. However, it remains unclear whether the PFC itself can generate time intervals independently of external stimuli. Here we describe a group of PFC neurons in area 9 that became active when monkeys recognized a particular elapsed time within the range of 1-7 seconds. Another group of area 9 neurons became active only when subjects reproduced a specific interval without external cues. Both types of neurons were individually tuned to recognize or reproduce particular intervals. Moreover, the injection of muscimol, a GABA agonist, into this area bilaterally resulted in an increase in the error rate during time interval reproduction. These results suggest that area 9 may process multi-second intervals not only in perceptual recognition, but also in internal generation of time intervals.  相似文献   

20.

Background

Perceived spatial intervals between successive flashes can be distorted by varying the temporal intervals between them (the “tau effect”). A previous study showed that a tau effect for visual flashes could be induced when they were accompanied by auditory beeps with varied temporal intervals (an audiovisual tau effect).

Methodology/Principal Findings

We conducted two experiments to investigate whether the audiovisual tau effect occurs in infancy. Forty-eight infants aged 5–8 months took part in this study. In Experiment 1, infants were familiarized with audiovisual stimuli consisting of three pairs of two flashes and three beeps. The onsets of the first and third pairs of flashes were respectively matched to those of the first and third beeps. The onset of the second pair of flashes was separated from that of the second beep by 150 ms. Following the familiarization phase, infants were exposed to a test stimulus composed of two vertical arrays of three static flashes with different spatial intervals. We hypothesized that if the audiovisual tau effect occurred in infancy then infants would preferentially look at the flash array with spatial intervals that would be expected to be different from the perceived spatial intervals between flashes they were exposed to in the familiarization phase. The results of Experiment 1 supported this hypothesis. In Experiment 2, the first and third beeps were removed from the familiarization stimuli, resulting in the disappearance of the audiovisual tau effect. This indicates that the modulation of temporal intervals among flashes by beeps was essential for the audiovisual tau effect to occur (Experiment 2).

Conclusions/Significance

These results suggest that the cross-modal processing that underlies the audiovisual tau effect occurs even in early infancy. In particular, the results indicate that audiovisual modulation of temporal intervals emerges by 5–8 months of age.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号