首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH), a synthetic chemical, was applied as a foliar spray to tomato (Lycopersicon esculentum) plants and evaluated for its potential to confer increased resistance against the soil-borne pathogen Fusarium oxysporum f. sp. radicis-lycopersici (FORL). In nontreated tomato plants all root tissues were massively colonized by FORL hyphae. Pathogen ingress toward the vascular stele was accompanied by severe host cell alterations, including cell wall breakdown. In BTH-treated plants striking differences in the rate and extent of fungal colonization were observed. Pathogen growth was restricted to the epidermis and the outer cortex, and fungal ingress was apparently halted by the formation of callose-enriched wall appositions at sites of fungal penetration. In addition, aggregated deposits, which frequently established close contact with the invading hyphae, accumulated in densely colonized epidermal cells and filled most intercellular spaces. Upon incubation of sections with gold-complexed laccase for localization of phenolic-like compounds, a slight deposition of gold particles was observed over both the host cell walls and the wall appositions. Labeling was also detected over the walls of fungal cells showing signs of obvious alteration ranging from cytoplasm disorganization to protoplasm retraction. We provide evidence that foliar applications of BTH sensitize susceptible tomato plants to react more rapidly and more efficiently to FORL attack through the formation of protective layers at sites of potential fungal entry.  相似文献   

2.
This study was undertaken to develop a new tool to study fusarial diseases of plants. Micro- and macro-conidia of a strain (F504) of Fusarium oxysporum were isolated and antiserum against the conidia was elicited in rabbits. A highly specific and sensitive competitive-type enzyme-linked immunosorbent assay (ELISA) for conidia of the strain was developed using the antiserum with beta-D-galactosidase-labeled anti-rabbit IgG as the secondary antibody and conidia fragments of the strain as antigen attached to Amino-Dylark solid-phase balls. The assay was highly specific to conidia of the strain F504, while conidia-free hypha of the strain F504 as well as all other microorganisms tested including nine other strains of Fusarium species showed little cross-reactivity. Application of the ELISA to following the growth rates of conidia in hyphae of the strain F504 under several conditions are also reported.  相似文献   

3.
The fungal species Fusarium oxysporum is a ubiquitous inhabitant of soils worldwide that includes pathogenic as well as non-pathogenic or even beneficial strains. Pathogenic strains are characterized by a high degree of host specificity and strains that infect the same host range are organized in so-called formae speciales. Strains for which no host plant has been identified are believed to be non-pathogenic strains. Therefore, identification below the species level is highly desired. However, the genetic basis of host specificity and virulence in F. oxysporum is so far unknown. In this study, a robust random-amplified polymorphic DNA (RAPD) marker-based assay was developed to specifically detect and identify the economically important cucumber pathogens F. oxysporum f. sp. cucumerinum and F. oxysporum f. sp. radicis-cucumerinum. While the F. oxysporum radicis-cucumerinum strains were found to cluster in a separate clade based on elongation factor-1alpha phylogeny, strains belonging to F. oxysporum f. sp. cucumerinum were found to be genetically more diverse. This is reflected in the observation that specificity testing of the identified markers using a broad collection of F. oxysporum strains with all known vegetative compatibility groups of the target formae speciales, as well as representative strains belonging to other formae speciales, resulted in two cross-reactions for the F. oxysporum f. sp. cucumerimum marker. However, no cross-reactions were observed for the F. oxysporum f. sp. radicis-cucumerimum marker. This F. oxysporum f. sp. radicis-cucumerimum marker shows homology to Folyt1, a transposable element identified in the tomato pathogen F. oxysporum f. sp. lycopersici and may possibly play a role in host-range specificity in the target forma specialis. The markers were implemented in a DNA array that enabled parallel and sensitive detection and identification of the pathogens in complex samples from diverse origins.  相似文献   

4.

Background

Fusarium wilt, caused by the fungal pathogen Fusarium oxysporum f. sp. cubense (Foc), is one of the most destructive diseases of banana. Toxins produced by Foc have been proposed to play an important role during the pathogenic process. The objectives of this study were to investigate the contamination of banana with toxins produced by Foc, and to elucidate their role in pathogenesis.

Methodology/Principal Findings

Twenty isolates of Foc representing races 1 and 4 were isolated from diseased bananas in five Chinese provinces. Two toxins were consistently associated with Foc, fusaric acid (FA) and beauvericin (BEA). Cytotoxicity of the two toxins on banana protoplast was determined using the Alamar Blue assay. The virulence of 20 Foc isolates was further tested by inoculating tissue culture banana plantlets, and the contents of toxins determined in banana roots, pseudostems and leaves. Virulence of Foc isolates correlated well with toxin deposition in the host plant. To determine the natural occurrence of the two toxins in banana plants with Fusarium wilt symptoms, samples were collected before harvest from the pseudostems, fruit and leaves from 10 Pisang Awak ‘Guangfen #1’ and 10 Cavendish ‘Brazilian’ plants. Fusaric acid and BEA were detected in all the tissues, including the fruits.

Conclusions/Signficance

The current study provides the first investigation of toxins produced by Foc in banana. The toxins produced by Foc, and their levels of contamination of banana fruits, however, were too low to be of concern to human and animal health. Rather, these toxins appear to contribute to the pathogenicity of the fungus during infection of banana plants.  相似文献   

5.
Henry E. Nelson 《BioControl》2014,59(5):625-633
Fourteen wild type and three UV-irradiated isolates of Fusarium oxysporum f. sp. cucumerinum (Foc) were evaluated as to the level of resistance they could induce in tomato to late blight caused by Phytophthora infestans. Tomato plants were induced by applying a suspension of Foc microconidia directly to the surface of the potting media without disturbing the tomato roots. Upper leaves of tomato plants were inoculated with P. infestans, and a reduction in lesion expansion was used as an index of induced resistance. All fourteen wild type isolates of Foc significantly reduced expansion of late blight lesions. One of the wild type isolates produced a significantly weaker resistance response than the other isolates. None of the UV-irradiated isolates induced significant resistance. The same Foc isolates were compared as to their virulence and their pigment production in culture, and considerable variation among them was revealed for both characteristics. Positive correlations existed both between the level of induced resistance and virulence, and between the level of induced resistance and pigmentation. The gradual increment in the level of induced resistance and the exceptions to the correlations between induced resistance and the two characteristics investigated suggest that multiple factors contribute to the induction of resistance by Foc.  相似文献   

6.
The options for managing Fusarium wilt in greenhouse cucumbers are limited by our poor understanding of the modes of survival and dissemination of the pathogen. This study uses a specific quantitative real‐time PCR assay for Fusarium oxysporum f. sp. cucumerinum to investigate the significance of flying insects as aerial vectors of the pathogen in a commercial cucumber greenhouse. Shore flies were more frequently detected (35.5%) carrying F. oxysporum f. sp. cucumerinum than sciarids (25%), with both species carrying between 1 × 102 and 1 × 106 pathogen genome copies/individual. Sciarid and shore flies acquired F. oxysporum f. sp. cucumerinum following exposures to agar cultures of the pathogen of up to 94 h. Light microscopy revealed that spores were carried externally on the bodies of the adult flies. The ability of adult sciarid flies to vector the pathogen from peat‐grown diseased cucumber plants and infect healthy cucumber plants was demonstrated in a caged glasshouse trial. An inoculum density trial showed that vascular wilt disease was initiated after inoculation of peat‐grown seedlings with as few as 1000 conidia. We conclude that sciarid and shore flies play significant roles as vectors of F. oxysporum f. sp. cucumerinum in greenhouse cucumbers and need to be recognized in developing integrated crop management strategies.  相似文献   

7.
For the detection of Fusarium oxysporum f. sp. cucumerinum pathogenic groups, a specific PCR-based marker was developed. Specific random amplified polymorphic DNA (RAPD) markers which identified in four pathogenic groups I, II, III, and IV were cloned into PGem-Teasy vector. Cloned fragments were sequenced, and used for developing sequence characterized amplified regions (SCAR) primers for detection of pathogenic groups. F. oxysporum f. sp. cucumerinum isolates belonging to four pathogenic groups in India, cucumber nonpathogenic F. oxysporum, F. oxysporum f. sp. moniliforme and melonis, Fusarium udum, and isolate of Alternaria sp. were tested using developed specific primers. A single 1.320 kb, 770 bp, 1.119 kb, and 771 bp fragment were amplified from pathogenic group I, II, III, and IV isolates, respectively. Results showed the PCR based marker, which used in this research work, could detect up to 1 ng of fungal genomic DNA. The specific SCAR primers and PCR technique developed in this research easily detect and differentiate isolates of each F. oxysporum f. sp. cucumerinum pathogenic groups.  相似文献   

8.
研究了西芹种子浸提液对黄瓜枯萎病菌菌落生长的抑制作用及浸提液处理后病菌致病力的变化.结果表明:在连续5代浸提液作用下,50 mg·mL-1的西芹种子乙醇、丙酮浸提液处理与其对照相比,显著抑制了黄瓜枯萎病菌菌落的生长;50 mg·mL-1的西芹种子蒸馏水浸提液处理在1~3代培养过程中,显著抑制了黄瓜枯萎病菌菌落的生长,而在4~5代培养过程中,与其对照相比,抑制菌落生长的差异不显著;用各代经西芹不同浸提液处理的黄瓜枯萎病菌接种到黄瓜上进行致病力测定,并于1周开始发病后调查病情,西芹种子丙酮、乙醇和蒸馏水浸提液处理的病情指数分别由第1代的26.7%、20.8%和22.5%降为第5代的17.5%、3.3%和18.3%;3种浸提液与其对照相比,其病情指数也表现降低,其中,乙醇浸提液处理与其对照差异达显著水平;接种至第5代时,乙醇浸提液处理的病情指数为3.3%,病菌毒力的致弱作用最强.综上所述,西芹种子浸提液不但抑制黄瓜枯萎病菌菌落的生长,而且还能弱化病菌的毒力.实验通过浸提液的连续处理获得了黄瓜枯萎病菌的弱毒菌株.  相似文献   

9.
The β‐glucuronidase (gus) reporter gene was integrated into the phytopathogenic fungus Fusarium oxysporum f. sp. radicis‐lycopersici (FORL) in a co‐transformation experiment using the hygromycin B resistance (hph) gene as selective marker, which resulted in the generation of 10 mitotically stable transformants. One transformant, F30, was selected based on the results of prior detailed characterization of the 10 transformants for growth rate, conidia production and pathogenicity in comparison with the wild‐type strain. A strong positive correlation was found between GUS activity and accumulated biomass of in vitro‐grown fungus and therefore GUS activity was used to study fungal growth quantitatively in two tomato lines. Although a parallel increase in lesion development and GUS activity was noted for both tomato lines, a correlation between the GUS activity and disease progression was not always possible. Interestingly, the levels of GUS activity obtained for the more resistant line were higher than those obtained for the susceptible line, indicating that disease progression in tomato caused by FORL may not be related only to the amount of fungal biomass within the root tissue.  相似文献   

10.
The fusion of protoplasts from the cycloheximide-resistant mutant FOL(C) of Fusarium oxysporum f. sp. lycopersici (FOL) and the mycostatin-resistant mutant FORL(M) of F. oxysporum f. sp. radicis-lycopersici (FORL), produced hybrids which expressed significant differences from the parents in their pathogenicity and growth and in the electrophoretic separation patterns of their proteins, enzymes and isoenzymes. The results suggest a transformed genetic basis for these altered expressions and the feasibility of using protoplast fusion technology for examining the biology of pathogenicity genes and for elucidating the disease and virulence potential for new races from within hybridisable taxa of Fusarium spp. Such information would be useful for the design and development of long-term control systems for Fusarium diseases, particularly in breeding programs for disease resistance in crops.  相似文献   

11.
The mode of inheritance of resistance to Fusarium oxysporum f.sp. cucumerinum races 1 and 2 in Wisconsin-2757 (WI-2757), a gynoecious cucumber (Cucumis sativus L.), was determined by analysing segregation of F1, F2 and BC1 populations of crosses with susceptible cultivar Straight-8. Resistance to either race 1 or race 2 in WI-2757 was conferred by a single dominant gene. In allelism tests, resistance to either race in WI-2757 was determined by the gene Fcu-1, which also confers resistance in line SMR-18.  相似文献   

12.
T.M. ALCONADA AND M.J. MARTÍNEZ. 1996. Fusarium oxysporum f. sp. melonis produces cellulase and β-glucosidase activities in a medium with glucose and avicel as carbon source. A β-glucosidase from this crude material was purified by gel filtration and ion exchange chromatography successively. This enzyme is a unique band of protein in SDS-PAGE and isoelectric focussing. It had a molecular weight of 66000 and a pI of 5. Using p -nitrophenyl-β-D-glucopyranoside as substrate β-glucosidase shows a K m of 210 μmol 1-1, an optimum pH of 5.5 and an optimum reaction temperature of 60°C, being stable in a pH range of 5–7 for 48 h at room temperature.  相似文献   

13.
14.
Localized infection in cucumber cotyledons with Colletotrichum lagenarium induced resistance against infection after challenge inoculation with Rhizoctonia solani AG2–2 and Fusarium oxysporum f. sp. cucumerinum in the roots. The plants were unprotected in soil that was infested heavily with R. solani or in contact with the mycelium, and induced resistance was not observed. Wounding of the root also negated the effect of induced resistance to F. oxysporum .  相似文献   

15.
16.
韭菜对香蕉枯萎病菌生长及香蕉枯萎病发生的抑制作用   总被引:3,自引:0,他引:3  
结合实验室抑菌试验和大棚人工接菌盆栽试验,研究韭菜对香蕉枯萎病菌4号生理小种(Foc4)的拮抗作用及其对香蕉枯萎病发生的防控效果.结果显示:离体条件下,韭菜粗提取液显著抑制Foc4菌丝的生长,造成菌丝变形、细胞的解体;也能显著抑制孢子的萌发并导致孢子失去活性.大棚盆栽试验中,韭菜处理的巴西香蕉苗枯萎病发病率降低70%,病情指数降低86.9%;韭菜处理的广粉1号粉蕉苗枯萎病的发病率降低76.7%,病情指数降低93.4%.研究表明,韭菜对Foc4有很高拮抗效果,而且对香蕉枯萎病有很高的防控作用.  相似文献   

17.
Germination of nutrient-amended chlamydospores of the three formae speciales of Fusarium oxysporum tested were inhibited in a suppressive soil collected from central Taiwan. The suppressive soil released a volatile substance when moistened with alkaline solution. The inhibition spectrum of the volatile substance was different from that of the suppressive soil. The inhibitory effect of the suppressive soil was greatly reduced when it was heat-treated for 30 min at 40°C or higher. The inhibitory effect of the heat-treated suppressive soil was restored after infestation with 1% conducive or suppressive soil for 14 days. However, infestation of heat-treated conducive soil even with 1% suppressive soil did not render it suppressive. Amendment of suppressive soil with rose bengal, streptomycin or Rubigan completely or partially reduced the inhibitory effect. Increasing the total population of indigenous microorganisms in conducive soil by amendment with rice germ or soybean meal to about the same level as that in suppressive soil did not render it suppressive. Results suggest that a combination of biotic and abiotic factors is responsible for the inhibitory effect of the suppressive soil.  相似文献   

18.
Agrobacterium tumefaciens stimulated and Fusarium oxysporum f. sp. lycopersici inhibited development and reproduction of Meloidogyne incognita when applied to the opposite split root of tomato, Lycopersicon esculentum cv. Tropic, plants. The lowest rate of nematode reproduction occurred after 2,000 juveniles were applied and the fungus was present in the opposite split root. The effects of all three pathogens alone on the growth of roots and shoots of tomato plants were evident, but M. incognita had a greater effect alone than did either of the other pathogens. The length of split roots was reduced by the infection of M. incognita and A. tumefaciens or F. oxysporum f. sp. lycopersici. The number of galls induced by nematodes on roots was higher where the bacterium was applied and lower where the fungus was applied to the opposite split root.  相似文献   

19.
通过西瓜枯萎病菌与其他专化型枯萎病菌及瓜类几种重要病原菌的比较基因组分析,获得了西瓜枯萎病菌的基因组特异序列。在此基础上,设计出特异引物,筛选可扩增出西瓜枯萎病菌特异性DNA条带的引物。将特异性引物和尖孢镰刀菌专化型的通用引物W106R/W106S结合,建立双重PCR检测体系。该双重PCR检测体系可以在一次PCR反应中快速、准确的检测出西瓜枯萎病菌,为通过分子方法快速鉴定西瓜枯萎病菌提供技术支持。  相似文献   

20.
In autoclaved greenhouse soil without Fusarium oxysporum f. sp. vasinfectum, Meloidogyne incognita did not cause leaf or vascular discoloration of 59-day-old cotton plants. Plants had root galls with as few as 50 Meloidogyne larvae per plant. Root galling was directly proportional to the initial nematode population level. Fusarium wilt symptoms occurred without nematodes with 77,000 fungus propagules or more per gram of soil. As few as 50 Meloidogyne larvae accompanying 650 fungus propagules caused Fusarium wilt. With few exceptions, leaf symptoms appeared sooner as numbers of either or both organisms increased. In soils infested with both organisms, the extent of fungal invasion and colonization was well correlated with the extent of nematode galling and other indications of the Fusarium wilt syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号