首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vision, olfaction, hearing, and balance are mediated by receptors that reside in specialized sensory epithelial organs. Age-related degeneration of the photoreceptors in the retina and the hair cells in the cochlea, caused by macular degeneration and sensorineural hearing loss, respectively, affect a growing number of individuals. Although sensory receptor cells in the mammalian retina and inner ear show only limited or no regeneration, in many nonmammalian vertebrates, these sensory epithelia show remarkable regenerative potential. We summarize the current state of knowledge of regeneration in the specialized sense organs in both nonmammalian vertebrates and mammals and discuss possible areas where new advances in regenerative medicine might provide approaches to successfully stimulate sensory receptor cell regeneration. The field of regenerative medicine is still in its infancy, but new approaches using stem cells and reprogramming suggest ways in which the potential for regeneration may be restored in individuals suffering from sensory loss.  相似文献   

2.
Isolation of specific cell types allows one to analyze rare cell populations such as stem/progenitor cells. Such an approach to studying inner ear tissues presents a unique challenge because of the paucity of cells of interest and few transgenic reporter mouse models. Here, we describe a protocol using fluorescence-conjugated probes to selectively label LacZ-positive cells from the neonatal cochleae. The most common underlying pathology of sensorineural hearing loss is the irreversible damage and loss of cochlear sensory hair cells, which are required to transduce sound waves to neural impulses. Recent evidence suggests that the murine auditory and vestibular organs harbor stem/progenitor cells that may have regenerative potential. These findings warrant further investigation, including identifying specific cell types with stem/progenitor cell characteristics. The Wnt signaling pathway has been demonstrated to play a critical role in maintaining stem/progenitor cell populations in several organ systems. We have recently identified Wnt-responsive Axin2-expressing cells in the neonatal cochlea, but their function is largely unknown. To better understand the behavior of these Wnt-responsive cells in vitro, we have developed a method of isolating Axin2-expressing cells from cochleae of Axin2-LacZ reporter mice. Using flow cytometry to isolate Axin2-LacZ positive cells from the neonatal cochleae, we could in turn execute a variety of experiments on live cells to interrogate their behavior as stem/progenitor cells. Here, we describe in detail the steps for the microdissection of neonatal cochlea, dissociation of these tissues, labeling of the LacZ-positive cells using a fluorogenic substrate, and cell sorting. Techniques for dissociating cochleae into single cells and isolating cochlear cells via flow cytometry have been described. We have made modifications to these techniques to establish a novel protocol to isolate LacZ-expressing cells from the neonatal cochlea.  相似文献   

3.
Disabling hearing loss is the most common sensorineural disability worldwide. It affects around 466 million people and its incidence is expected to rise to around900 million people by 2050, according to World Health Organization estimates.Most cases of hearing impairment are due to the degeneration of hair cells(HCs)in the cochlea, mechano-receptors that transduce incoming sound information into electrical signals that are sent to the brain. Damage to these cells is mainly caused by exposure to aminoglycoside antibiotics and to some anti-cancer drugs such as cisplatin, loud sounds, age, infections and genetic mutations. Hearing deficits may also result from damage to the spiral ganglion neurons that innervate cochlear HCs. Differently from what is observed in avian and nonmammalian species, there is no regeneration of missing sensory cell types in the adult mammalian cochlea, what makes hearing loss an irreversible process. This review summarizes the research that has been conducted with the aim of developing cell-based strategies that lead to sensory cell replacement in the adult cochlea and, ultimately, to hearing restoration. Two main lines of research are discussed, one directed toward the transplantation of exogenous replacement cells into the damaged tissue, and another that aims at reactivating the regenerative potential of putative progenitor cells in the adult inner ear. Results from some of the studies that have been conducted are presented and the advantages and drawbacks of the various approaches discussed.  相似文献   

4.
Sensorineural hearing loss is the most common sensory disorder in humans. It is primarily due to the degeneration of highly specialised mechanosensory cells in the cochlea, the so-called hair cells. Hearing problems can also be caused or further aggravated by the death of auditory sensory neurons that convey the information from the hair cells to the brain stem. Despite the discovery of stem/progenitor cells in the mammalian cochlea, no regeneration of either damaged hair cells or auditory neurons has been observed in mammals, in contrast to what is seen in avians and non-mammalian vertebrates. The reasons for this divergence have not yet been elucidated, although loss of stem cells and/or loss of their phenotypic plasticity in adult mammals have been put forward as possible explanations. Given the high incidence of this disorder and its economic and social implications, a considerable number of research lines have been set up aimed towards the regeneration of cochlear sensory cell types. This review summarizes the various routes that have been explored, ranging from the genetic modification of endogenous cells remaining in the inner ear in order to promote their transdifferentiation, to the implantation of exogenous stem or progenitor cells and their subsequent differentiation within the host tissue. Prophylactic treatments to fight against progressive sensory cell degeneration in the inner ear are also discussed.  相似文献   

5.
Pluripotent stem cells from the adult mouse inner ear   总被引:42,自引:0,他引:42  
Li H  Liu H  Heller S 《Nature medicine》2003,9(10):1293-1299
In mammals, the permanence of acquired hearing loss is mostly due to the incapacity of the cochlea to replace lost mechanoreceptor cells, or hair cells. In contrast, damaged vestibular organs can generate new hair cells, albeit in limited numbers. Here we show that the adult utricular sensory epithelium contains cells that display the characteristic features of stem cells. These inner ear stem cells have the capacity for self-renewal, and form spheres that express marker genes of the developing inner ear and the nervous system. Inner ear stem cells are pluripotent and can give rise to a variety of cell types in vitro and in vivo, including cells representative of ectodermal, endodermal and mesodermal lineages. Our observation that these stem cells are capable of differentiating into hair cell-like cells implies a possible use of such cells for the replacement of lost inner-ear sensory cells.  相似文献   

6.
Hair cells, the sensory cells of inner ear, perform essential functions in hearing and balance. However, mammalian hair cells, like most of the CNS neurons, lack the capacity to regenerate. This is in sharp contrast to lower vertebrates in which hair cell regeneration occurs spontaneously through cell division of supporting cells, which leads to hearing restoration. It is believed that the lack of regeneration in mammals is, to a large degree, due to the block of cell cycle re-entry imposed by negative cell growth genes in the inner ear. Recent studies have identified retinoblastoma gene, a well-known tumor suppressor, as the key gene involved in cell cycle exit of inner ear sensory cells. In the inner ear of pRb conditional knockout mice, hair cells undergo continuous cell division, and at the same time differentiate and become functional. Cell division continues in early postnatal cochlea and adult vestibule. Remarkably, the vestibular hair cells without pRb survive, and function at both the cellular and system levels. The time course and effects of pRb inhibition shows that there is a separation between the roles of pRb in cell cycle exit, and subsequent maturation and apoptosis. Those studies reveal distinctly different roles of pRb in the cochlear and vestibular sensory epithelia. The review discusses additional areas to be studied for regeneration of mature hair cells, and highlights the importance of transient and reversible block of pRb function as one of the routes to be explored for regeneration.  相似文献   

7.
Tbx1 is required for ear development in humans and mice. Gene manipulation in the mouse has discovered multiple consequences of loss of function on early development of the inner ear, some of which are attributable to a cell autonomous role in maintaining cell proliferation of epithelial progenitors of the cochlear and vestibular apparata. However, ablation of the mesodermal domain of the gene also results in severe but more restricted abnormalities. Here we show that Tbx1 has a dynamic expression during late development of the ear, in particular, is expressed in the sensory epithelium of the vestibular organs but not of the cochlea. Vice versa, it is expressed in the condensed mesenchyme that surrounds the cochlea but not in the one that surrounds the vestibule. Loss of Tbx1 in the mesoderm disrupts this peri-cochlear capsule by strongly reducing the proliferation of mesenchymal cells. The organogenesis of the cochlea, which normally occurs inside the capsule, was dramatically affected in terms of growth of the organ, as well as proliferation, differentiation and survival of its epithelial cells. This model provides a striking demonstration of the essential role played by the periotic mesenchyme in the organogenesis of the cochlea.  相似文献   

8.
Hearing relies on a sensitive mechanoelectrical transduction process in the cochlea of the inner ear. The cochlea contains sensory, secretory, neural, supporting and epithelial cells which are all essential to the sound transduction process. It is well known that a complex extracellular purinergic signaling system contributes to cochlear homeostasis, altering cochlear sensitivity and neural output via ATP-gated ion channels (P2X receptors) and G protein-coupled P2Y receptors. This review focuses on the emerging roles of ATP that are currently under investigation in the developing sensory epithelium, with particular emphasis on the link between ATP release, Ca2+ signaling, the expression and function of gap junction proteins connexin26 and connexin30, and the acquisition of hearing.  相似文献   

9.
10.
Quiescence is among the hallmarks of the sensory epithelium of the cochlea. When auditory sensory cells (hair cells) degenerate they are not replaced, and therefore hearing loss is permanent. Cochlear hair cells are susceptible to several types of lesions, including aminoglycoside antibiotics. The application of the aminoglycoside neomycin in the inner ear mimics cases of severe hair cell loss and leads to collapse of the cochlear epithelium. We now report that in mature guinea pig cochleae injected with neomycin, the remaining non-sensory cells undergo a robust proliferative response. p27Kip1, an inhibitor of cell cycle in the cochlea, was present in non-dividing cells and absent during mitosis. Dividing cells retained their tight junction complexes and maintained the structural confluence of the auditory epithelium during cell division. The plane of mitosis was invariably parallel to the luminal surface. These results indicate that the flat epithelium of the cochlea can down-regulate p27Kip1 and divide after a severe lesion and suggest that the cell divisions assist in maintaining the epithelial confluence throughout the cochlea. Presence of mitosis in the tissue presents therapeutic opportunities for gene transfer and stem cells therapies.  相似文献   

11.
目的:通过将人脂肪来源间充质干细胞(human adipose-derived mesenchymal stem cells,hAD-MSCs)移植到受损小鼠,探讨hAD-MSCs替代缺失/受损毛细胞的可行性。方法:将hAD-MSCs经尾静脉移植入药物致聋后的小鼠体内,用免疫染色及RT-PCR等方法检测移植后hAD-MSCs在耳蜗内的归巢和分化。结果:移植的hAD-MSCs能够定向归巢到受损耳蜗内,并至少存活2周,未观察到对移植细胞的免疫排斥反应。有少量细胞定位于耳蜗感觉上皮并表达毛细胞特异性抗体myosin 7a。结论:hAD-MSCs移植入药物性致聋小鼠后,能够定向归巢到耳蜗内,并分化为内耳毛细胞样细胞,是一种针对内耳损伤及退变性疾病治疗的潜在细胞来源。  相似文献   

12.
The human ear is capable of processing sound with a remarkable resolution over a wide range of intensity and frequency. This ability depends largely on the extraordinary feats of the hearing organ, the organ of Corti and its sensory hair cells. The organ of Corti consists of precisely patterned rows of sensory hair cells and supporting cells along the length of the snail-shaped cochlear duct. On the apical surface of each hair cell, several rows of actin-containing protrusions, known as stereocilia, form a "V"-shaped staircase. The vertices of all the "V"-shaped stereocilia point away from the center of the cochlea. The uniform orientation of stereocilia in the organ of Corti manifests a distinctive form of polarity known as planar cell polarity (PCP). Functionally, the direction of stereociliary bundle deflection controls the mechanical channels located in the stereocilia for auditory transduction. In addition, hair cells are tonotopically organized along the length of the cochlea. Thus, the uniform orientation of stereociliary bundles along the length of the cochlea is critical for effective mechanotransduction and for frequency selection. Here we summarize the morphological and molecular events that bestow the structural characteristics of the mammalian hearing organ, the growth of the snail-shaped cochlear duct and the establishment of PCP in the organ of Corti. The PCP of the sensory organs in the vestibule of the inner ear will also be described briefly.  相似文献   

13.
14.
15.
16.
Isolation and culture of hair cell progenitors from postnatal rat cochleae   总被引:14,自引:0,他引:14  
Cochlear hair cells are a terminally differentiated cell population that is crucial for hearing. Although recent work suggests that there are hair cell progenitors in postnatal mammalian cochleae, isolation and culture of pure hair cell progenitors from a well-defined cochlear area have not been reported. Here we present an experimental method that allows isolation and culture of hair cell progenitors from postnatal rat cochleae. These progenitor cells are isolated from the lesser epithelial ridge (LER, or outer spiral sulcus cell) area of pre-plated neonatal rat cochlear segments. They express the same markers as LER cells in vivo, including ZO1, Islet1, Hes1, and Hes5. When these cells are induced to express Hath1, they show the potential to differentiate into hair cell-like cells. Interestingly, these cells can be lifted from monolayer cultures and maintained in aggregate cultures in which spheres can be formed. Hair cell progenitors in the spheres display their proliferating capability and express only epithelial markers. Furthermore, when these spheres are mixed with dissociated mesenchymal cells prepared from postnatal rat utricular whole mounts, and replated onto a collagen substratum, the epithelial progenitor cells are able to differentiate into cells expressing markers of hair cells and supporting cells in epithelial islands, which mirrors the inner ear sensory epithelium in vivo. Successful isolation and culture of hair cell progenitors from the mammalian cochlea will facilitate studies on gene expression profiling and mechanism of differentiation/regeneration of hair cells, which are crucial for repairing hearing loss.  相似文献   

17.
A key requirement for encoding the auditory environment is the ability to dynamically alter cochlear sensitivity. However, merely attaining a steady state of maximal sensitivity is not a viable solution since the sensory cells and ganglion cells of the cochlea are prone to damage following exposure to loud sound. Most often, such damage is via initial metabolic insult that can lead to cellular death. Thus, establishing the highest sensitivity must be balanced with protection against cellular metabolic damage that can lead to loss of hair cells and ganglion cells, resulting in loss of frequency representation. While feedback mechanisms are known to exist in the cochlea that alter sensitivity, they respond only after stimulus encoding, allowing potentially damaging sounds to impact the inner ear at times coincident with increased sensitivity. Thus, questions remain concerning the endogenous signaling systems involved in dynamic modulation of cochlear sensitivity and protection against metabolic stress. Understanding endogenous signaling systems involved in cochlear protection may lead to new strategies and therapies for prevention of cochlear damage and consequent hearing loss. We have recently discovered a novel cochlear signaling system that is molecularly equivalent to the classic hypothalamic–pituitary–adrenal (HPA) axis. This cochlear HPA-equivalent system functions to balance auditory sensitivity and susceptibility to noise-induced hearing loss, and also protects against cellular metabolic insults resulting from exposures to ototoxic drugs. We review the anatomy, physiology, and cellular signaling of this system, and compare it to similar signaling in other organs/tissues of the body.  相似文献   

18.
The inner ear of mammals uses neurosensory cells derived from the embryonic ear for mechanoelectric transduction of vestibular and auditory stimuli (the hair cells) and conducts this information to the brain via sensory neurons. As with most other neurons of mammals, lost hair cells and sensory neurons are not spontaneously replaced and result instead in age-dependent progressive hearing loss. We review the molecular basis of neurosensory development in the mouse ear to provide a blueprint for possible enhancement of therapeutically useful transformation of stem cells into lost neurosensory cells. We identify several readily available adult sources of stem cells that express, like the ectoderm-derived ear, genes known to be essential for ear development. Use of these stem cells combined with molecular insights into neurosensory cell specification and proliferation regulation of the ear, might allow for neurosensory regeneration of mammalian ears in the near future.  相似文献   

19.
20.
Investigators have utilized a wide array of animal models and investigative techniques to study the mammalian auditory system. Much of the basic research involving the cochlea and its associated neural pathways entails exposure of model cochleae to a variety of ototoxic agents. This allows investigators to study the effects of targeted damage to cochlear structures, and in some cases, the self-repair or regeneration of those structures. Various techniques exist for delivery of ototoxic agents to the cochlea. When selecting a particular technique, investigators must consider a number of factors, including the induction of inadvertent systemic toxicity, the amount of cochlear damage produced by the surgical procedure itself, the type of lesion desired, animal survivability, and reproducibility/reliability of results. Currently established techniques include parenteral injection, intra-peritoneal injection, trans-tympanic injection, endolymphatic sac injection, and cochleostomy with perilymphatic perfusion. Each of these methods has been successfully utilized and is well described in the literature; yet, each has various shortcomings. Here, we present a technique for topical application of ototoxic agents directly to the round window niche. This technique is non-invasive to inner ear structures, produces rapid onset of reliably targeted lesions, avoids systemic toxicity, and allows for an intra-animal control (the contra-lateral ear). Results stemming from this approach have helped deeper understanding of auditory pathophysiology, cochlear cell degeneration, and regenerative capacity in response to an acute injury. Future investigations may use this method to conduct interventional studies involving gene therapy and stem cell transplantation to combat hearing loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号