首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondrial metabolic capacity and DNA replication have both been shown to affect oocyte quality, but it is unclear which one is more critical. In this study, immature oocytes were treated with FCCP or ddC to independently inhibit the respective mitochondrial metabolic capacity or DNA replication of oocytes during in vitro maturation. To differentiate their roles, we evaluated various parameters related to oocyte maturation (germinal vesicle break down and nuclear maturation), quality (spindle formation, chromosome alignment, and mitochondrial distribution pattern), fertilization capability, and subsequent embryo developmental competence (blastocyst formation and cell number of blastocyst). Inhibition of mitochondrial metabolic capacity with FCCP resulted in a reduced percent of oocytes with nuclear maturation; normal spindle formation and chromosome alignment; evenly distributed mitochondria; and an ability to form blastocysts. Inhibition of mtDNA replication with ddC has no detectable effect on oocyte maturation and mitochondrial distribution, although high-dose ddC increased the percent of oocytes showing abnormal spindle formation and chromosome alignment. ddC did, however, reduce blastocyst formation significantly. Neither FCCP nor ddC exposure had an effect on the rate of fertilization. These findings suggest that the effects associated with lower mitochondrial DNA copy number do not coincide with the effects seen with reduced mitochondrial metabolic activity in oocytes. Inhibiting mitochondrial metabolic activity during oocyte maturation has a negative impact on oocyte maturation and subsequent embryo developmental competence. A reduction in mitochondrial DNA copy number, on the other hand, mainly affects embryonic development potential, but has little effect on oocyte maturation and in vitro fertilization.  相似文献   

2.
3.
The present study was carried out to study de novo glutathione (GSH) synthesis and to evaluate the effect of stimulating GSH synthesis during in vitro maturation (IVM) of adult and prepubertal mouse oocytes on the embryo developmental rate. Adult (8 weeks old) and prepubertal mice (24-26 days old) were primed with 5 IU of PMSG and oocytes were retrieved from the ovary 48 hr later for IVM. After IVM (18 hr) Cumulus oocyte complexes (COC) were in vitro fertilized (IVF) and in vitro culture (IVC) in order to observe embryo development. The IVM medium was supplemented with: 0, 25, 50, 100, or 200 microM of cysteamine. To study the novo GSH synthesis, 5 mM BSO was added during IVM of adult or prepubertal oocyte. Developmental rates up to blastocyst were recorded for each group. Experiments also included a group of ovulated oocytes (in vivo matured) after priming with PMSG and HCG. After IVM of adult mice oocytes, an improvement was observed on embryo development in all the supplemented groups when compared with the untreated group (P < 0.05). No differences were observed in blastocyst rate among IVM oocytes with cysteamine and ovulated oocytes. Prepubertal IVM mouse oocytes had a lower cleavage rate compared with ovulated oocytes (P < 0.05). Cysteamine failed to improve prepubertal oocytes developmental rates (P > 0,05). 2-cell embryos, coming from IVM prepubertal oocytes and ovulated oocytes had the same preimplantation developmental rate up to the blastocyst stage. In prepubertal, and adult oocytes an inhibition of embryo development was observed when buthionine sulfoximide (BSO), a specific inhibitor of the gamma-glutamylcysteine synthetase, was added during oocyte maturation (P < 0.01). In conclusion, an improvement in mouse embryo development was observed when cysteamine was added to the IVM medium of adult mice oocytes. In prepubertal oocytes cysteamine addition during oocyte maturation failed to improve embryo developmental rates. The presence of BSO lowered or completely blocked blastocyst development. This proves that, de novo GSH synthesis during oocyte maturation of adult and prepubertal oocytes undoubtedly plays an important role in embryo development. The improvement on oocyte competence observed in adult mice oocytes is probably related to intracellular GSH synthesis stimulated by cysteamine. Nevertheless the reason why cysteamine failed to improve prepubertal oocytes competence remains as an open question.  相似文献   

4.
Sphingosine 1-phosphate (S1P) is a sphingolipid metabolite that can block apoptosis by counteracting the proapoptotic effects of ceramide. Experiments were performed to evaluate whether S1P blocks the disruption in oocyte developmental competence caused by heat shock. Cumulus-oocyte complexes (COCs) were placed in maturation medium and cultured at 38.5 or 41 degrees C for the first 12 h of maturation. Incubation during the last 10 h of maturation, fertilization, and embryonic development were performed at 38.5 degrees C. Heat shock during the first 12 h of maturation reduced cleavage rate, the number of oocytes developing to the blastocyst stage, and the percentage of cleaved embryo that subsequently developed to blastocysts. Addition of 50 nM S1P to maturation medium had no effect on oocytes matured at 38.5 degrees C but blocked effects of thermal stress on cleavage and subsequent development. The blastocysts formed at Day 8 did not differ between S1P and control groups in caspase activity, total cell number, or percentage of cells that were apoptotic. Blocking endogenous generation of S1P by addition of 50 nM N1N-dimethylsphingosine, a sphingosine kinase inhibitor, reduced or tended to reduce cleavage rate and blastocyst development regardless of whether maturation of COCs was at 38.5 or 41 degrees C. Results demonstrate that S1P protects oocytes from a physiologically relevant heat shock and affects oocyte maturation even in the absence of heat shock. The S1P-treated oocytes that survived heat shock and became blastocysts had a normal developmental potential as determined by caspase activity, total cell number, and percentage of apoptotic cells. Thus, modulation of developmental competence of oocytes using S1P may be a useful approach for enhancing fertility in situations where developmental competence of oocytes is compromised.  相似文献   

5.
The aim of the study was to determine the contribution of cumulus cells on the developmental competence of porcine oocytes during follicle growth. Oocytes from large (5-8mm) and small (2-3mm) follicles were cultured with or without follicle stimulating hormone (FSH), subsequently examined for nuclear stage and spindle morphology, or fertilized and cultured for embryo development, or analyzed for glutathione content. Additionally, the significance of cumulus investment, corona radiata cells, cumulus cell number and origin of cumulus cells for oocyte maturation were investigated. Small follicle oocytes cultured without FSH exhibited the highest incidence of spindle aberrations. Oocytes cultured without FSH exhibited reduced sperm penetration and blastocyst rates, and a higher proportion monospermic oocytes developed to the blastocyst stage when derived from large follicles. The glutathione content in oocytes increased during follicle growth and oocyte maturation, but no direct correlation between oocyte glutathione content and oocyte developmental capacity was observed. Oocytes with a bigger cumulus investment exhibited better embryo development. Oocytes with a single corona radiata cell layer (CROs) exhibited similar progression through meiosis to oocytes with more cumulus cell layers, but showed reduced embryo development. More blastocysts were observed when CROs were cultured with disconnected cumulus cells during IVM, but no blastocyst increase was observed when CROs were cocultured with a higher number of cumulus cells or with cumulus cells from large follicles. We conclude that increased developmental capacity of oocytes during follicle growth is intrinsic and whether cumulus cells originate from large or small follicles, their contribution to oocyte maturation remains unchanged. Further, cumulus investment can be used as a variable to predict oocyte developmental capacity.  相似文献   

6.
Although oocytes from prepubertal animals are found less competent than oocytes from adults, the underlying mechanisms are poorly understood. Using the mouse oocyte model, this paper has tested the hypothesis that the developmental potential of prepubertal oocytes is compromised due mainly to their impaired potential for glutathione synthesis. Oocytes from prepubertal and adult mice, primed with or without eCG, were matured in vitro and assessed for glutathione synthesis potential, oxidative stress, Ca2+ reserves, fertilization and in vitro development potential. In unprimed mice, abilities for glutathione synthesis, activation, male pronuclear formation, blastocyst formation, cortical granule migration and polyspermic block were all compromised significantly in prepubertal compared to adult oocytes. Cysteamine and cystine supplementation to maturation medium significantly promoted oocyte glutathione synthesis and blastocyst development but difference due to maternal age remained. Whereas reactive oxygen species (ROS) levels increased, Ca2+ storage decreased significantly in prepubertal oocytes. Levels of both catalytic and modifier subunits of the γ-glutamylcysteine ligase were significantly lower in prepubertal than in adult oocytes. Maternal eCG priming improved all the parameters and eliminated the age difference. Together, the results have confirmed our hypothesis by showing that prepubertal oocytes have a decreased ability to synthesize glutathione leading to an impaired potential to reduce ROS and to form male pronuclei and blastocysts. The resulting oxidative stress decreases the intracellular Ca2+ store resulting in impaired activation at fertilization, and damages the microfilament network, which affects cortical granule redistribution leading to polyspermy.  相似文献   

7.
Cloned animals possess mitochondria derived from the host ooplast, which typically differ genetically from those of the donor. This is of special concern to horse breeders, as maternal lines are prized and athletic performance is a key factor in genetic value. To evaluate the feasibility of producing mitochondrial-identical cloned foals, we collected oocytes from immature follicles of two mares, BL and SM, maternally related to the donor stallion. In vitro matured, enucleated oocytes were treated with roscovitine-synchronized donor cells and blastocysts were transferred transcervically to recipient mares. In Mare BL, 10 aspiration sessions yielded 45 oocytes, of which 12 matured and seven were successfully recombined. One blastocyst was produced, which did not yield a pregnancy. In Mare SM, three aspiration sessions yielded 53 oocytes, of which 27 successfully recombined. These were assigned to either Scriptaid or Scriptaid plus Vitamin C treatments for the first 12 to 16 hours of embryo culture. Two blastocysts were produced from each treatment. One pregnancy was established after transfer from the Scriptaid treatment. This resulted in a viable foal whose genomic DNA and mitochondrial DNA matched to those of the donor animal. These results indicate that production of mitochondrial-identical cloned foals can be achieved using oocyte recovery from a very small number of selected mares. Despite mitochondrial homogeneity, the results varied with mare; Mare BL yielded both significantly fewer oocytes per aspiration session (P < 0.001) and significantly fewer reconstructed oocytes per oocyte recovered ( P < 0.001) than did Mare SM.  相似文献   

8.
9.
Improvement of an electrical activation protocol for porcine oocytes   总被引:16,自引:0,他引:16  
Factors influencing pig oocyte activation by electrical stimulation were evaluated by their effect on the development of parthenogenetic embryos to the blastocyst stage to establish an effective activation protocol for pig nuclear transfer. This evaluation included 1) a comparison of the effect of epidermal growth factor and amino acids in maturation medium, 2) an investigation of interactions among oocyte age, applied voltage field strength, electrical pulse number, and pulse duration, and 3) a karyotype analysis of the parthenogenetic blastocysts yielded by an optimized protocol based on an in vitro system of oocyte maturation and embryo culture. In the first study, addition of amino acids in maturation medium was beneficial for the developmental competence of activated oocytes. In the second study, the developmental response of activated oocytes was dependent on interactions between oocyte age at activation and applied voltage field strength, voltage field strength and pulse number, and pulse number and duration. The formation of parthenogenetic blastocysts was optimal when activation was at 44 h of maturation using three 80-microsec consecutive pulses of 1.0 kV/cm DC. Approximately 84% of parthenogenetic blastocysts yielded by this protocol were diploid, implying a potential for further in vivo development.  相似文献   

10.

Background

Brain-derived neurotropic factor (BDNF) was originally described in the nervous system but has been shown to be expressed in ovary tissues recently, acting as a paracrine/autocrine regulator required for developments of follicles and oocytes. Although it is generally accepted that chronic stress impairs female reproduction and decreases the expression of BDNF in limbic structures of central nervous system, which contributes to mood disorder. However, it is not known whether chronic stress affects oocytes developments, nor whether it affects expression of BDNF in ovary.

Methods

Mice were randomly assigned into control group, stressed group, BDNF-treated group and BDNF-treated stressed group. The chronic unpredictable mild stress model was used to produce psychosocial stress in mice, and the model was verified by open field test and hypothalamic-pituitary-adrenal (HPA) axis activity. The methods of immunohistochemistry and western blotting were used to detect BDNF protein level and distribution. The number of retrieved oocytes, oocyte maturation, embryo cleavage and the rates of blastocyst formation after parthenogenetic activation were evaluated.

Results

Chronic unpredictable stress decreased the BDNF expression in antral follicles, but didn’t affect the BDNF expression in primordial, primary and secondary follicles. Chronic unpredictable stress also decreased the number of retrieved oocytes and the rate of blastocyst formation, which was rescued by exogenous BDNF treatment.

Conclusion

BDNF in mouse ovaries may be related to the decreased number of retrieved oocytes and impaired oocytes developmental potential induced by chronic unpredictable stress.  相似文献   

11.
The potential role of endogenous triglyceride in bovine oocyte maturation and preimplantation development has been investigated. Bovine immature oocytes were recovered from abattoir-derived ovaries, matured and fertilised in vitro and the zygotes grown to the blastocyst stage in SOFaaBSA. Methyl palmoxirate (MP) blocks the oxidation of fatty acids by inhibiting mitochondrial carnitine palmitoyltransferase A. The development of zygotes exposed to MP during oocyte maturation, and of zygotes exposed to MP during embryo culture has been assessed in terms of oxygen consumption by oocytes and embryos during a 4-6 hr incubation period in the presence of MP and as blastocyst formation and cell number. Immature oocytes exposed to MP during maturation had reduced capacity to form blastocysts after fertilisation; the same effect was apparent, but to a lesser extent, in zygotes exposed to MP during embryo development. Oxygen consumption values of oocytes and blastocysts in the absence of exogenous substrates were similar to those in control medium containing nutrients. MP-inhibited oxygen consumption of immature oocytes, mature oocytes, cleavage stages embryos and blastocysts by 64, 45, 12 and 13%, respectively. The data are consistent with a role for triglyceride as a key energy source during bovine oocyte maturation and potentially, during preimplantation embryo development.  相似文献   

12.
13.
Crossbred beef x dairy calves were randomly allocated at 3 wk of age to different gonadotropin treatment regimens for stimulation of follicle development and induction of oocyte maturation in vivo. Follicular responses were assessed laparoscopically, and oocytes were aspirated for assessment of maturational state or for in vitro fertilization (IVF) and culture to determine developmental capacity. Follicle-stimulating Hormone (FSH), administered in a single subcutaneous injection together with a low dosage of PMSG, was as effective as the same total dosage of FSH administered in 6 injections over a 3-d period. Without accompanying PMSG, this dose of FSH was ineffective in stimulating follicle development. The mean number of preovulatory follicles (> 5mm, with hyperemic appearance) doubled with each successive stimulation at 3-wk intervals, reaching 35 follicles per calf at 9 wk of age. Oocyte yields ranged from 55 to 81% of follicles aspirated, and did not differ significantly among age, FSH regimen and oocyte maturation stimulus. A combination of LH + FSH was more effective in stimulating cumulus cell expansion than LH by itself (73 vs 22% of recovered oocyte-cumulus cell complex (OCC) respectively; P<0.05). Of 33 unselected immature oocytes (cumulus unexpanded) subjected to in vitro maturation (IVM) and IVF, 30% developed to blastocysts during co-culture with bovine oviduct epithelial cells, which was not significantly different from 25% of 36 oocytes from adult ovaries which reached the blastocyst stage under similar conditions. The results indicate that follicle responses of calf ovaries to FSH stimulation increase progressively from 3 to 9 wk of age, and that oocytes recovered laparoscopically from these follicles produce blastocysts in culture at rates similar to oocytes from adult cattle ovaries collected at slaughter. The approach offers promise for embryo production from donor calves of superior genetic merit for embryo transfer, thereby enhancing the rate of genetic gain above that attainable by conventional breeding or by embryo transfer in adult cattle.  相似文献   

14.
Elevated concentrations of serum non-esterified fatty acids (NEFA), associated with maternal disorders such as obesity and type II diabetes, alter the ovarian follicular micro-environment and have been associated with subfertility arising from reduced oocyte developmental competence. We have asked whether elevated NEFA concentrations during oocyte maturation affect the development and physiology of zygotes formed from such oocytes, using the cow as a model. The zygotes were grown to blastocysts, which were evaluated for their quality in terms of cell number, apoptosis, expression of key genes, amino acid turnover and oxidative metabolism. Oocyte maturation under elevated NEFA concentrations resulted in blastocysts with significantly lower cell number, increased apoptotic cell ratio and altered mRNA abundance of DNMT3A, IGF2R and SLC2A1. In addition, the blastocysts displayed reduced oxygen, pyruvate and glucose consumption, up-regulated lactate consumption and higher amino acid metabolism. These data indicate that exposure of maturing oocytes to elevated NEFA concentrations has a negative impact on fertility not only through a reduction in oocyte developmental capacity but through compromised early embryo quality, viability and metabolism.  相似文献   

15.
Despite the well-known benefits of omega-3 (n-3) polyunsaturated fatty acid (PUFA) supplementation on human health, relatively little is known about the effect of n-3 PUFA intake on fertility. More specifically, the aim of this study was to determine how oocyte and preimplantation embryo development might be influenced by n-3 PUFA supply and to understand the possible mechanisms underlying these effects. Adult female mice were fed a control diet or a diet relatively high in the long-chain n-3 PUFAs for 4 wk, and ovulated oocytes or zygotes were collected after gonadotropin stimulation. Oocytes were examined for mitochondrial parameters (active mitochondrial distribution, mitochondrial calcium and membrane potential) and oxidative stress, and embryo developmental ability was assessed at the blastocyst stage following 1) in vitro fertilization (IVF) or 2) culture of in vivo-derived zygotes. This study demonstrated that exposure of the oocyte during maturation in the ovary to an environment high in n-3 PUFA resulted in altered mitochondrial distribution and calcium levels and increased production of reactive oxygen species. Despite normal fertilization and development in vitro following IVF, the exposure of oocytes to an environment high in n-3 PUFA during in vivo fertilization adversely affected the morphological appearance of the embryo and decreased developmental ability to the blastocyst stage. This study suggests that high maternal dietary n-3 PUFA exposure periconception reduces normal embryo development in the mouse and is associated with perturbed mitochondrial metabolism, raising questions regarding supplementation with n-3 PUFAs during this period of time.  相似文献   

16.
Culture systems for oocytes are essential for the experimental analysis of the basic mechanisms of oocyte development and, moreover, they will eventually find wide application in agriculture, the clinic, and wildlife preservation. Here, progress in mouse oocyte growth and development in vitro using oocyte-granulosa cell complexes from preantral follicles is reviewed. Oocyte-granulosa cell complexes were isolated from preantral (secondary) follicles of 12 day old mice, grown in vitro for 10 days, then matured and fertilized in vitro. The developmental competence of these oocytes was compared with oocytes grown in vivo and isolated from 22 day old mice, then matured and fertilized in vitro. In vitro-grown oocytes did not achieve the same size as their in vivo-grown counterparts. However, when oocytes were grown in medium containing fetal bovine serum, their preimplantation developmental competence was equivalent to that of in vivo-grown oocytes. Surprisingly, more blastocysts per animal were produced when oocytes were grown in vitro than in vivo. There was no correlation between oocyte size and either preimplantation developmental competence or number of cells per blastocyst. Oocytes grown in serum-free medium did not achieve the same developmental competence as oocytes grown in medium supplemented with serum. Lastly, the health status as an adult of the only animal born after complete oocyte development in vitro is described and discussed.  相似文献   

17.
These experiments were done to determine whether the culture medium used for the spontaneous maturation of mouse oocytes can affect the subsequent capacity of the ova to become fertilized and complete preimplantation development in vitro and development to live young. Oocytes obtained from antral follicles of gonadotropin-primed immature mice underwent spontaneous maturation in control medium, i.e. Eagle's Minimum Essential Medium (MEM) supplemented with 5% fetal bovine serum, or in one of eight different media which were also supplemented with serum. All of the ova were fertilized in Whitten's medium and were assessed for cleavage to the 2-cell stage and for further preimplantation development to blastocysts during culture in Whitten's medium. Three of the eight media used for oocyte maturation improved the capacity of the ova to develop to the blastocyst stage when compared with the control: Waymouth MB 752/1, MEM with non-essential amino acids, and MEM Alpha; Waymouth medium promoted the highest frequency of development of ova to the blastocyst stage. Moreover, the blastocysts derived from oocytes that matured in Waymouth medium contained more cells than blastocysts derived from oocytes that matured in control medium. Although BGJb medium promoted the cleavage of eggs to the 2-cell stage when present during oocyte maturation, it had a detrimental effect on their subsequent preimplantation developmental capacity. Following transfer to foster mothers, more 2-cell stage embryos developed to live young after oocyte maturation in Waymouth medium (21%) than in control medium (13%).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The present study was conducted to investigate effects of antioxidants during maturation culture of recipient oocytes and/or culture of gene-transfected donor cells on the meiotic competence of recipient oocytes, and the developmental competence and quality of the reconstructed embryos after nuclear transfer (NT) in cattle. Gene-transfected donor cells had negative effects on the proportions of blastocyst formation, total cell numbers, and DNA fragmentation indices of reconstructed embryos. Supplementation of either vitamin E (alpha-tocopherol: 100 microM) or vitamin C (ascorbic acid: 100 microM) during maturation culture significantly enhanced the cytoplasmic maturation of oocytes and subsequent development of embryos reconstructed with the oocytes and gene-transfected donor cells, but did not have synergistic effects. The supplementation of vitamin E during maturation culture of recipient oocytes increased the proportions of fusion and blastocyst formation of gene-transfected NT embryos, in which the proportions were similar to those of nontransfected NT embryos. When the gene-transfected donor cells that had been cultured with 0, 50, or 100 microM of vitamin E were transferred into recipient oocytes matured with vitamin E (100 microM), 50 microM of vitamin E increased the proportion of blastocyst formation and reduced the index of DNA fragmentation of blastocysts. In conclusion, gene-transfected donor cells have negatively influenced the NT outcome. Supplementation of vitamin E during both recipient oocyte maturation and donor cell culture enhanced the blastocyst formation and efficiently blocked DNA damage in transgenic NT embryos.  相似文献   

19.
20.
The aim of this study was to determine the effect of individual oocyte donors on cloned embryo development in vitro. Five Holstein heifers of varied genetic origins were subject to ovum pick up (OPU) once weekly. In total, 913 oocytes were recovered from 1304 follicles. A mean of 7.7+/-0.4 oocytes was recovered per session per animal. Individual mean oocyte production varied significantly in quantity but not in quality (morphological categories) among heifers. Oocytes from individual heifers were used as recipient cytoplasm for somatic cell nuclear transfer (SCNT). Cumulus cells, collected from a single Holstein cow genetically unrelated to the oocyte donor, were used as donor cells. Although the percentage of reconstructed embryos that started to cleave was nearly constant, the percentage of cleaved embryos that developed into blastocysts showed clear individual heifer variation (61%, 51%, 31%, 28% and 24%, respectively), with a mean of 38% showing blastocyst formation. In vitro fertilization (IVF) was also conducted with oocyte from the same heifers used in SCNT. A variation of blastocyst production among individual heifers was also shown in the IVF experiment, but the rank of oocyte donor based on the blastocyst rate was changed. In conclusion, individual oocyte donor may have an effect on cloned embryo development in vitro, which differed from the effect on IVF embryos.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号