首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Cobalamin and other corrinoids are essential cofactors for many organisms. The majority of microbes with corrinoid‐dependent enzymes do not produce corrinoids de novo, and instead must acquire corrinoids produced by other organisms in their environment. However, the profile of corrinoids produced in corrinoid‐dependent microbial communities, as well as the exchange and modification of corrinoids among community members have not been well studied. In this study, we applied a newly developed liquid chromatography tandem mass spectrometry‐based corrinoid detection method to examine relationships among corrinoids, their lower ligand bases and specific microbial groups in microbial communities containing Dehalococcoides mccartyi that has an obligate requirement for benzimidazole‐containing corrinoids for trichloroethene respiration. We found that p‐cresolylcobamide ([p‐Cre]Cba) and cobalamin were the most abundant corrinoids in the communities. It suggests that members of the family Veillonellaceae are associated with the production of [p‐Cre]Cba. The decrease of supernatant‐associated [p‐Cre]Cba and the increase of biomass‐associated cobalamin were correlated with the growth of D. mccartyi by dechlorination. This supports the hypothesis that D. mccartyi is capable of fulfilling its corrinoid requirements in a community through corrinoid remodelling, in this case, by importing extracellular [p‐Cre]Cba and 5,6‐dimethylbenzimidazole (DMB) (the lower ligand of cobalamin), to produce cobalamin as a cofactor for dechlorination. This study also highlights the role of DMB, the lower ligand produced in all of the studied communities, in corrinoid remodelling. These findings provide novel insights on roles played by different phylogenetic groups in corrinoid production and corrinoid exchange within microbial communities. This study may also have implications for optimizing chlorinated solvent bioremediation.  相似文献   

2.
3.
Corrinoid (vitamin B12-like) cofactors contain various α-axial ligands, including 5,6-dimethylbenzimidazole (DMB) or adenine. The bacterium Salmonella enterica produces the corrin ring only under anaerobic conditions, but it can form “complete” corrinoids aerobically by importing an “incomplete” corrinoid, such as cobinamide (Cbi), and adding appropriate α- and β-axial ligands. Under aerobic conditions, S. enterica performs the corrinoid-dependent degradation of ethanolamine if given vitamin B12, but it can make B12 from exogenous Cbi only if DMB is also provided. Mutants isolated for their ability to degrade ethanolamine without added DMB converted Cbi to pseudo-B12 cofactors (having adenine as an α-axial ligand). The mutations cause an increase in the level of free adenine and install adenine (instead of DMB) as an α-ligand. When DMB is provided to these mutants, synthesis of pseudo-B12 cofactors ceases and B12 cofactors are produced, suggesting that DMB regulates production or incorporation of free adenine as an α-ligand. Wild-type cells make pseudo-B12 cofactors during aerobic growth on propanediol plus Cbi and can use pseudo-vitamin B12 for all of their corrinoid-dependent enzymes. Synthesis of coenzyme pseudo-B12 cofactors requires the same enzymes (CobT, CobU, CobS, and CobC) that install DMB in the formation of coenzyme B12. Models are described for the mechanism and control of α-axial ligand installation.  相似文献   

4.
The dechlorinating Dehalococcoides mccartyi species requires acetate as carbon source, but little is known on its growth under acetate limiting conditions. In this study, we observed growth and dechlorination of a D. mccartyi-containing mixed consortium in a fixed-carbon-free medium with trichloroethene in the aqueous phase and H2/CO2 in the headspace. Around 4 mM formate was produced by day 40, while acetate was constantly below 0.05 mM. Microbial community analysis of the consortium revealed dominance by D. mccartyi and Desulfovibrio sp. (57 and 22% 16S rRNA gene copies, respectively). From this consortium, Desulfovibrio sp. strain F1 was isolated and found to produce formate and acetate (1.2 mM and 48 µM, respectively, by day 24) when cultivated alone in the above mentioned medium without trichloroethene. An established co-culture of strain F1 and D. mccartyi strain 195 demonstrated that strain 195 could grow and dechlorinate using acetate produced by strain F1; and that acetate was constantly below 25 µM in the co-culture. To verify that such low level of acetate is utilizable by D. mccartyi, we cultivated strain 195 alone under acetate-limiting conditions and found that strain 195 consumed acetate to below detection (5 µM). Based on the acetate consumption and cell yield of D. mccartyi, we estimated that on average 1.2?×?108 acetate molecules are needed to supply carbon for one D. mccartyi cell. Our study suggests that Desulfovibrio may supply a steady but low amount of fixed carbon to dechlorinating bacteria, exhibiting important implications for natural bio-attenuation when fixed carbon is limited.  相似文献   

5.
Microbial communities involving dehalogenating bacteria assist in bioremediation of areas contaminated with halocarbons. To understand molecular interactions between dehalogenating bacteria, we co-cultured Sulfurospirillum multivorans, dechlorinating tetrachloroethene (PCE) to cis−1,2-dichloroethene (cDCE), and Dehalococcoides mccartyi strains BTF08 or 195, dehalogenating PCE to ethene. The co-cultures were cultivated with lactate as electron donor. In co-cultures, the bacterial cells formed aggregates and D. mccartyi established an unusual, barrel-like morphology. An extracellular matrix surrounding bacterial cells in the aggregates enhanced cell-to-cell contact. PCE was dehalogenated to ethene at least three times faster in the co-culture. The dehalogenation was carried out via PceA of S. multivorans, and PteA (a recently described PCE dehalogenase) and VcrA of D. mccartyi BTF08, as supported by protein abundance. The co-culture was not dependent on exogenous hydrogen and acetate, suggesting a syntrophic relationship in which the obligate hydrogen consumer D. mccartyi consumes hydrogen and acetate produced by S. multivorans. The cobamide cofactor of the reductive dehalogenase—mandatory for D. mccartyi—was also produced by S. multivorans. D. mccartyi strain 195 dechlorinated cDCE in the presence of norpseudo-B12 produced by S. multivorans, but D. mccartyi strain BTF08 depended on an exogenous lower cobamide ligand. This observation is important for bioremediation, since cofactor supply in the environment might be a limiting factor for PCE dehalogenation to ethene, described for D. mccartyi exclusively. The findings from this co-culture give new insights into aggregate formation and the physiology of D. mccartyi within a bacterial community.Subject terms: Environmental microbiology, Symbiosis  相似文献   

6.
7.
8.
The biotransformation of hexachlorocyclohexane isomers (HCH) by two Dehalococcoides mccartyi strains (195 and BTF08) and an enrichment culture was investigated and compared to conversion by the obligate anaerobic strain Clostridium pasteurianum strain DSMZ 525. The D. mccartyi strains preferentially transformed γ-HCH over α-HCH and δ-HCH isomers while β-HCH biotransformation was not significant. In case of the enrichment culture, γ-HCH was preferentially transformed over the δ-HCH, β-HCH and α-HCH isomers. Major observed metabolites in both cases were tetrachlorocyclohexene and as end products monochlorobenzene (MCB) and benzene. Dechlorination of the γ-HCH isomer was linked to an increase in cell numbers for strain 195. γ-HCH transformation was linked to considerable carbon stable isotope fractionation with the enrichment factor εc?=???5.5?±?0.8‰ for D. mccartyi strain 195, εc?=???3.1?±?0.4‰ for the enrichment culture and εc?=???4.1?±?0.6‰ for co-metabolic transformation by C. pasteurianum.  相似文献   

9.
A strain of Dehalosprillum multivorans, designated strain N, was isolated from the same source as the formerly described tetrachloroethene (PCE)-dechlorinating D. multivorans, herein after referred to as strain K. Neither growing cells nor cell extracts of strain N were able to dechlorinate PCE. The pceA and pceB genes encoding for the PCE-reductive dehalogenase were detected in cells of strain N; and they were 100% homologous to the corresponding genes of strain K. Since the PCE dehalogenase of D. multivorans strain K contains a corrinoid cofactor, the corrinoids of strain N cells were extracted. Analysis of the corrinoids revealed the absence of the specific corrinoid, which is the cofactor of the PCE dehalogenase of strain K cells. RT-PCR of mRNA indicated that the pceA gene was transcribed in strain N cells to a far lower extent than the pceA gene of strain K under the same experimental conditions. Western blot analysis of crude extracts of strain N showed that, if at all, an insignificant amount of the apoprotein of the PCE dehalogenase was present. The results indicate that the inability of strain N to dechlorinate is due to the absence of the corrinoid cofactor of the enzyme mediating PCE dechlorination.  相似文献   

10.
Methanosarcina barkeri is capable of synthesizing large amounts of corrinoids, compounds of the vitamin B12 group, although not cobalamin. In the present work, exogenous cobalamin was demonstrated to upregulate DNA synthesis in M. barkeri cell suspensions incubated under air. The effect is similar to the one in Propionibacterium freudenreichii cells, though less pronounced. The growth of the archaeon under anaerobic conditions was shown to be suppressed by cobalamin and 5,6-dimethylbenzimidazole. The data obtained suggest the presence of a corrinoid-dependent ribonucleotide reductase in the archaeal cells which provides for deoxyribose precursors for DNA biosynthesis independently of the presence of molecular oxygen in the medium. Growth suppression under anoxic conditions by cobalamin and 5,6-dimethylbenzimidazole may be due to a decrease in the concentration of factor III, a polyfunctional corrinoid dominating in M. barkeri cells.  相似文献   

11.
Corrinoid cofactors play a crucial role as methyl group carriers in the C1 metabolism of anaerobes, e.g. in the cleavage of phenyl methyl ethers by O‐demethylases. For the methylation, the protein‐bound corrinoid has to be in the super‐reduced [CoI]‐state, which is highly sensitive to autoxidation. The reduction of inadvertently oxidized corrinoids ([CoII]‐state) is catalysed in an ATP‐dependent reaction by RACE proteins, the r eductive a ctivators of c orrinoid‐dependent e nzymes. In this study, a reductive activator of Odemethylase corrinoid proteins was characterized with respect to its ATPase and corrinoid reduction activity. The reduction of the corrinoid cofactor was dependent on the presence of potassium or ammonium ions. In the absence of the corrinoid protein, a basal slow ATP hydrolysis was observed which was obviously not coupled to corrinoid reduction. ATP hydrolysis was significantly stimulated by the corrinoid protein in the [CoII]‐state of the corrinoid cofactor. The stoichiometry of ATP hydrolysed per mol corrinoid reduced was near 1:1. Site‐directed mutagenesis was applied to study the impact of a highly conserved region possibly involved in nucleotide binding of RACE proteins, indicating that an aspartate and a glycine residue may play an essential role for the function of the enzyme.  相似文献   

12.
The redox state of cobalt in p-cresolyl cobamide and one of its axial ligands were determined by EPR spectroscopy of Sporomusa ovata as harvested. The analyses revealed that less than 2% (less than 30 nmol/g dry cells) of the total corrinoids (greater than 2400 nmol/g dry cells) were in a low-spin Co(II) complex. The amount increased to about 15% (190-450 nmol/g dry cells) upon partial oxidation by air, indicating that the original valence state of cobalt was a Co(I) prior to this treatment. The cob(I)amide was quantified as Co(III)-CH3 after methylation by iodomethane. More than 45% (1100 nmol/g dry cells) of the extractable corrinoids were in the methylated form, whereas non-treated cells revealed less than 1% (less than 15 nmol g dry cells) of light-sensitive corrinoids. EPR spectra of the Co(II) complex exhibited a threefold N-hyperfine splitting in the gz region, which was similar to vitamin B12. Cells grown with [1.3-15N2]histidine showed a twofold N-hyperfine splitting, demonstrating that the axial N ligand of the corrinoid was derived from the imidazole group of histidine. It is concluded that the super-nucleophilic p-cresolyl cob(I)amide is the major corrinoid complex in vivo and that it is stabilized by its protein(s). The Co(II) ion of the prosthetic group was coordinated by one histidine residue of the apoprotein(s).  相似文献   

13.
14.
Summary A preliminary attempt was made for producing vitamin B-12 byMethanosarcina barkeri strain Fusaro in a fed-batch culture with a methanol minimum medium. After 11 days, total methanol consumption, cell density and corrinoid concentration were 145 g/l, 8.5 g(dry cell weight)/l, and 135 mg/l (73% in supernatant) respectively. Electrophoretic separation revealed that 33% of the total corrinoids was B-12 Factor III (5-hydroxybenzimidazolylcobamide) and the remaining corrinoids were cobinamide (Factor B) and its derivatives.  相似文献   

15.
16.
Corrinoids are essential cofactors of reductive dehalogenases in anaerobic bacteria. Microorganisms mediating reductive dechlorination as part of their energy metabolism are either capable of de novo corrinoid biosynthesis (e.g., Desulfitobacterium spp.) or dependent on exogenous vitamin B12 (e.g., Dehalococcoides spp.). In this study, the impact of exogenous vitamin B12 (cyanocobalamin) and of tetrachloroethene (PCE) on the synthesis and the subcellular localization of the reductive PCE dehalogenase was investigated in the Gram-positive Desulfitobacterium hafniense strain Y51, a bacterium able to synthesize corrinoids de novo. PCE-depleted cells grown for several subcultivation steps on fumarate as an alternative electron acceptor lost the tetrachloroethene-reductive dehalogenase (PceA) activity by the transposition of the pce gene cluster. In the absence of vitamin B12, a gradual decrease of the PceA activity and protein amount was observed; after 5 subcultivation steps with 10% inoculum, more than 90% of the enzyme activity and of the PceA protein was lost. In the presence of vitamin B12, a significant delay in the decrease of the PceA activity with an ∼90% loss after 20 subcultivation steps was observed. This corresponded to the decrease in the pceA gene level, indicating that exogenous vitamin B12 hampered the transposition of the pce gene cluster. In the absence or presence of exogenous vitamin B12, the intracellular corrinoid level decreased in fumarate-grown cells and the PceA precursor formed catalytically inactive, corrinoid-free multiprotein aggregates. The data indicate that exogenous vitamin B12 is not incorporated into the PceA precursor, even though it affects the transposition of the pce gene cluster.  相似文献   

17.
To investigate the important supportive microorganisms responsible for trichloroethene (TCE) bioremediation under specific environmental conditions and their relationship with Dehalococcoides (Dhc), four stable and robust enrichment cultures were generated using contaminated groundwater. Enrichments were maintained under four different conditions exploring two parameters: high and low TCE amendments (resulting in inhibited and uninhibited methanogenic activity, respectively) and with and without vitamin B12 amendment. Lactate was supplied as the electron donor. All enrichments were capable of reductively dechlorinating TCE to vinyl chloride and ethene. The dechlorination rate and ethene generation were higher, and the proportion of electrons used for dechlorination increased when methanogenesis was inhibited. Biologically significant cobalamin biosynthesis was detected in the enrichments without B12 amendment. Comparative genomics using a genus-wide microarray revealed a Dhc genome similar to that of strain 195 in all enrichments, a strain that lacks the major upstream corrin ring biosynthesis pathway. Seven other bacterial operational taxonomic units (OTUs) were detected using clone libraries. OTUs closest to Pelosinus, Dendrosporobacter, and Sporotalea (PDS) were most dominant. The Clostridium-like OTU was most affected by B12 amendment and active methanogenesis. Principal component analysis revealed that active methanogenesis, rather than vitamin B12 limitation, exerted a greater effect on the community structures even though methanogens did not seem to play an essential role in providing corrinoids to Dhc. In contrast, acetogenic bacteria that were abundant in the enrichments, such as PDS and Clostridium sp., may be potential corrinoid providers for Dhc.  相似文献   

18.
The discovery of Dehalococcoides mccartyi reducing perchloroethene and trichloroethene (TCE) to ethene was a key landmark for bioremediation applications at contaminated sites. D. mccartyi-containing cultures are typically grown in batch-fed reactors. On the other hand, continuous cultivation of these microorganisms has been described only at long hydraulic retention times (HRTs). We report the cultivation of a representative D. mccartyi-containing culture in continuous stirred-tank reactors (CSTRs) at a short, 3-d HRT, using TCE as the electron acceptor. We successfully operated 3-d HRT CSTRs for up to 120 days and observed sustained dechlorination of TCE at influent concentrations of 1 and 2 mM TCE to ≥97 % ethene, coupled to the production of 1012 D. mccartyi cells Lculture ?1. These outcomes were possible in part by using a medium with low bicarbonate concentrations (5 mM) to minimize the excessive proliferation of microorganisms that use bicarbonate as an electron acceptor and compete with D. mccartyi for H2. The maximum conversion rates for the CSTR-produced culture were 0.13?±?0.016, 0.06?±?0.018, and 0.02?±?0.007 mmol Cl? Lculture ?1 h?1, respectively, for TCE, cis-dichloroethene, and vinyl chloride. The CSTR operation described here provides the fastest laboratory cultivation rate of high-cell density Dehalococcoides cultures reported in the literature to date. This cultivation method provides a fundamental scientific platform for potential future operations of such a system at larger scales.  相似文献   

19.
Dehalococcoides mccartyi strains conserve energy from reductive dechlorination reactions catalyzed by corrinoid-dependent reductive dehalogenase enzyme systems. Dehalococcoides lacks the ability for de novo corrinoid synthesis, and pure cultures require the addition of cyanocobalamin (vitamin B(12)) for growth. In contrast, Geobacter lovleyi, which dechlorinates tetrachloroethene to cis-1,2-dichloroethene (cis-DCE), and the nondechlorinating species Geobacter sulfurreducens have complete sets of cobamide biosynthesis genes and produced 12.9 ± 2.4 and 24.2 ± 5.8 ng of extracellular cobamide per liter of culture suspension, respectively, during growth with acetate and fumarate in a completely synthetic medium. G. lovleyi-D. mccartyi strain BAV1 or strain FL2 cocultures provided evidence for interspecies corrinoid transfer, and cis-DCE was dechlorinated to vinyl chloride and ethene concomitant with Dehalococcoides growth. In contrast, negligible increase in Dehalococcoides 16S rRNA gene copies and insignificant dechlorination occurred in G. sulfurreducens-D. mccartyi strain BAV1 or strain FL2 cocultures. Apparently, G. lovleyi produces a cobamide that complements Dehalococcoides' nutritional requirements, whereas G. sulfurreducens does not. Interestingly, Dehalococcoides dechlorination activity and growth could be restored in G. sulfurreducens-Dehalococcoides cocultures by adding 10 μM 5',6'-dimethylbenzimidazole. Observations made with the G. sulfurreducens-Dehalococcoides cocultures suggest that the exchange of the lower ligand generated a cobalamin, which supported Dehalococcoides activity. These findings have implications for in situ bioremediation and suggest that the corrinoid metabolism of Dehalococcoides must be understood to faithfully predict, and possibly enhance, reductive dechlorination activities.  相似文献   

20.
The sulfate-reducing bacteria Desulfobacterium autotrophicum, Desulfobulbus propionicus and Archaeoglobus fulgidus (VC-16) and the sulfur-metabolizing archaebacteria Desulfurolobus ambivalens and Thermoplasma acidophilum were found to contain considerable amounts of corrinoids, that were isolated and crystallized in their Co beta-cyano form. In three other sulfur-metabolizing archaebacteria, Thermoproteus neutrophilus, Pyrodictium occultum and Staphylothermus marinus significant amounts of corrinoids were not detected under the isolation methods used. The samples from the three sulfate-reducers were identified with Co alpha-[alpha-(5'-methylbenzimidazolyl)]-Co beta-cyanocobamide. This corrinoid was also obtained from a 5-methylbenzimidazole-supplemented Propionibacterium fermentation and was structurally characterized by ultraviolet/visible, CD, fast-atom-bombardment MS, 1H-and 13C-NMR spectroscopy. Also the major corrinoid from T. acidophilum was (tentatively) analyzed as a 5'-methylbenzimidazolyl-cobamide, whereas the main corrinoid from D. ambivalens was indicated to be vitamin B12 (a 5',6'-dimethylbenzimidazolyl-cobamide). The 5'-methylbenzimidazolylcobamides are found here as the common corrins of some sulfate-reducing and sulfur-metabolizing bacteria. The structural diversity due to the differing nucleotide bases of the corrins examined here and in methanogenic and acetogenic bacteria appears not to correlate to the biological function(s) of the corrins, but rather to be determined by biosynthetic properties of these organisms under natural growth conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号