首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
With the continuing decline of Acropora palmata throughout the Caribbean region, impacts of the gastropod corallivore, Coralliophila abbreviata, are becoming more noticeable. A snail removal experiment was performed in remnant A. palmata populations in the Florida Keys National Marine Sanctuary to quantify the area of coral tissue consumed by ambient snail aggregations and to assess the possible effectiveness of snail removal in conserving live coral tissue. Corals where ambient snail aggregations were removed maintained significantly more live tissue area during the 2-month experiment than those where feeding snail aggregations were left in place. The corals with feeding snails left in place lost more than 3 cm2 tissue day−1 on average. Thus, removal of C. abbreviata may be an effective measure for conserving depressed A. palmata populations, though secondary effects of such a manipulation remain to be carefully evaluated. Accepted: 26 May 2000  相似文献   

2.
Coral surface mucus layer (SML) microbiota are critical components of the coral holobiont and play important roles in nutrient cycling and defense against pathogens. We sequenced 16S rRNA amplicons to examine the structure of the SML microbiome within and between colonies of the threatened Caribbean reef-building coral Acropora palmata in the Florida Keys. Samples were taken from three spatially distinct colony regions—uppermost (high irradiance), underside (low irradiance), and the colony base—representing microhabitats that vary in irradiance and water flow. Phylogenetic diversity (PD) values of coral SML bacteria communities were greater than surrounding seawater and lower than adjacent sediment. Bacterial diversity and community composition was consistent among the three microhabitats. Cyanobacteria, Bacteroidetes, Alphaproteobacteria, and Proteobacteria, respectively were the most abundant phyla represented in the samples. This is the first time spatial variability of the surface mucus layer of A. palmata has been studied. Homogeneity in the microbiome of A. palmata contrasts with SML heterogeneity found in other Caribbean corals. These findings suggest that, during non-stressful conditions, host regulation of SML microbiota may override diverse physiochemical influences induced by the topographical complexity of A. palmata. Documenting the spatial distribution of SML microbes is essential to understanding the functional roles these microorganisms play in coral health and adaptability to environmental perturbations.  相似文献   

3.
Outbreaks of coral diseases are one of the greatest threats to reef corals in the Caribbean, yet the mechanisms that lead to coral diseases are still largely unknown. Here we examined the spatial-temporal dynamics of white-pox disease on Acropora palmata coral colonies of known genotypes. We took a Bayesian approach, using Integrated Nested Laplace Approximation algorithms, to examine which covariates influenced the presence of white-pox disease over seven years. We showed that colony size, genetic susceptibility of the coral host, and high-water temperatures were the primary tested variables that were positively associated with the presence of white-pox disease on A. palmata colonies. Our study also showed that neither distance from previously diseased individuals, nor colony location, influenced the dynamics of white-pox disease. These results suggest that white-pox disease was most likely a consequence of anomalously high water temperatures that selectively compromised the oldest colonies and the most susceptible coral genotypes.  相似文献   

4.
The symbiont “Candidatus Aquarickettsia rohweri” infects a diversity of aquatic hosts. In the threatened Caribbean coral, Acropora cervicornis, Aquarickettsia proliferates in response to increased nutrient exposure, resulting in suppressed growth and increased disease susceptibility and mortality of coral. This study evaluated the extent, as well as the ecology and evolution of Aquarickettsia infecting threatened corals, Ac. cervicornis, and Ac. palmata and their hybrid (“Ac. prolifera”). Aquarickettsia was found in all acroporids, with coral host and geographic location impacting the infection magnitude. Phylogenomic and genome-wide single-nucleotide variant analysis of Aquarickettsia found phylogenetic clustering by geographic region, not by coral taxon. Analysis of Aquarickettsia fixation indices suggests multiple sequential infections of the same coral colony are unlikely. Furthermore, relative to other Rickettsiales species, Aquarickettsia is undergoing positive selection, with Florida populations experiencing greater positive selection relative to other Caribbean locations. This may be due in part to Aquarickettsia proliferating in response to greater nutrient stress in Florida, as indicated by greater in situ replication rates in these corals. Aquarickettsia was not found to significantly codiversify with either the coral animal or the coral’s algal symbiont (Symbiodiniumfitti”). Quantitative PCR analysis showed that gametes, larvae, recruits, and juveniles from susceptible, captive-reared coral genets were not infected with Aquarickettsia. Thus, horizontal transmission of Aquarickettsia via coral mucocytes or an unidentified host is more likely. The prevalence of Aquarickettsia in Ac. cervicornis and its high abundance in the Florida coral population suggests that coral disease mitigation efforts focus on preventing early infection via horizontal transmission.Subject terms: Population genetics, Phylogenetics  相似文献   

5.
Coral populations have precipitously declined on Caribbean reefs while algal abundance has increased, leading to enhanced competitive damage to corals, which likely is mediated by the potent allelochemicals produced by both macroalgae and benthic cyanobacteria. Allelochemicals may affect the composition and abundance of coral-associated microorganisms that control host responses and adaptations to environmental change, including susceptibility to bacterial diseases. Here, we demonstrate that extracts of six Caribbean macroalgae and two benthic cyanobacteria have both inhibitory and stimulatory effects on bacterial taxa cultured from the surfaces of Caribbean corals, macroalgae, and corals exposed to macroalgal extracts. The growth of 54 bacterial isolates was monitored in the presence of lipophilic and hydrophilic crude extracts derived from Caribbean macroalgae and cyanobacteria using 96-well plate bioassays. All 54 bacterial cultures were identified by ribotyping. Lipophilic extracts from two species of Dictyota brown algae inhibited >50% of the reef coral bacteria assayed, and hydrophilic compounds from Dictyota menstrualis particularly inhibited Vibrio bacteria, a genus associated with several coral diseases. In contrast, both lipo- and hydrophilic extracts from 2 species of Lyngbya cyanobacteria strongly stimulated bacterial growth. The brown alga Lobophora variegata produced hydrophilic compounds with broad-spectrum antibacterial effects, which inhibited 93% of the bacterial cultures. Furthermore, bacteria cultured from different locations (corals vs. macroalgae vs. coral surfaces exposed to macroalgal extracts) responded differently to algal extracts. These results reveal that extracts from macroalgae and cyanobacteria have species-specific effects on the composition of coral-microbial assemblages, which in turn may increase coral host susceptibility to disease and result in coral mortality.  相似文献   

6.
White-band disease and the changing face of Caribbean coral reefs   总被引:24,自引:1,他引:23  
In recent decades, the cover of fleshy macroalgae has increased and coral cover has decreased on most Caribbean reefs. Coral mortality precipitated this transition, and the accumulation of macroalgal biomass has been enhanced by decreased herbivory and increased nutrient input. Populations of Acropora palmata (elkhorn coral) and A. cervicornis (staghorn coral), two of the most important framework-building species, have died throughout the Caribbean, substantially reducing coral cover and providing substratum for algal growth. Hurricanes have devastated local populations of Acropora spp. over the past 20–25 years, but white-band disease, a putative bacterial syndrome specific to the genus Acropora, has been a more significant source of mortality over large areas of the Caribbean region.Paleontological data suggest that the regional Acropora kill is without precedent in the late Holocene. In Belize, A. cervicornis was the primary ecological and geological constituent of reefs in the central shelf lagoon until the mid-1980s. After constructing reef framework for thousands of years, A. cervicornis was virtually eliminated from the area over a ten-year period. Evidence from other parts of the Caribbean supports the hypothesis of continuous Holocene accumulation and recent mass mortality of Acropora spp. Prospects are poor for the rapid recovery of A. cervicornis, because its reproductive strategy emphasizes asexual fragmentation at the expense of dispersive sexual reproduction. A. palmata also relies on fragmentation, but this species has a higher rate of sexual recruitment than A. cervicornis. If the Acropora spp. do not recover, macroalgae will continue to dominate Caribbean reefs, accompanied by increased abundances of brooding corals, particularly Agaricia spp. and Porites spp. The outbreak of white-band disease has been coincident with increased human activity, and the possibility of a causal connection should be further investigated.  相似文献   

7.
Microbial biofilms induce larval settlement for some invertebrates, including corals; however, the chemical cues involved have rarely been identified. Here, we demonstrate the role of microbial biofilms in inducing larval settlement with the Caribbean coral Porites astreoides and report the first instance of a chemical cue isolated from a marine biofilm bacterium that induces complete settlement (attachment and metamorphosis) of Caribbean coral larvae. Larvae settled in response to natural biofilms, and the response was eliminated when biofilms were treated with antibiotics. A similar settlement response was elicited by monospecific biofilms of a single bacterial strain, Pseudoalteromonas sp. PS5, isolated from the surface biofilm of a crustose coralline alga. The activity of Pseudoalteromonas sp. PS5 was attributed to the production of a single compound, tetrabromopyrrole (TBP), which has been shown previously to induce metamorphosis without attachment in Pacific acroporid corals. In addition to inducing settlement of brooded larvae (P. astreoides), TBP also induced larval settlement for two broadcast-spawning species, Orbicella (formerly Montastraea) franksi and Acropora palmata, indicating that this compound may have widespread importance among Caribbean coral species.  相似文献   

8.
Caribbean elkhorn coral, Acropora palmata, has been decimated in recent years, resulting in the listing of this species as threatened under the United States Endangered Species Act. A major contributing factor in the decline of this iconic species is white pox disease. In 2002, we identified the faecal enterobacterium, Serratia marcescens, as an etiological agent for white pox. During outbreaks in 2003 a unique strain of S. marcescens was identified in both human sewage and white pox lesions. This strain (PDR60) was also identified from corallivorious snails (Coralliophila abbreviata), reef water, and two non‐acroporid coral species, Siderastrea siderea and Solenastrea bournoni. Identification of PDR60 in sewage, diseased Acropora palmata and other reef invertebrates within a discrete time frame suggests a causal link between white pox and sewage contamination on reefs and supports the conclusion that humans are a likely source of this disease.  相似文献   

9.
Bacteria living within the surface mucus layer of corals compete for nutrients and space. A number of stresses affect the outcome of this competition. The interactions between native microorganisms and opportunistic pathogens largely determine the coral holobiont's overall health and fitness. In this study, we tested the hypothesis that commensal bacteria isolated from the mucus layer of a healthy elkhorn coral, Acropora palmata, are capable of inhibition of opportunistic pathogens, Vibrio shiloi AK1 and Vibrio coralliilyticus. These vibrios are known to cause disease in corals and their virulence is temperature dependent. Elevated temperature (30 °C) increased the cell numbers of one commensal and both Vibrio pathogens in monocultures. We further tested the hypothesis that elevated temperature favors pathogenic organisms by simultaneously increasing the fitness of vibrios and decreasing the fitness of commensals by measuring growth of each species within a co-culture over the course of 1 week. In competition experiments between vibrios and commensals, the proportion of Vibrio spp. increased significantly under elevated temperature. We finished by investigating several temperature–dependent mechanisms that could influence co-culture differences via changes in competitive fitness. The ability of Vibrio spp. to utilize glycoproteins found in A. palmata mucus increased or remained stable when exposed to elevated temperature, while commensals' tended to decrease utilization. In both vibrios and commensals, protease activity increased at 30 °C, while chiA expression increased under elevated temperatures for Vibrio spp. These results provide insight into potential mechanisms through which elevated temperature may select for pathogenic bacterial dominance and lead to disease or a decrease in coral fitness.  相似文献   

10.
A major oil spill (8,000,000 liters; 50,000 barrels) occurred in Bahía Las Minas on the Caribbean coast of Panama in April 1986, and oil slicks from the refinery landfill and mangroves were still common there after 21/2 years. We studied short-term effects of the spill on common shallow subtidal reef corals, at the individual, population, and community levels. Numbers of corals, total coral cover, and species diversity based on cover decreased significantly with increased amounts of oiling. Cover of the large branching coral Acropora palmata decreased most. Frequency and size of recent injuries on massive corals increased with level of oiling, particularly for Siderastrea siderea. Growth of three massive species (Porites astreoides, Diploria strigosa, and Montastrea annularis, but not S. siderea) was less at oiled reefs in the year of the spill than during the 9 previous years. Subtidal coral reefs, particularly those along protected coasts, may suffer extensive damage from chronic exposure after major oil spills. Mailing Address from the USA: Smithsonian Tropical Research Institute, APO Miami 34002-0011, USA  相似文献   

11.
The bacterial and temperature factors leading to yellow blotch/band disease (YBD), which affects the major reef-building Caribbean corals Montastrea spp., have been investigated. Groups of bacteria isolated from affected corals and inoculated onto healthy corals caused disease signs similar to those of YBD. The 16S rRNA genes from these bacteria were sequenced and found to correspond to four Vibrio spp. Elevating the water temperature notably increased the rate of spread of YBD on inoculated corals and induced greater coral mortality. YBD-infected corals held at elevated water temperatures had 50% lower zooxanthella densities, 80% lower division rates, and a 75% decrease in chlorophyll a and c2 pigments compared with controls. Histological sections indicated that the algal pyrenoid was fragmented into separate segments, along with a reconfiguration and swelling of the zooxanthellae, as well as vacuolization. YBD does not appear to produce the same physiological response formerly observed in corals undergoing temperature-related bleaching. Evidence indicates that YBD affects primarily the symbiotic algae rather than coral tissue.  相似文献   

12.
A detailed understanding of the dual role of parrotfish as both key herbivores and potentially important corallivores is essential to the study of coral health and reef trophodynamics. Some Caribbean parrotfish regularly consume live coral, and discriminate both among coral species and among colonies within a particular species. While they prefer Montastraea spp. corals, which are dominant Caribbean reef builders, causes of selective and persistent grazing of certain colonies remain unknown. We manipulated coral exposure to parrotfish grazing through a long-term cage exclusion experiment in Belize, comparing initially grazed vs. intact (non-grazed) Montastraea spp. colonies. We measured nutrition-related characteristics (C:N ratio, %C, and %N) as well as defensive characteristics (nematocyst density and skeletal hardness) to determine if any of these variables accurately predicted parrotfish grazing. There were substantial reductions in coral nutritional quality (C:N) associated with parrotfish grazing, although these changes appear to be a consequence rather than a cause of parrotfish selectivity. Likewise, nematocyst densities were suppressed in grazed corals, also likely a result of chronic grazing stress. We found no intraspecific differences in skeletal hardness related to grazing. These results provide further demonstration of the physiological consequences of grazing, but the cause of preferential grazing by parrotfishes on certain Montastraea spp. colonies still requires further investigation.  相似文献   

13.
The Caribbean reef-building corals Acropora palmata and Acropora cervicornis have undergone widespread declines in the past two decades, leading to their designation as candidates for listing under the United States Endangered Species Act. Whole-reef censuses in 1983 and 2000 at Looe Key National Marine Sanctuary in the Florida Keys provide estimates of areal loss of live Acropora spp. cover. Area (square meters) of live coral cover was quantified from depiction on scaled base maps of extent of coral cover observed by a snorkeler on each reef spur at each census. Certain thickets appear to have been persistent (though none expanded), but the total area of live A. palmata at Looe Key is estimated to have declined by 93% and A. cervicornis by 98% during this 17-year interval. It is likely that acroporid populations may have already undergone substantial decline prior to our initial census in 1983.  相似文献   

14.
The mutualistic symbioses between reef‐building corals and micro‐algae form the basis of coral reef ecosystems, yet recent environmental changes threaten their survival. Diversity in host‐symbiont pairings on the sub‐species level could be an unrecognized source of functional variation in response to stress. The Caribbean elkhorn coral, Acropora palmata, associates predominantly with one symbiont species (Symbiodiniumfitti’), facilitating investigations of individual‐level (genotype) interactions. Individual genotypes of both host and symbiont were resolved across the entire species’ range. Most colonies of a particular animal genotype were dominated by one symbiont genotype (or strain) that may persist in the host for decades or more. While Symbiodinium are primarily clonal, the occurrence of recombinant genotypes indicates sexual recombination is the source of this genetic variation, and some evidence suggests this happens within the host. When these data are examined at spatial scales spanning the entire distribution of A. palmata, gene flow among animal populations was an order of magnitude greater than among populations of the symbiont. This suggests that independent micro‐evolutionary processes created dissimilar population genetic structures between host and symbiont. The lower effective dispersal exhibited by the dinoflagellate raises questions regarding the extent to which populations of host and symbiont can co‐evolve during times of rapid and substantial climate change. However, these findings also support a growing body of evidence, suggesting that genotype‐by‐genotype interactions may provide significant physiological variation, influencing the adaptive potential of symbiotic reef corals to severe selection.  相似文献   

15.
Acropora and Porites corals are important reef builders in the Indo-Pacific and Caribbean. Bacteria associated with mucus produced by Porites spp. and Acropora spp. from Caribbean (Punta Maroma, Mexico) and Indo-Pacific (Hoga and Sampela, Indonesia) reefs were determined. Analysis of pyrosequencing libraries showed that bacterial communities from Caribbean corals were significantly more diverse (H', 3.18 to 4.25) than their Indonesian counterparts (H', 2.54 to 3.25). Dominant taxa were Gammaproteobacteria, Alphaproteobacteria, Firmicutes, and Cyanobacteria, which varied in relative abundance between coral genera and region. Distinct coral host-specific communities were also found; for example, Clostridiales were dominant on Acropora spp. (at Hoga and the Mexican Caribbean) compared to Porites spp. and seawater. Within the Gammproteobacteria, Halomonas spp. dominated sequence libraries from Porites spp. (49%) and Acropora spp. (5.6%) from the Mexican Caribbean, compared to the corresponding Indonesian coral libraries (<2%). Interestingly, with the exception of Porites spp. from the Mexican Caribbean, there was also a ubiquity of Psychrobacter spp., which dominated Acropora and Porites libraries from Indonesia and Acropora libraries from the Caribbean. In conclusion, there was a dominance of Halomonas spp. (associated with Acropora and Porites [Mexican Caribbean]), Firmicutes (associated with Acropora [Mexican Caribbean] and with Acropora and Porites [Hoga]), and Cyanobacteria (associated with Acropora and Porites [Hoga] and Porites [Sampela]). This is also the first report describing geographically distinct Psychrobacter spp. associated with coral mucus. In addition, the predominance of Clostridiales associated with Acropora spp. provided additional evidence for coral host-specific microorganisms.  相似文献   

16.
Symbiotic dinoflagellates in the genus Breviolum (formerly Symbiodinium Clade B) dominate coral communities in shallow waters across the Greater Caribbean. While some formally described species exist, mounting genetic, and ecological evidence indicate that numerous more comprise this genus, many of which are closely related. To test this, colonies of common reef‐building corals were sampled across a large geographical range. Phylogenetic and population genetic markers then used to examine evolutionary divergence and delineate boundaries of genetic recombination. Three new candidate species were distinguished by fixed differences in nucleotide sequences from nuclear and chloroplast DNA. Population connectivity was evident within each lineage over thousands of kilometers, however, substantial genetic structure persisted between lineages co‐occurring within sampling locations, signifying reproductive isolation. While geographically widespread with overlapping distributions, each species is ecologically distinct, exhibiting specific mutualisms with phylogenetically distinct coral hosts. Moreover, significant differences in mean cell sizes provide some morphological evidence substantiating formal species distinctions. In providing evidence that satisfies the biological, phylogenetic, ecological, and morphological species concepts, we classify and formally name Breviolum faviinorum n. sp., primarily associated with Caribbean corals belonging to the Caribbean subfamily Faviinae; B. meandrinium n. sp., associated with corals belonging to the family Meandrinidae; and B. dendrogyrum n. sp., a symbiont harbored exclusively by the threatened coral Dendrogyra cylindrus. These findings support the primary importance of niche diversification (i.e. host habitat) in the speciation of symbiotic dinoflagellates.  相似文献   

17.
The settlement specificity of two threatened Caribbean corals, Acropora palmata and A. cervicornis, was tested by measuring their rates of larval metamorphosis in response to crustose coralline algae (CCA) and other substrata. In the no-choice experiments, the coral larvae were placed in six treatments: filtered seawater (FSW), a fragment of biofilmed dead skeleton of A. palmata, or a fragment of one of four species of CCA (Hydrolithon boergesenii, Porolithon pachydermum, Paragoniolithon solubile, and Titanoderma prototypum). Within each CCA treatment, there were three different substrata on which to settle and metamorphose: (1) the CCA surface, (2) the rock under the CCA, or (3) the plastic dish. The 5-day-old larvae of both A. palmata and A. cervicornis had similar rates of total metamorphosis (all substrata combined) in every treatment (excluding FSW) even in the absence of CCA. However, there were differences in larval behavior among the CCA species since the larvae settled and metamorphosed on different substrata in the presence of different CCA species. In the no-choice experiments the larvae of both corals had higher rates of metamorphosis on the top surfaces of H. boergesenii and/or T. prototypum than on P. pachydermum. In the choice experiments, the coral larvae were offered two species of CCA in the same dish. When given a choice, both species of coral larvae had more settlement and metamorphosis on the surface of H. boergesenii or T. prototypum or clean rock than onto the surface of P. solubile. After 6 weeks in the field, transplanted A. palmata recruits had approximately 15% survival on both T. prototypum and H. boergesenii, but A. cervicornis recruits only survived on T. prototypum (13%). Some, but not all, CCA species facilitated the larval settlement and post-settlement survival of these two threatened corals, highlighting the importance of benthic community composition for successful coral recruitment.  相似文献   

18.
Predation pressure on an individual may be influenced by spatial associations with other organisms. In the case of rare and imperiled species, such indirect interactions may affect the persistence and recovery of local populations. This study examined the effects of coral neighborhood composition on the foraging behavior and impact of the corallivorous gastropod, Coralliophila abbreviata. We conducted a manipulative field experiment in which focal colonies of the threatened scleractinian coral Acropora cervicornis had no neighbors, conspecific neighbors, alternative prey (Orbicella faveolata) neighbors, or non-prey (Porites asteroides) neighbors. Individually tagged C. abbreviata were then seeded into the study area and allowed to colonize the experimental plots. Initial colonization was significantly affected by the species of neighboring corals and snail abundance after colonization was negatively correlated with focal colony growth. Snails exhibited a strong prey preference for A. cervicornis over O. faveolata and responded numerically to neighborhood quality (i.e., relative preference for neighboring corals). Thus, conspecific neighbors had the greatest predator-mediated negative effect on focal colony performance followed by O. faveolata neighbors. The results suggest that C. abbreviata mediate apparent competition between O. faveolata and A. cervicornis as both species contributed to the local abundance of their shared predator. Additionally, home range estimates for tagged C. abbreviata were calculated, compared among sexes, and found to be significantly greater for males than for females. Overall, this study sheds light on the foraging behavior of an important coral predator and highlights the potential importance of consumer-mediated indirect interactions in the dynamics of severely reduced populations. The results also have direct implications for conservation and population enhancement efforts.  相似文献   

19.

Background

The drastic decline in the abundance of Caribbean acroporid corals (Acropora cervicornis, A. palmata) has prompted the listing of this genus as threatened as well as the development of a regional propagation and restoration program. Using in situ underwater nurseries, we documented the influence of coral genotype and symbiont identity, colony size, and propagation method on the growth and branching patterns of staghorn corals in Florida and the Dominican Republic.

Methodology/Principal Findings

Individual tracking of> 1700 nursery-grown staghorn fragments and colonies from 37 distinct genotypes (identified using microsatellites) in Florida and the Dominican Republic revealed a significant positive relationship between size and growth, but a decreasing rate of productivity with increasing size. Pruning vigor (enhanced growth after fragmentation) was documented even in colonies that lost 95% of their coral tissue/skeleton, indicating that high productivity can be maintained within nurseries by sequentially fragmenting corals. A significant effect of coral genotype was documented for corals grown in a common-garden setting, with fast-growing genotypes growing up to an order of magnitude faster than slow-growing genotypes. Algal-symbiont identity established using qPCR techniques showed that clade A (likely Symbiodinium A3) was the dominant symbiont type for all coral genotypes, except for one coral genotype in the DR and two in Florida that were dominated by clade C, with A- and C-dominated genotypes having similar growth rates.

Conclusion/Significance

The threatened Caribbean staghorn coral is capable of extremely fast growth, with annual productivity rates exceeding 5 cm of new coral produced for every cm of existing coral. This species benefits from high fragment survivorship coupled by the pruning vigor experienced by the parent colonies after fragmentation. These life-history characteristics make A. cervicornis a successful candidate nursery species and provide optimism for the potential role that active propagation can play in the recovery of this keystone species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号