首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a previously published report (Kurland, J. F., Kodym, R., Story, M. D., Spurgers, K. B., McDonnell, T. J., and Meyn, R. E. (2001) J. Biol. Chem. 276, 45380-45386), we described the NF kappa B status for two murine B-cell lymphoma cell lines, LY-as (apoptosis-sensitive) and LY-ar (apoptosis-refractory) and provided evidence that NF kappa B1 (p50) homodimers contribute to the expression of Bcl-2 in the LY-ar line. In the present study, we investigated the upstream signals leading to p50 homodimer activation and Bcl-2 expression. We found that in LY-ar cells, ERK1 and ERK2 were constitutively phosphorylated, whereas LY-as cells had no detectable ERK1 or ERK2 phosphorylation. Treatment of LY-ar cells with the MEK inhibitors PD 98059, U0126, and PD 184352 led to a loss of phosphorylated ERK1 and ERK2, a reversal of nuclear p50 homodimer DNA binding, and a decrease in Bcl-2 protein expression. Similarly, activation of the MEK/ERK pathway in LY-as cells by phorbol ester led to Bcl-2 expression that could be blocked by PD 98059. Furthermore, treatment of LY-ar cells with tumor necrosis factor-alpha, an I kappa B kinase activator, did not alter the suppressive effect of PD 98059 on p50 homodimer activity, suggesting an I kappa B kinase-independent pathway for p50 homodimer activation. Lastly, all three MEK inhibitors sensitized LY-ar cells to radiation-induced apoptosis. We conclude that the MEK/ERK pathway acts upstream of p50 homodimer activity and Bcl-2 expression in this B-cell lymphoma cell system and suggest that the use of MEK inhibitors could be useful clinically in combination with ionizing radiation to treat lymphoid malignancies.  相似文献   

2.
Small guanine nucleotide-binding proteins of the Ras and Rho (Rac, Cdc42, and Rho) families have been implicated in cardiac myocyte hypertrophy, and this may involve the extracellular signal-related kinase (ERK), c-Jun N-terminal kinase (JNK), and/or p38 mitogen-activated protein kinase (MAPK) cascades. In other systems, Rac and Cdc42 have been particularly implicated in the activation of JNKs and p38-MAPKs. We examined the activation of Rho family small G proteins and the regulation of MAPKs through Rac1 in cardiac myocytes. Endothelin 1 and phenylephrine (both hypertrophic agonists) induced rapid activation of endogenous Rac1, and endothelin 1 also promoted significant activation of RhoA. Toxin B (which inactivates Rho family proteins) attenuated the activation of JNKs by hyperosmotic shock or endothelin 1 but had no effect on p38-MAPK activation. Toxin B also inhibited the activation of the ERK cascade by these stimuli. In transfection experiments, dominant-negative N17Rac1 inhibited activation of ERK by endothelin 1, whereas activated V12Rac1 cooperated with c-Raf to activate ERK. Rac1 may stimulate the ERK cascade either by promoting the phosphorylation of c-Raf or by increasing MEK1 and/or -2 association with c-Raf to facilitate MEK1 and/or -2 activation. In cardiac myocytes, toxin B attenuated c-Raf(Ser-338) phosphorylation (50 to 70% inhibition), but this had no effect on c-Raf activity. However, toxin B decreased both the association of MEK1 and/or -2 with c-Raf and c-Raf-associated ERK-activating activity. V12Rac1 cooperated with c-Raf to increase expression of atrial natriuretic factor (ANF), whereas N17Rac1 inhibited endothelin 1-stimulated ANF expression, indicating that the synergy between Rac1 and c-Raf is potentially physiologically important. We conclude that activation of Rac1 by hypertrophic stimuli contributes to the hypertrophic response by modulating the ERK and/or possibly the JNK (but not the p38-MAPK) cascades.  相似文献   

3.
Pan MR  Chang HC  Hung WC 《Cellular signalling》2008,20(6):1134-1141
Non-steroidal anti-inflammatory drugs (NSAIDs) have been shown to inhibit cancer cell growth, induce apoptosis and decrease tumor metastasis. We have previously reported that a NSAID NS398 repressed the expression of matrix metalloproteinase-2 (MMP-2) via inhibition of the extracellular signal-regulated kinase (ERK) signaling pathway. In this study, we investigate the underlying mechanism of this inhibition. In vitro kinase assay indicated that NS398 could not directly inhibit c-Raf, MEK1 and ERK enzymatic activity. We found that NS398 increased the inhibitory phosphorylation of Ser259 in c-Raf, attenuated membrane recruitment of c-Raf and inhibited Ras/c-Raf interaction to attenuate activation of this kinase. This is a general effect for NSAIDs because sulindac sulfide, aspirin and indomethacin also inhibited the binding of c-Raf to Ras. Immunofluorescent staining verified that NS398 reduced the serum-induced membrane recruitment of c-Raf in cells. However, overexpression of constitutively active c-Raf only partly reversed NS398-induced inhibition of MMP-2 expression. Interestingly, we found that NS398 up-regulated the expression of mitogen-activated protein kinase phosphatase-1 (MKP-1) and MKP-3. Block of MKP activity by sodium orthovanadate also partly counteracted the inhibitory effect of NS398. Overexpression of constitutively active c-Raf and treatment of sodium orthovanadate together completely reversed the inhibition of MMP-2 by NS398. Taken together, we conclude that NS398 and other NSAIDs act via inhibition of Ras/c-Raf interaction and up-regulation of MKPs to suppress the ERK-mediated signaling.  相似文献   

4.
The present study investigates the role of small G-proteins of the Ras family in the epidermal growth factor (EGF)-activated cellular signalling pathway that downregulates activity of the epithelial Na+ channel (ENaC). We found that H-Ras is a key component of this EGF-activated cellular signalling mechanism in M1 mouse collecting duct cells. Expression of a constitutively active H-Ras mutant inhibited the amiloride-sensitive current. The H-Ras-mediated signalling pathway that inhibits activity of ENaC involves c-Raf, and that the inhibitory effect of H-Ras on ENaC is abolished by the MEK1/2 inhibitor, PD98059. The inhibitory effect of H-Ras is not mediated by Nedd4-2, a ubiquitin protein ligase that regulates the abundance of ENaC at the cell surface membrane, or by a negative effect of H-Ras on proteolytic activation of the channel. The inhibitory effects of EGF and H-Ras on ENaC, however, were not observed in cells in which expression of caveolin-1 (Cav-1) had been knocked down by siRNA. These findings suggest that the inhibitory effect of EGF on ENaC-dependent Na+ absorption is mediated via the H-Ras/c-Raf, MEK/ERK signalling pathway, and that Cav-1 is an essential component of this EGF-activated signalling mechanism. Taken together with reports that mice expressing a constitutive mutant of H-Ras develop renal cysts, our findings suggest that H-Ras may play a key role in the regulation of renal ion transport and renal development.  相似文献   

5.
Apoptosis is an essential mechanism for the maintenance of somatic tissues, and when dysregulated can lead to numerous pathological conditions. G proteins regulate apoptosis in addition to other cellular functions, but the roles of specific G proteins in apoptosis signaling are not well characterized. Galpha12 stimulates protein phosphatase 2A (PP2A), a serine/threonine phosphatase that modulates essential signaling pathways, including apoptosis. Herein, we examined whether Galpha12 regulates apoptosis in epithelial cells. Inducible expression of Galpha12 or constitutively active (QL)alpha12 in Madin-Darby canine kidney cells led to increased apoptosis with expression of QLalpha12, but not Galpha12. Inducing QLalpha12 led to degradation of the anti-apoptotic protein Bcl-2 (via the proteasome pathway), increased JNK activity, and up-regulated IkappaBalpha protein levels, a potent stimulator of apoptosis. Furthermore, the QLalpha12-stimulated activation of JNK was blocked by inhibiting PP2A. To characterize endogenous Galpha12 signaling pathways, non-transfected MDCK-II and HEK293 cells were stimulated with thrombin. Thrombin activated endogenous Galpha12 (confirmed by GST-tetratricopeptide repeat (TPR) pull-downs) and stimulated apoptosis in both cell types. The mechanisms of thrombin-stimulated apoptosis through endogenous Galpha12 were nearly identical to the mechanisms identified in QLalpha12-MDCK cells and included loss of Bcl-2, JNK activation, and up-regulation of IkappaBalpha. Knockdown of the PP2A catalytic subunit in HEK293 cells inhibited thrombin-stimulated apoptosis, prevented JNK activation, and blocked Bcl-2 degradation. In summary, Galpha12 has a major role in regulating epithelial cell apoptosis through PP2A and JNK activation leading to loss of Bcl-2 protein expression. Targeting these pathways in vivo may lead to new therapeutic strategies for a variety of disease processes.  相似文献   

6.
The canonical extracellular-regulated kinase (ERK) signaling cascade, consisting of the Ras-Raf-Mek-ERK module, is critically important to many cellular functions. Although the general mechanism of activation of the ERK cascade is well established, additional noncanonical components greatly influence the activity of this pathway. Here, we focus on the group A p21-activated kinases (Paks), which have previously been implicated in regulating both c-Raf and Mek1 activity, by phosphorylating these proteins at Ser(338) and Ser(298), respectively. In NIH-3T3 cells, expression of an inhibitor of all three group A Paks reduced activation of ERK in response to platelet-derived growth factor (PDGF) but not to epidermal growth factor (EGF). Similar results were obtained in HeLa cells using small interference RNA-mediated simultaneous knockdown of both Pak1 and Pak2 to reduce group A Pak function. Inhibition of Pak kinase activity dramatically decreased phosphorylation of Mek1 at Ser(298) in response to either PDGF or EGF, but this inhibition did not prevent Mek1 activation by EGF, suggesting that although Pak can phosphorylate Mek1 at Ser(298), this event is not required for Mek1 activation by growth factors. Inhibition of Pak reduced the Ser(338) phosphorylation of c-Raf in response to both PDGF and EGF; however, in the case of EGF, the reduction in Ser(338) phosphorylation was not accompanied by a significant decrease in c-Raf activity. These findings suggest that Paks are required for the phosphorylation of c-Raf at Ser(338) in response to either growth factor, but that the mechanisms by which EGF and PDGF activate c-Raf are fundamentally different.  相似文献   

7.
8.
9.
10.
DJ-1 is an oncogene and also a causative gene for familial Parkinson disease. DJ-1 has various functions, and the oxidative status of cysteine at position 106 (Cys-106) is crucial for determination of the activation level of DJ-1. Although DJ-1 requires activated Ras for its oncogenic activity and although it activates the extracellular signal-regulated kinase (ERK) pathway, a cell growth pathway downstream of Ras, the precise mechanism underlying activation of the ERK pathway by DJ-1 is still not known. In this study, we found that DJ-1 directly bound to the kinase domain of c-Raf but not to Ras and that Cys-106 mutant DJ-1 bound to c-Raf more weakly than did wild-type DJ-1. Co-localization of DJ-1 with c-Raf in the cytoplasm was enhanced in epidermal growth factor (EGF)-treated cells. Knockdown of DJ-1 expression attenuated the phosphorylation level of c-Raf in EGF-treated cells, resulting in reduced activation of MEK and ERK1/2. Although EGF-treated DJ-1 knock-out cells also showed attenuated c-Raf activation, reintroduction of wild-type DJ-1, but not C106S DJ-1, into DJ-1 knock-out cells restored c-Raf activation in a DJ-1 binding activity in a c-Raf-dependent manner. DJ-1 was not responsible for activation of c-Raf in phorbol myristate acetate-treated cells. Furthermore, DJ-1 stimulated self-phosphorylation activity of c-Raf in vitro, but DJ-1 was not a target for Raf kinase. Oxidation of Cys-106 in DJ-1 was not affected by EGF treatment. These findings showed that DJ-1 is a positive regulator of the EGF/Ras/ERK pathway through targeting c-Raf.  相似文献   

11.
SB 203580 has been widely used to specifically shut down the p38 MAP kinase-dependent pathway, although it is capable of inducing c-Raf kinase activity in cells. The present study demonstrates that SB 203580 activates members of the ERK cascade, c-Raf, MEK, and ERK, in human monocytic THP-1 cells. The activation of these kinases was sustained for at least 24 h after SB 203580 treatment and was also observed in U937 cells, suggesting that c-Raf efficiently transduces the signal even in the presence of the inhibitor in these cells. However, the expression of ERK cascade-dependent genes, such as c-fos and IL-1beta, was extremely limited. Analysis of the cellular distribution of ERK in SB 203580-treated cells indicated that nuclear translocation of phosphorylated ERK was impaired. Also, nuclear translocation of ERK induced by 12-O-tetradecanoyl-phorbol-13-acetate (TPA) was inhibited by SB 239063, which does not associate with c-Raf and is highly selective for p38 MAP kinase. In addition, the forced expression of the dominant negative mutant of p38 MAP kinase suppressed serum responsive element-dependent transactivation induced by TPA. These results suggest that the steady-state level of p38 MAP kinase activity modulates ERK signaling.  相似文献   

12.
Activation of Ras/Erk pathway by a novel MET-interacting protein RanBPM   总被引:13,自引:0,他引:13  
MET is a receptor protein-tyrosine kinase (RPTK) for hepatocyte growth factor (HGF), which is a multifunctional cytokine controlling cell growth, morphogenesis, and motility. MET overexpression has been identified in a variety of human cancers. Oncogenic missense mutations of the tyrosine kinase domain of the MET gene have been identified in human papillary renal cell carcinomas. In this study, RanBPM, also known as RanBP9, is identified as a novel interacting protein of MET through yeast two-hybrid screen. RanBPM contains a conserved SPRY (repeats in splA and RyR) domain. We demonstrate that RanBPM can interact with MET in vitro and in vivo, and the interaction can be strengthened by HGF stimulation. RanBPM interacts with the tyrosine kinase domain of MET through its SPRY domain. We show that RanBPM can induce GTP-Ras association and Erk phosphorylation and elevate serum response element-luciferase (SRE-LUC) expression, indicating that RanBPM can activate the Ras-Erk-SRE pathway. We demonstrate that RanBPM, which itself is not a guanine exchange protein, stimulates Ras activation by recruiting Sos. On the cellular level, A704 cells, a human renal carcinoma cell line, transfected with RanBPM exhibit increased migration ability. Our data suggest that RanBPM, functioning as an adaptor protein for the MET tyrosine kinase domain, can augment the HGF-MET signaling pathway and that RanBPM overexpression may cause constitutive activation of the Ras signaling pathway.  相似文献   

13.
p70S6 kinase (S6K1) plays a pivotal role in hypertrophic cardiac growth via ribosomal biogenesis. In pressure-overloaded myocardium, we show S6K1 activation accompanied by activation of protein kinase C (PKC), c-Raf, and mitogen-activated protein kinases (MAPKs). To explore the importance of the c-Raf/MAPK kinase (MEK)/MAPK pathway, we stimulated adult feline cardiomyocytes with 12-O-tetradecanoylphorbol-13-acetate (TPA), insulin, or forskolin to activate PKC, phosphatidylinositol-3-OH kinase, or protein kinase A (PKA), respectively. These treatments resulted in S6K1 activation with Thr-389 phosphorylation as well as mammalian target of rapamycin (mTOR) and S6 protein phosphorylation. Thr-421/Ser-424 phosphorylation of S6K1 was observed predominantly in TPA-treated cells. Dominant negative c-Raf expression or a MEK1/2 inhibitor (U0126) treatment showed a profound blocking effect only on the TPA-stimulated phosphorylation of S6K1 and mTOR. Whereas p38 MAPK inhibitors exhibited only partial effect, MAPK-phosphatase-3 expression significantly blocked the TPA-stimulated S6K1 and mTOR phosphorylation. Inhibition of mTOR with rapamycin blocked the Thr-389 but not the Thr-421/Ser-424 phosphorylation of S6K1. Therefore, during PKC activation, the c-Raf/MEK/extracellular signal-regulated kinase-1/2 (ERK1/2) pathway mediates both the Thr-421/Ser-424 and the Thr-389 phosphorylation in an mTOR-independent and -dependent manner, respectively. Together, our in vivo and in vitro studies indicate that the PKC/c-Raf/MEK/ERK pathway plays a major role in the S6K1 activation in hypertrophic cardiac growth.  相似文献   

14.
Ras regulates NFAT3 activity in cardiac myocytes   总被引:4,自引:0,他引:4  
  相似文献   

15.
IL-4 has pleiotropic effects on B cells. These effects include alteration of subsequent BCR-triggered responses. To identify a molecular basis for this receptor cross-talk, we examined ERK activation and NF-kappaB induction. We found that treatment with IL-4, but not other cytokines, affected subsequent BCR signaling by creating a new pathway in which the need for PI3K in ERK activation was eliminated. In contrast, the need for PI3K in NF-kappaB induction was not altered. The new pathway for ERK required time to develop, depended on STAT6, and was blocked by inhibition of macromolecular synthesis. As in the classical pathway, BCR-induced ERK activation in the new, PI3K-independent pathway required MEK and was reflected in c-Raf. Thus, IL-4 promotes an alternate pathway through which BCR is coupled to Raf/MEK/ERK that may function to heighten the responsiveness of B cells during times of immunological stress.  相似文献   

16.
17.
Cytokines trigger the rapid assembly of multimolecular signaling complexes that direct the activation of downstream protein kinase cascades. Two protein kinases that have been linked to growth factor-regulated proliferation and survival are mitogen-activated protein/ERK kinase (MEK) and its downstream target Erk, a member of the mitogen-activated protein kinase family. Using complementary pharmacological and genetic approaches, we demonstrate that MEK and Erk activation requires a phosphatidylinositol 3-kinase (PI3-K)-generated signal in an interleukin (IL)-3-dependent myeloid progenitor cell line. Analysis of the upstream pathway leading to MEK activation revealed that inhibition of PI3-K did not block c-Raf activation, whereas MEK activation was effectively blocked under these conditions. Furthermore, agents that elevated cAMP suppressed IL-3-induced c-Raf activation but did not inhibit MEK activation. Because c-Raf activation and MEK activation were inversely affected by PI3-K- and cAMP-dependent pathways, we examined whether IL-3 activated the alternative Raf isoforms A-Raf and B-Raf. Although IL-3 did not activate B-Raf, A-Raf was activated by the cytokine. Moreover, A-Raf activation, like MEK activation, was blocked by inhibition of PI3-K but was insensitive to cAMP. Experiments with dominant negative mutants of the Raf isoforms showed that overexpression of dominant negative c-Raf did not prevent MEK activation. However, dominant negative A-Raf effectively blocked MEK activation, suggesting that activation of the MEK-Erk signaling cascade is mediated through A-Raf. Taken together, these results suggest that IL-3 receptors engage and activate both c-Raf and A-Raf in hemopoietic cells. However, these intermediates are differentially regulated by upstream signaling cascades and selectively coupled to downstream signaling pathways.  相似文献   

18.
19.
Identifying the trophic factors for retina photoreceptors and the intracellular pathways activated to promote cell survival is crucial for treating retina neurodegenerative diseases. Docosahexaenoic acid (DHA), the major retinal polyunsaturated fatty acid, prevents photoreceptor apoptosis during early development in vitro , and upon oxidative stress. However, the signaling mechanisms activated by DHA are still unclear. We investigated whether the extracellular signal regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) or the phosphatidylinositol-3-kinase (PI3K) pathway participated in DHA protection. 1,4-Diamino-2,3-dicyano-1,4-bis(2-aminophynyltio) butadiene (U0126), a specific MEK inhibitor, completely blocked the DHA anti-apoptotic effect. DHA rapidly increased ERK phosphorylation in photoreceptors, whereas U0126 blocked this increase. U0126 hindered DHA prevention of mitochondrial depolarization, and blocked the DHA-induced increase in opsin expression. On the contrary, PI3K inhibitors did not diminish the DHA protective effect. DHA promoted the early expression of Bcl-2, decreased Bax expression and reduced caspase-3 activation in photoreceptors. These results suggest that DHA exclusively activates the ERK/MAPK pathway to promote photoreceptor survival during early development in vitro and upon oxidative stress. This leads to the regulation of Bcl-2 and Bax expression, thus preserving mitochondrial membrane potential and inhibiting caspase activation. Hence, DHA, a lipid trophic factor, promotes photoreceptor survival and differentiation by activating the same signaling pathways triggered by peptidic trophic factors.  相似文献   

20.
Changes in cellular expression of phosphoprotein enriched in astrocytes of 15 kDa (PEA-15) are linked to insulin resistance, tumor cell invasion, and cellular senescence; these changes alter the activation of the extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein (MAP) kinase pathway. Here, we define the mechanism whereby increased PEA-15 expression promotes and sustains ERK1/2 activation. PEA-15 binding prevented ERK1/2 membrane recruitment and threonine phosphorylation of fibroblast receptor substrate 2α (FRS2α), a key link in fibroblast growth factor (FGF) receptor activation of ERK1/2. This reduced threonine phosphorylation led to increased FGF-induced tyrosine phosphorylation of FRS2α, thereby enhancing downstream signaling. Conversely, short hairpin RNA-mediated depletion of endogenous PEA-15 led to reduced FRS2α tyrosine phosphorylation. Thus, PEA-15 interrupts a negative feedback loop that terminates growth factor receptor signaling downstream of FRS2α. This is the dominant mechanism by which PEA-15 activates ERK1/2 because genetic deletion of FRS2α blocked the capacity of PEA-15 to activate the MAP kinase pathway. Thus, PEA-15 prevents ERK1/2 localization to the plasma membrane, thereby inhibiting ERK1/2-dependent threonine phosphorylation of FRS2α to promote activation of the ERK1/2 MAP kinase pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号