首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Protein synthesis is regulated at the translational level by a variety of mechanisms in virus-infected cells. Viruses often induce the shut-off of host translation in order to favour the expression of their own genetic information, but cells possess a number of strategies for counteracting such effects of infection. Important regulatory mechanisms include the phosphorylation of the alpha subunit of polypeptide chain initiation factor eIF2, RNA degradation mediated by the 2'5'-oligoadenylate/RNase L system, control of availability of the cap-binding protein eIF4E by its interaction with the 4E-binding proteins and specific proteolytic cleavage of several key initiation factors. Most of these mechanisms are also utilised in uninfected cells in response to a variety of physiological stresses and during the early stages of apoptosis. Thus, mechanisms of translational control during virus infection can provide models for the cellular stress responses observed in a wide range of other circumstances.  相似文献   

2.
3.
Infection of mouse L cells with encephalomyocarditis virus results in a rapid inhibition of host protein synthesis before the synthesis of viral proteins. Although no alterations in initiation factor activities have been demonstrated in encephalomyocarditis virus-infected mouse cells, a defect in polypeptide chain elongation has been shown to occur in infected cell extracts. We investigated the significance of this elongation defect in the host shutoff phenomenon in vivo. Average polypeptide chain elongation rates were measured at various times after infection. Interferon was used as a reagent to separate temporarily the virus-induced alterations. Encephalomyocarditis virus infection of L cells was shown to lead to a progressive reduction in the elongation rate. Whereas interferon pretreatment delayed the decrease in elongation rate in a dose-dependent manner, it failed to alter the kinetics of host shutoff, suggesting that slowing of elongation steps played no significant role in this phenomenon. In addition, interferon pretreatment of either mock-infected or virus-infected cells led to no elongation defect that could be attributed to interferon action.  相似文献   

4.
Virus-specific polysome-associated RNA (psRNA) and RNA after dissociation of polysomes were analyzed by direct hybridization with unlabeled viral RNA (vRNA) and complementary RNA (cRNA). psRNA after a 30-min pulse with [3H]uridine contained 28% labeled cRNA, 70% host RNA, and no vRNA. After dissociation, psRNA sedimented heterogeneously. Heavy RNA (greater than 60S), ribosomal subunit RNA (rsuRNA, 30-60S), free mRNA (fmRNA, 10-30S), and light RNA (less than 10S) contained 16%, 54%, 70% and 28% cRNA, respectively, but no vRNA. When actinomycin D (AcD) was added at 2 h postinfection, the nature of the psRNA depended on the concentration of AcD and the condition of the labeling. At AcD concentrations of 1 mug or more per ml, no detectable vRNA or cRNA was associated with polysomes. At 0.2 mug of AcD per ml (a concentration that partially inhibited cRNA synthesis) and 2 h of labeling at 2.5 h postinfection, psRNA contained 40% viral-specific RNA, which included both vRNA and cRNA in almost equal amounts. When polysomes were dissociated, however, viral-specific fm RNA from AcD-treated cells contained exclusively cRNA and no detectable vRNA. Increasing amounts of labeled vRNA were present in the heavy region of the gradient (and in the pellet), which also contained varying amounts of cRNA. The labeled vRNA appears to be associated with polysomes in a cesium chloride density gradient (rho = 1.525 g/ml). Although we have ruled out the trivial explanation of viral ribonucleoprotein contamination,the nature of the complex containing both polysomes and vRNA is unknown.  相似文献   

5.
In cells infected by influenza virus type A, host protein synthesis undergoes a rapid and dramatic shutoff. To define the molecular mechanisms underlying this selective translation, a transfection/infection protocol was developed utilizing viral and cellular cDNA clones. When COS-1 cells were transfected with cDNAs encoding nonviral genes and subsequently infected with influenza virus, protein expression from the exogenous genes was diminished, similar to the endogenous cellular genes. However, when cells were transfected with a truncated influenza viral nucleocapsid protein (NP-S) gene, the NP-S protein was made as efficiently in influenza virus infected cells as in uninfected cells, showing that the NP-S mRNA, although expressed independently of the influenza virus replication machinery, was still recognized as a viral and not a cellular mRNA. Northern blot analysis demonstrated that the selective blocks to nonviral protein synthesis were at the level of translation. Moreover, polysome experiments revealed that the translational blocks occurred at both the initiation and elongation stages of cellular protein synthesis. Finally, we utilized this transfection/infection system as well as double infection experiments to demonstrate that the translation of influenza viral mRNAs probably occurred in a cap-dependent manner as poliovirus infection inhibited influenza viral mRNA translation.  相似文献   

6.
The developing immune response in the lymph nodes of mice infected with influenza virus has both Th1- and Th2-type characteristics. Modulation of the interactions between antigen-presenting cells and T cells is one mechanism that may alter the quality of the immune response. We have previously shown that the ability of dendritic cells (DC) to stimulate the proliferation of alloreactive T cells is changed by influenza virus due to viral neuraminidase (NA) activity. Here we show that DC infected with influenza virus A/PR/8/34 (PR8) stimulate T cells to produce different types of cytokines in a dose-dependent manner. Optimal amounts of the Th1-type cytokines interleukin-2 (IL-2) and gamma interferon (IFN-gamma) were produced from T cells stimulated by DC infected with low doses of PR8, while the Th2-type cytokines IL-4 and IL-10 were produced only in response to DC infected with high doses of PR8. IL-2 and IFN-gamma levels corresponded with T-cell proliferation and were dependent on the activity of viral NA on the DC surface. In contrast, IL-4 secretion required the treatment of T cells with NA. Since viral particles were released only from DC that are infected with high doses of PR8, our results suggest that viral NA on newly formed virus particles desialylates T-cell surface molecules to facilitate a Th2-type response. These results suggest that the activity of NA may contribute to the mixed Th-type response observed during influenza virus infection.  相似文献   

7.
8.
9.
10.
Translational control of ribosomal protein production in mammalian cells   总被引:6,自引:0,他引:6  
R P Perry  O Meyuhas 《Enzyme》1990,44(1-4):83-92
Mammalian ribosomal protein (rp) mRNAs are subject to translational control, as illustrated by their selective release from polyribosomes in growth-arrested cells and their under-representation in polyribosomes of normally growing cells. Recent studies have localized the translational regulatory element to the 5' end of the rp mRNA and have demonstrated that an oligopyrimidine tract, which adjoins the cap structure in all known vertebrate rp mRNAs, is an essential part of this element. Possible factors that might interact with the oligopyrimidine tract are discussed.  相似文献   

11.
Influenza virus induces apoptosis in cultured cell lines as well as in animal tissues. HeLa cells were infected with influenza virus A/Udon/72 (H3N2) under conditions resulting in almost 100% infection. Such cells underwent typical caspase-dependent apoptosis and were efficiently phagocytosed by macrophages prepared from peritoneal fluids of thioglycolate-treated mice. The membrane phospholipid phosphatidylserine appeared on the surfaces of virus-infected cells at around the time efficient phagocytosis became detectable. In fact, the phagocytosis was almost completely inhibited in the presence of liposomes containing phosphatidylserine, which did not influence the antibody-dependent uptake of zymosan particles by the same macrophages. These results indicate that macrophages phagocytose influenza virus-infected HeLa cells in a manner mediated by phosphatidylserine that appears on the surfaces of infected cells during the process of apoptosis.  相似文献   

12.
13.
R T Avalos  Z Yu    D P Nayak 《Journal of virology》1997,71(4):2947-2958
We have investigated the association of the influenza virus matrix (M1) and nucleoprotein (NP) with the host cell cytoskeletal elements in influenza virus-infected MDCK and MDBK cells. At 6.5 h postinfection, the newly synthesized M1 was Triton X-100 (TX-100) extractable but became resistant to TX-100 extraction during the chase with a t1/2 of 20 min. NP, on the other hand, acquired TX-100 resistance immediately after synthesis. Significant fractions of both M1 and NP remained resistant to differential detergent (Triton X-114, 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate [CHAPS], octylglucoside) extraction, suggesting that M1 and NP were interacting with the cytoskeletal elements. However, the high-molecular-weight form of the viral transmembrane protein hemagglutinin (HA), which had undergone complex glycosylation, also became resistant to TX-100 extraction but was sensitive to octylglucoside detergent extraction, indicating that HA, unlike M1 or NP, was interacting with TX-100-insoluble lipids and not with cytoskeletal elements. Morphological analysis with cytoskeletal disrupting agents demonstrated that M1 and NP were associated with microfilaments in virus-infected cells. However, M1, expressed alone in MDCK or HeLa cells from cloned cDNA or coexpressed with NP, did not become resistant to TX-100 extraction even after a long chase. NP, on the other hand, became TX-100 insoluble as in the virus-infected cells. M1 also did not acquire TX-100 insolubility in ts 56 (a temperature-sensitive mutant with a defect in NP protein)-infected cells at the nonpermissive temperature. Furthermore, early in the infectious cycle in WSN-infected cells, M1 acquired TX-100 resistance very slowly after a long chase and did not acquire TX-100 resistance at all when chased in the presence of cycloheximide. On the other hand, late in the infectious cycle, M1 acquired TX-100 resistance when chased in either the presence or absence of cycloheximide. Taken together, these results demonstrate that M1 and NP interact with host microfilaments in virus-infected cells and that M1 requires other viral proteins or subviral components (possibly viral ribonucleoprotein) for interaction with host cytoskeletal components. The implication of these results for viral morphogenesis is discussed.  相似文献   

14.
Influenza virus-infected cultured cells undergo apoptosis after an increment of Fas (APO-1/CD95) on the cell surface. By flow cytometry, cell surface Fas-ligand was detected in virus-infected cells with a time course similar to that of Fas. Moreover, Fas and Fas-ligand were co-expressed in those cells. The mode of induction, however, appeared to be distinct for the two proteins. Influenza virus infection induced the externalization of phosphatidylserine on the cell surface at the early stage of apoptosis, an event that has been observed in cells undergoing Fas-mediated apoptosis. In fact, apoptosis of the virus-infected cells was inhibited in the presence of an antagonistic anti-Fas-ligand monoclonal antibody. These results suggest that influenza virus infection causes augmented expression of both Fas and Fas-ligand and apoptosis is induced when the infected cells come into contact with each other.  相似文献   

15.
Some cultured cell lines undergo typical apoptosis upon infection with influenza virus. However, the release of replicated virus into the culture medium does not change when apoptosis is inhibited. Since apoptotic cells are heterophagically eliminated at early stages of the apoptosis pathway, we anticipated that the coexistence of phagocytic cells with virus-infected cells affects the extent of virus growth. When influenza A virus-infected HeLa cells were mixed with activated mouse peritoneal macrophages, efficient phagocytosis, which was abrogated in the presence of a caspase inhibitor, occurred. At the same time, the release of virus into the culture medium was completely inhibited, and this required direct contact between virus-infected cells and macrophages. Furthermore, an immunoelectron microscopic analysis detected influenza virus particles associated with phagosome-like structures within macrophages. These results indicate that apoptosis-dependent phagocytosis of virus-infected cells may lead to direct elimination of the pathogen.  相似文献   

16.
Influenza A viruses induce the accumulation of electron-dense inclusions in the cytoplasm of infected cells during the latter stages of the replication cycle. Cell fractionation studies showed that these inclusions could be recovered in subcellular fractions containing ribosomes and polysomes. Isolation of these inclusions was accomplished by procedures involving RNase treatment of these fractions followed by repurification, or by fluorocarbon extraction and gradient centrifugation. Electron microscopy indicated that the isolated inclusions exhibited a major periodicity of approximately 8 nm with minor periodicities of approximately 4 nm. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed that the influenza virus coded nonstructural protein was the only protein component present in isolated inclusions.  相似文献   

17.
Memory/effector T cells efficiently migrate into extralymphoid tissues and sites of infection, providing immunosurveillance and a first line of defense against invading pathogens. Even though it is a potential means to regulate the size, quality, and duration of a tissue infiltrate, T cell egress from infected tissues is poorly understood. Using a mouse model of influenza A virus infection, we found that CD8 effector T cells egressed from the infected lung in a CCR7-dependent manner. In contrast, following antigen recognition, effector CD8 T cell egress decreased and CCR7 function was reduced in vivo and in vitro, indicating that the exit of CD8 T cells from infected tissues is tightly regulated. Our data suggest that the regulation of T cell egress is a mechanism to retain antigen-specific effectors at the site of infection to promote viral clearance, while decreasing the numbers of bystander T cells and preventing overt inflammation.  相似文献   

18.
We characterized human monoclonal antibodies (MAbs) cloned from influenza virus-infected patients and from influenza vaccine recipients by complement-dependent lysis (CDL) assay. Most MAbs active in CDL were neutralizing, but not all neutralizing MAbs can mediate CDL. Two of the three stalk-specific neutralizing MAbs tested were able to mediate CDL and were more cross-reactive to temporally distant H1N1 strains than the conventional hemagglutination-inhibiting and neutralizing MAbs. One of the stalk-specific MAbs was subtype cross-reactive to H1 and H2 hemagglutinins, suggesting a role for stalk-specific antibodies in protection against influenza illness, especially by a novel viral subtype which can cause pandemics.  相似文献   

19.
Influenza virus infection induces maturation of murine dendritic cells (DCs), which is most important for the initiation of an immune response. However, in contrast to EL-4 and MC57 cells, DCs present viral CTL epitopes with a delay of up to 10 h. This delay in Ag presentation coincides with the up-regulation of MHC class I molecules as well as costimulatory molecules on the cell surface and the accumulation of newly synthesized ubiquitinated proteins in large cytosolic structures, called DC aggresome-like-induced structures (DALIS). These structures were observed previously after LPS-induced maturation of DCs, and it was speculated that they play a role in the regulation of MHC class I Ag presentation. Our findings provide the first evidence for a connection between DC maturation, MHC class I-restricted Ag presentation, and DALIS formation, which is further supported by the observation that DALIS contain ubiquitinated influenza nucleoprotein.  相似文献   

20.
PI3k-Akt and p53 pathways are known to play anti- and pro-apoptotic roles in cell death, respectively. Whether these pathways are recruited in influenza virus infection in highly productive monkey (CV-1) and canine (MDCK) kidney cells was studied here. Phosphorylation of Akt (Akt-pho) was found to occur only early after infection (5–9 h.p.i). Nuclear accumulation and phosphorylation of p53 (p53-pho), and expression of its natural target p21/waf showed low constitutive levels at this period, whereas all three parameters were markedly elevated at the late apoptotic stage (17–20 h.p.i.). Up-regulation of Akt-pho and p53-pho was not induced by UV-inactivated virus suggesting that it required virus replication. Also, mRNAs of p53 and its natural antagonist mdm2 were not increased throughout infection indicating that p53-pho was up-regulated by posttranslational mechanisms. However, p53 activation did not seem to play a leading role in influenza-induced cell death: (i) infection of CV1 and MDCK cells with recombinant NS1-deficient virus provoked accelerated apoptotic death characterized by the lack of p53 activation; (ii) mixed apoptosis-necrosis death developed in influenza-infected human bronchial H1299 cells carrying a tetracycline-regulated p53 gene did not depend on p53 gene activation by tetracycline. Virus-induced apoptosis and signaling of Akt and p53 developed in IFN-deficient VERO cells with similar kinetics as in IFN-competent CV1-infected cells indicating that these processes were endocrine IFN-independent. Apoptosis in influenza-infected CV-1 and MDCK cells was Akt-dependent and was accelerated by Ly294002, a specific inhibitor of PI3k-Akt signaling, and down-regulated by the viral protein NS1, an inducer of host Akt. The obtained data suggest that influenza virus (i) initiates anti-apoptotic PI3k-Akt signaling at early and middle phases of infection to protect cells from fast apoptotic death and (ii) provokes both p53-dependent and alternative p53-independent apoptotic and/or necrotic (in some host systems) cell death at the late stage of infection. These data have been partially presented at The 3rd Orthomyxovirus Research Conference (sponsored by ESWI and NIH). Abstr. p. 23 entitled: “Influenza virus-specific up-regulation of Akt and Mdm2 in infected cells” by Zhirnov O.P., and Klenk H.D., July 28–21, 2005. Queen’s College, Cambridge, United Kingdom; and at The Annual Meeting of Virology in Munich, March 15–18 (2006)—“Influenza virus-specific up-regulation of Akt, Mdm2, and p53 in infected cells” by O. P. Zhirnov and H. D. Klenk; Book of abstracts, p. 339  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号