首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper is presented an investigation of the influence of the internal structure of pores in membranes on a) the time dependent macroscopic relaxation current after a voltage jump, b) the macroscopic frequency dependent admittance and c) the microscopic current fluctuations around stationary (nonequilibrium) states. All these quantities are determined by the time dependent transport equations, which are calculated with the use of the eigenvectors and eigenvalues of the matrix of coefficients, occurring in the transport equations. Numerical calculations for channels with up to 31 barriers are presented. The treatment of the fluctuations is done with the use of a general approach to nonequilibrium transport noise recently developed by one of the authors. It is shown that the influence of the internal barrier structure as, e.g., the height of central or decentral barriers in the pores is of great complexity. Nevertheless we hope that the calculations lead to a better understanding especially of the microscopic nonequilibrium transport fluctuations in complex systems.This work has been supported by the Deutsche Forschungsgemeinschaft  相似文献   

2.
Subject of this paper is the transport noise in discrete systems. The transport systems are given by a number (n) of binding sites separated by energy barriers. These binding sites may be in contact with constant outer reservoirs. The state of the system is characterized by the occupation numbers of particles (current carriers) at these binding sites. The change in time of the occupation numbers is generated by individual “jumps” of particles over the energy barriers, building up the flux matter (for charged particles: the electric current). In the limit n → ∞ continuum processes as e.g. usual diffusion are included in the transport model. The fluctuations in occupation numbers and other quantities linearly coupled to the occupation numbers may be treated with the usual master equation approach. The treatment of the fluctuations in fluxes (current) makes necessary a different theoretical approach which is presented in this paper under the assumption of vanishing interactions between the particles. This approach may be applied to a number of different transport systems in biology and physics (ion transport through porous channels in membranes, carrier mediated ion transport through membranes, jump diffusion e.g. in superionic conductors). As in the master equation approach the calculation of correlations and noise spectra may be reduced to the solution of the macroscopic equations for the occupation numbers. This result may be regarded as a generalization to non-equilibrium current fluctuations of the usual Nyquist theorem relating the current (voltage) noise spectrum in thermal equilibrium to the macroscopic frequency dependent admittance.The validity of the general approach is demonstrated by the calculation of the autocorrelation function and spectrum of current noise for a number of special examples (e.g, pores in membrances, carrier mediated ion transport).  相似文献   

3.
This paper continues our work on the theory of nonequilibrium voltage noise generated by electric transport processes in membranes. Introducing the membrane voltage as a further variable, a system of kinetic equations linearized in voltage is derived by which generally the time-dependent behaviour of charge-transport processes under varying voltage can be discussed. Using these equations, the treatment of voltage noise can be based on the usual master equation approach to steady-state fluctuations of scalar quantities. Thus, a general theoretical approach to nonequilibrium voltage noise is presented, completing our approach to current fluctuations which had been developed some years ago. It is explicitly shown that at equilibrium the approach yields agreement with the Nyquist relation, while at nonequilibrium this relation is not valid. A further general property of voltage noise is the reduction of low-frequency noise with increasing number of transport units as a consequence of the interactions via the electric field. In a second paper, the approach will be applied for a number of special transport mechanisms, such as ionic channels, carriers or electrogenic pumps.  相似文献   

4.
A general theoretical approach to the analysis of electric fluctuations generated by the so-called single-file diffusion through narrow channels is presented. The formalism is a slight extension of an approach to electric fluctuations in discrete transport systems with negligible interactions between the particles recently developed by one of the authors. In the single-file transport mechanism interactions between the particles must be taken into account. Three main results of principal interest are: (a) the electric fluctuations around stationary states (at equilibrium and non-equilibrium) are determined by the time-dependent solutions of the macroscopic single-file transport equations, (b) as a direct consquence of the interactions between the ions in the single-file transport the macroscopic time-dependent current and the autocorrelation function of the microscopic current fluctuations can exhibit damped oscillatory behavior, and the current noise spectrum can show peaking, (c) the number of binding sites for the ions within the pores seems to have a strong influence on the oscillatory behavior: with increasing number of binding sites the damping of the oscillations decreases and the peaking of the spectrum becomes stronger.  相似文献   

5.
A general theoretical approach to the analysis of electric fluctuations generated by the so-called single-file diffusion through narrow channels is presented. The formalism is a slight extension of an approach to electric fluctuations in discrete transport systems with negligible interactions between the particles recently developed by one of the authors. In the single-file transport mechanism interactions between the particles must be taken into account. Three main results of principal interest are: (a) the electric fluctuations around stationary states (at equilibrium and non-equilibrium) are determined by the time-dependent solutions of the macroscopic single-file transport equations, (b) as a direct consequence of the interactions between the ions in the single-file transport the macroscopic time-dependent current and the autocorrelation function of the microscopic current fluctuations can exhibit damped oscillatory behavior, and the current noise spectrum can show peaking, (c) the number of binding sites for the ions within the pores seems to have a strong influence on the oscillatory behavior: with increasing number of binding sites the damping of the oscillations decreases and the peaking of the spectrum becomes stronger.  相似文献   

6.
Sensory systems have mechanisms to respond to the external environment and adapt to them. Such adaptive responses are effective for a wide dynamic range of sensing and perception of temporal change in stimulus. However, noise generated by the adaptation system itself as well as extrinsic noise in sensory inputs may impose a limit on the ability of adaptation systems. The relation between response and noise is well understood for equilibrium systems in the form of fluctuation response relation. However, the relation for nonequilibrium systems, including adaptive systems, are poorly understood. Here, we systematically explore such a relation between response and fluctuation in adaptation systems. We study the two network motifs, incoherent feedforward loops (iFFL) and negative feedback loops (nFBL), that can achieve perfect adaptation. We find that the response magnitude in adaption systems is limited by its intrinsic noise, implying that higher response would have higher noise component as well. Comparing the relation of response and noise in iFFL and nFBL, we show that whereas iFFL exhibits adaptation over a wider parameter range, nFBL offers higher response to noise ratio than iFFL. We also identify the condition that yields the upper limit of response for both network motifs. These results may explain the reason of why nFBL seems to be more abundant in nature for the implementation of adaption systems.  相似文献   

7.
The power spectrum of current fluctuations and the complex admittance of squid axon were determined in the frequency range 12.5 to 5,000 Hx during membrane voltage clamps to the same potentials in the same axon during internal perfusion with cesium. The complex admittance was determined rapidly and with high resolution by a fast Fourier transform computation of the current response, acquired after a steady state was attained, to a synthesized signal with predetermined spectral characteristics superposed as a continuous, repetitive, small perturbation on step voltage clamps. Linear conduction parameters were estimated directly from admittance data by fitting an admittance model, derived from the linearized Hodgkin-Huxley equations modified by replacing the membrane capacitance with a "constant-phase-angle" capacitance, to the data. The constant phase angle obtained was approximately 80 degrees. At depolarizations the phase of the admittance was 180 degrees, and the real part of the impedance locus was in the left-half complex plane for frequencies below 1 kHz, which indicates a steady-state negative Na conductance. The fits also yielded estimates of the natural frequencies of Na "activation" and "inactivation" processes. By fitting Na-current noise spectra with a double Lorentzian function, a lower and an upper corner frequency were obtained; these were compared with the two natural frequencies determined from admittance analysis at the corresponding potentials. The frequencies from fluctuation analyses ranged from 1.0 to 10.3 times higher than those from linear (admittance) analysis. This discrepancy is consistent with the concept that the fluctuations reflect a nonlinear rate process that cannot be fully characterized by linear perturbation analysis. Comparison of the real part of the admittance and the current noise spectrum shows that the Nyquist relation, which generally applies to equilibrium conductors, does not hold for the Na process in squid axon. The Na-channel conductance, gamma Na, was found to increase monotonically from 0.1 to 4.8 pS for depolarizations up to 50 mV from a holding potential of -60 mV, with no indication of a maximum value.  相似文献   

8.
We describe a new electrophysiological technique called nonequilibrium response spectroscopy, which involves application of rapidly fluctuating (as high as 14 kHz) large-amplitude voltage clamp waveforms to ion channels. As a consequence of the irreversible (in the sense of Carnot) exchange of energy between the fluctuating field and the channel protein, the gating response is exquisitely sensitive to features of the kinetics that are difficult or impossible to adequately resolve by means of traditional stepped potential protocols. Here we focus on the application of dichotomous (telegraph) noise voltage fluctuations, a broadband Markovian colored noise that fluctuates between two values. Because Markov kinetic models of channel gating can be embedded within higher-dimensional Markov models that take into account the effects of the voltage fluctuations, many features of the response of the channels can be calculated algebraically. This makes dichotomous noise and its generalizations uniquely suitable for model selection and kinetic analysis. Although we describe its application to macroscopic ionic current measurements, the nonequilibrium response method can also be applied to gating and single channel current recording techniques. We show how data from the human cardiac isoform (hH1a) of the Na+ channel expressed in mammalian cells can be acquired and analyzed, and how these data reveal hidden aspects of the molecular kinetics that are not revealed by conventional methods.  相似文献   

9.
As applications of the general theoretical framework of charge transport in biological membranes and related voltage and current noise, a number of model calculations are presented for ion carriers, rigid channels, channels with conformational substates and electrogenic pumps. The results are discussed with special reference to the problem of threshold values for sensory transduction processes and their limitations by voltage fluctuations. Furthermore, starting from the special results of model calculations, an attempt is made to determine more general aspects of electric fluctuations generated by charge-transport processes in biological membranes: different frequency dependences of voltage and current noise, and dependence of noise intensities with increasing distance from the equilibrium state.  相似文献   

10.
A formulism is described for the treatment of noise resulting from the transport of ions in channels containing an arbitrary number of activation energy barriers. The analysis is based on Nyquist's theorem and is therefore restricted to fluctuations around the equilibrium state. Within this limit the spectral intensities of current and voltage noise are given by the frequency-dependent admittance, which in turn is closely linked to the relaxation-time spectrum of the transport system. Explicit expressions for the spectral intensity of current noise are derived for channels with two and three energy barriers. The analysis may be used to predict the spectral intensity of noise from the gating system in nerve.  相似文献   

11.
In this paper, we describe a systematic approach to the theoretical analysis of non-equilibrium voltage noise that arises from ions moving through pores in membranes. We assume that an ion must cross one or two barriers in the pore in order to move from one side of the membrane to the other. In our analysis, we consider the following factors: a) surface charge as a variable in the kinetic equations, b) linearization of the kinetic equations, c) master equation approach to fluctuations. To analyze the voltage noise arising from ion movement through a two barrier (i.e., one binding site) pore, we included the effects of ions in the channel's interior on the voltage noise. The current clamp is considered as a white noise generating additional noise in the system. In contrast to what is found for current noise, at low frequencies the voltage noise intensity is reduced by increasing voltage across the membrane. With this approach, we demonstrate explicity for the examples treated that, apart from additional noise generated by the current clamp, the non-equilibrium voltage fluctuations can be related to the current fluctuations by the complex admittance.  相似文献   

12.
13.
14.
Feedback modules, which appear ubiquitously in biological regulations, are often subject to disturbances from the input, leading to fluctuations in the output. Thus, the question becomes how a feedback system can produce a faithful response with a noisy input. We employed multiple time scale analysis, Fluctuation Dissipation Theorem, linear stability, and numerical simulations to investigate a module with one positive feedback loop driven by an external stimulus, and we obtained a critical quantity in noise attenuation, termed as “signed activation time”. We then studied the signed activation time for a system of two positive feedback loops, a system of one positive feedback loop and one negative feedback loop, and six other existing biological models consisting of multiple components along with positive and negative feedback loops. An inverse relationship is found between the noise amplification rate and the signed activation time, defined as the difference between the deactivation and activation time scales of the noise-free system, normalized by the frequency of noises presented in the input. Thus, the combination of fast activation and slow deactivation provides the best noise attenuation, and it can be attained in a single positive feedback loop system. An additional positive feedback loop often leads to a marked decrease in activation time, decrease or slight increase of deactivation time and allows larger kinetic rate variations for slow deactivation and fast activation. On the other hand, a negative feedback loop may increase the activation and deactivation times. The negative relationship between the noise amplification rate and the signed activation time also holds for the six other biological models with multiple components and feedback loops. This principle may be applicable to other feedback systems.  相似文献   

15.
A novel method is proposed for calculating nonequilibrium fluctuations of the mean occupation numbers of the electron shells in the radiative-collisional average-ion models of multicharged plasma kinetics. For the class of Slater ionic models, equations are derived for the mean occupation numbers of the electron shells and their fluctuations in the Fokker-Planck approximation. To calculate the fluctuations, the Fokker-Planck equation is linearized in the vicinity of the steady-state nonequilibrium solution to the kinetic equations (linear noise approximation). The method proposed allows one to take into account both the nonequilibrium correlations of the occupation-number fluctuations and the thermodynamically equilibrium statistical correlations related to the Coulomb interaction among bound electrons. The relation among the coefficients in the Fokker-Planck equation for the occupation-number fluctuations of the electron shells is discussed based on the fluctuation-dissipative theorem.  相似文献   

16.
1/f current noise is ubiquitous in protein pores, porins, and channels. We have previously shown that a protein-selective biological nanopore with an external protein receptor can function as a 1/f noise generator when a high-affinity protein ligand is reversibly captured by the receptor. Here, we demonstrate that the binding affinity and concentration of the ligand are key determinants for the nature of current noise. For example, 1/f was absent when a protein ligand was reversibly captured at a much lower concentration than its equilibrium dissociation constant against the receptor. Furthermore, we also analyzed the composite current noise that resulted from mixtures of low-affinity and high-affinity ligands against the same receptor. This study highlights the significance of protein recognition events in the current noise fluctuations across biological membranes.  相似文献   

17.
D O Mak  W W Webb 《Biophysical journal》1997,72(3):1153-1164
A Green's function approach is developed from first principles to evaluate the power spectral density of conductance fluctuations caused by ion concentration fluctuations via diffusion in an electrolyte system. This is applied to simple geometric models of transmembrane ion channels to obtain an estimate of the magnitude of ion concentration fluctuation noise in the channel current. Pure polypeptide alamethicin forms stable ion channels with multiple conductance states in artificial phospholipid bilayers isolated onto tips of micropipettes with gigaohm seals. In the single-channel current recorded by voltage-clamp techniques, excess noise was found after the background instrumental noise and the intrinsic Johnson and shot noises were removed. The noise que to ion concentration fluctuations via diffusion was isolated by the dependence of the excess current noise on buffer ion concentration. The magnitude of the concentration fluctuation noise derived from experimental data lies within limits estimated using our simple geometric channel models. Variation of the noise magnitude for alamethicin channels in various conductance states agrees with theoretical prediction.  相似文献   

18.
This paper is an extension of our earlier theoretical studies on the relationship between kinetic asymmetry and free-energy transductions in biological systems induced by external fluctuations. In the first part of the paper, the asymmetry conditions necessary for external-noise-induced free-energy transductions to occur are derived for a special cyclic, four-state model in which only one reaction step is perturbed by the fluctuations. The results can be used to explain the earlier findings that asymmetry in rate constants was not required in the uphill transport of ligands induced by externally fluctuating the ligand concentrations. In the second part of the paper, the coupling between two enzyme systems through direct enzyme-enzyme inter-actions is studied. The existence of kinetic asymmetry in both the driving and the driven enzyme systems is found necessary for coupling and free-energy transductions to occur.  相似文献   

19.
A powerful methodology for analyzing post-synaptic currents recorded from central neurons is presented. An unknown quantity of transmitter molecules released from presynaptic terminals by electrical stimulation of nerve fibers generates a post-synaptic response at the synaptic site. The current induced at the synaptic junction is assumed to rise rapidly and decay slowly with its peak amplitude being proportional to the number of released transmitter molecules. The signal so generated is then distorted by the cable properties of the dendrite, modeled as a time-invariant, linear filter with unknown parameters. The response recorded from the cell body of the neuron following the electrical stimulation is contaminated by zero-mean, white, Gaussian noise. The parameters of the signal are then evaluated from the observation sequence using a quasi-profile likelihood estimation procedure. These parameter values are then employed to deconvolve each measured post-synaptic response to produce an optimal estimate of the transmembrane current flux. From these estimates we derive the amplitude of the synaptic current and the relative amount of transmitter molecules that elicited each response. The underlying amplitude fluctuations in the entire data sequence are investigated using a non-parametric technique based on kernel smoothing procedures. The effectiveness of the new methodology is illustrated in various simulation examples.  相似文献   

20.
Inside individual cells, protein population counts are subject to molecular noise due to low copy numbers and the inherent probabilistic nature of biochemical processes. We investigate the effectiveness of proportional, integral and derivative (PID) based feedback controllers to suppress protein count fluctuations originating from two noise sources: bursty expression of the protein, and external disturbance in protein synthesis. Designs of biochemical reactions that function as PID controllers are discussed, with particular focus on individual controllers separately, and the corresponding closed-loop system is analyzed for stochastic controller realizations. Our results show that proportional controllers are effective in buffering protein copy number fluctuations from both noise sources, but this noise suppression comes at the cost of reduced static sensitivity of the output to the input signal. In contrast, integral feedback has no effect on the protein noise level from stochastic expression, but significantly minimizes the impact of external disturbances, particularly when the disturbance comes at low frequencies. Counter-intuitively, integral feedback is found to amplify external disturbances at intermediate frequencies. Next, we discuss the design of a coupled feedforward-feedback biochemical circuit that approximately functions as a derivate controller. Analysis using both analytical methods and Monte Carlo simulations reveals that this derivative controller effectively buffers output fluctuations from bursty stochastic expression, while maintaining the static input-output sensitivity of the open-loop system. In summary, this study provides a systematic stochastic analysis of biochemical controllers, and paves the way for their synthetic design and implementation to minimize deleterious fluctuations in gene product levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号