首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A fluorescence correlation experiment for measurement of rotational diffusion in the nanosecond time scale is described. Using this method, the rotational diffusion coefficient of bovine carbonic anhydrase B labelled with tetramethylrhodamine isothiocyanate was estimated to be D r=(1.14±0.15)×107 s-1 at 22°C. The experiment is based on a cw argon ion laser, a microfluorimeter with local solution flow inside the sample cell, and two photon detectors. The fluorescence intensity autocorrelation function in the nanosecond time range is computed with the help of a time-to-amplitude converter and a multichannel pulse-amplitude analyser.  相似文献   

2.
R Gilmore  N Cohn  M Glaser 《Biochemistry》1979,18(6):1050-1056
Phospholipids were isolated from mitochondrial, microsomal, and plasma membranes of LM cells and fractionated into individual phospholipid classes on silicic acid columns. The fatty acid composition and the rotational relaxation time of 1,6-diphenyl-1,3,5-hexatriene (DPH) were determined for each phospholipid class. Sphingomyelin was the only phospholipid isolated from LM cell membranes that showed a phase transition within the temperature range investigated, 5-40 degrees C. The rotational relaxation times for DPH were lowest in phosphatidylcholine in all the membrane fractions. Phosphatidylcholine isolated from the three membrane fractions of choline-supplemented cells had similar rotational relaxation times and phosphatidylcholine isolated from microsomal membranes of linoleate-supplemented cells had lower rotational relaxation times. The results indicate that the differences in the rotational relaxation times of DPH between mitochondrial, microsomal, and plasma membrane phospholipids could be explained primarily by differences in the polar head-group composition, while differences in the fatty acid composition had only a minor effect. This provides a basis for understanding how the different lipid components in these cells contribute to membrane fluidity.  相似文献   

3.
The pathway for the in vitro equilibrium unfolding of the tubulin heterodimer by guanidinium chloride (GdmCl) has been studied using several spectroscopic techniques, specifically circular dichroism (CD), two-photon Fluorescence Correlation Spectroscopy (FCS), and time-resolved fluorescence, including lifetime and dynamic polarization. The results show that tubulin unfolding is characterized by distinct processes that occur in different GdmCl concentration ranges. From 0 to 0.5 M GdmCl, a slight alteration of the tubulin heterodimer occurs, as evidenced by a small, but reproducible increase in the rotational correlation time of the protein and a sharp decrease in the secondary structure monitored by CD. In the range 0.5-1.5 M GdmCl, significant decreases in the steady-state anisotropy and average lifetime of the intrinsic tryptophan fluorescence occur, as well as a decrease in the rotational correlation time, from 48 to 26 nsec. In the same GdmCl range, the number of protein molecules (labeled with Alexa 488), as determined by two-photon FCS measurements, increases by a factor of two, indicating dissociation of the tubulin dimer into monomers. From 1.5 to 4 M GdmCl, these monomers unfold, as evidenced by the continual decrease in the tryptophan steady-state anisotropy, average lifetime, and rotational correlation time, concomitant with secondary structural changes. These results help to elucidate the unfolding pathway of the tubulin heterodimer and demonstrate the value of FCS measurements in studies on oligomeric protein systems.  相似文献   

4.
It is of interest to inquire whether agents that uncouple or deenergize membranes cause concomitant structural changes. The agents considered here are the uncoupler carbonyl cyanide-p-trifluoromethoxyphenylhydrazone and the bacteriocidal protein colicin E1, agents for which there is some precedent for believing that they interact with membranes. In intact E. coli ML 308-225 cells the inhibition of [14C]-proline active transport by FCCP increases with uncoupler concentration from ~ 20% at 2 μM to ~100% at 5 μM. The increase in the rotational relaxation time (ρ) of the cell-bound fluorescent probe N-phenyl-1-naphthylamine (PhNap)
  • 1 Abbreviations: FCCP – carbonyl cyanide p-trifluoromethoxyphenylhydrazone; ANS – 8-anilino-1-naphthalenesulfonate; PhNap, N-phenyl-1-naphthylamine; EDTA – ethylenediaminetetraacetate.
  • and 8-anilino-1-naphthalene-sulfonate (ANS) under these conditions shows the same dependence on FCCP concentration. For cells treated with EDTA to remove part of the outer lipopolysaccharide layer, inhibition of proline transport and the increase in ρ value of ANS show the same dependence on FCCP concentration with saturation at 0.3 μM. EDTA treatment causes a large increase in the binding and rotational relaxation time of PhNap, the latter quantity approaching a value obtained with purified inner membrane. Similar effects are produced in untreated cells by 5 μM FCCP. It is concluded that (a) EDTA treatment removes a permeability barrier t o FCCP and PhNap in the outer membrane; (b) uncoupling by FCCP removes a similar permeability barrier to PhNap; (c) binding of amphiphilic ANS, assumed to be located in the outer membrane, is hardly changed by these treatments; (d) deenergization of the inner membrane by FCCP thus causes a structural change in the outer membrane as measured by the permeability change to hydrophobic PhNap and the increase in ρ values of the amphiphilic ANS; (e) The binding sites reached by PhNap within the permeability barrier at or near the inner membrane are changed by FCCP from their initial state. This is inferred from an increase in PhNap quantum yield extrapolated to infinite cell concentration, and from removal by FCCP of an apparent phase transition sensed by the PhNap rotational relaxation time. Thus, uncoupling and deenergization by FCCP appears to cause structural change both in the outer membrane and inside the permeability barrier of the outer membrane. Transmission of the colicin E1 response in the envelope of intact and EDTA-treated cells can also be monitored by an increase in ANS and PhNap fluorescence intensity, a smaller fractional increase in dye binding, and a large increase in probe rotational relaxation time. The fluorescence changes of ANS again imply structural effects in the outer membrane caused by colicin. The binding and fluorescence changes of PhNap caused by colicin E1 acting on intact cells again imply an effect of deenergization on the permeability barrier of the outer membrane. Fluorescence changes with PhNap in intact and EDTA-treated cells show that the dye binding sites are altered in the presence of colicin E1. It is also shown that the PhNap intensity change can be blocked by low concentrations of vitamin B12, which competes for the colicin E1 receptor. Some properties are presented of the probe chlorotetracycline, which has been proposed by others to be an indicator of magnesium. The probe appears to reside in an environment somewhat similar to that of ANS, but the colicin-induced changes in its fluorescence parameters appear to be small under our conditions.  相似文献   

    5.
    The behavior of dehydroergosterol in -α-dimyristoylphosphatidylcholine (DMPC) unsonicated multilamellar liposomes was characterized by absorption spectroscopy and fluorescence measurements. Dehydroergosterol exhibited a lowered absorption coefficient in multilamellar liposomes whiel the steady-state fluorescence anisotropy of dehydroergosterol in these membranes decreased significantly with increasing dehydroergosterol concentration, suggesting membrane sterol-sterol interactions. The comparative steady-state anisotropy of 0.9 mole percent dehydroergosterol in multilamellar liposomes was lower than in small unilamellar vesicles suggesting different sterol environments for dehydroergosterol. Dehydroergosterol fluorescence lifetime was relatively independent of membrane sterol content and yielded similar values in sonicated and unsonicated model membranes. In multilamellar liposomes containing 5 mole percent cholesterol, the gel-to-liqui crystalline phase transition of DMPC detected by 0.9 mole percent dehydroergosterol was significantly broadened when compared to the phase transition detected by dehydroergosterol in the absence of membrane cholesterol (Smutzer, G. et al. (1986) Biochim. Biophys. Acta 862, 361–371). In multilamellar liposomes containing 10 mole percent cholesterol, the major fluorescence lifetime of dehydroergosterol did not detect the gel-to-liquid crystalline phase transition of DMPC. Time-correlated fluorescence anisotropy decays of dehydroergosterol in DMPC multilamellar liposomes in the absence and presence of 5 mole percent cholesterol exhibited a single rotational correlation time near one nanosecond that was relatively independent of temperature and low concentrations of membrane cholesterol. The limiting anisotropy of 0.9 mole percent dehydroergosterol decreased above the gel-to-liquid crystalline phase transition in membranes without cholesterol and was not significantly affected by the phase transition in membranes containing 5 mole percent cholesterol. These results suggested hindered rotational diffusion of dehydroergosterol in multilamellar liposomes. Lifetime and time-correlated fluorescence measurements of 0.9 mole percent dehydroergosterol in multilamellar liposomes further suggested this fluorophore was detecting physical properties of the bulk membrane phospholipids in membranes devoid of cholesterol and was detecting sterol-rich regions in membranes of low sterol concentration.  相似文献   

    6.
    The inhibition of glycerol 3-phosphate oxidation by oleic acid correlates with changes in membrane microviscosity monitored by the steady-state fluorescence anisotropy of DPH. The dynamic measurements indicate that the changes of both the limiting anisotropy and rotational relaxation time occur in a concentration range where the enzyme activity is strongly inhibited.  相似文献   

    7.
    T Sakaki  A Tsuji  C H Chang  S Ohnishi 《Biochemistry》1982,21(10):2366-2372
    Band 3 protein was isolated from human erythrocyte membranes, purified, and reconstituted into a well-defined phospholipid bilayer matrix (dimyristoylphosphatidylcholine). The preparation yielded uniform single-bilayered vesicles of the diameter 40--80 nm. The rotational motion of band 3 was studied by saturation transfer electron spin resonance (ESR) spectroscopy of covalently attached maleimide spin-labels. The rotational mobility changed in response to the host lipid phase transition. The rotational correlation time was in a range from 73 (37 degrees C) to 94 microseconds (26 degrees C) in the fluid phase and from 240 (15 degrees C) to 420 microseconds (5 degrees C) in the solid phase. The motion was analyzed based on the anisotropic rotation of band 3 in the reconstituted vesicles. To obtain information on the rotational diffusion constant around the axis parallel to the membrane normal, we made an attempt to measure the angle between the spin-label magnetic axis and the membrane normal. The result gave 3.9 x 10(4) s-1 at 37 degrees C as a rough estimate for the diffusion constant. This is compatible to anisotropic rotation of a cylinder of radius 3.3 nm in a two-dimensional matrix with inner viscosity 2 P and inner thickness 4 nm. The cytoskeletal peripheral proteins caused a definite increase in the rotational correlation time (from 73 to 180 microseconds at 37 degrees C, for example). The restriction of the rotational mobility was shown to be due to the ankyrin-linked interaction between band 3 and spectrin-actin-band 4.1 proteins in the reconstituted membranes.  相似文献   

    8.
    The fluorescence behavior of adenosine in neutral solution has been studied by time-resolved spectroscopy using synchrotron excitation and timecorrelated single photon counting, and by decay time measurements. Three emissions have been identified and correlated with three excitation spectra. The assignment of these transitions has been made by comparison with similar measurements on 6N, 6N-dimethyladenosine (6 DMA), and on adenosine in acid solution (ADO H+). It is proposed that two of the transitions of adenosine which correlate with 6DMA originate from coplanar and orthogonal rotational conformers of the amino group. The other transition, correlating with ADO H+ may originate either from the 3H-imino tautomer, or from a differently solvated rotational conformer.A partial presentation of this work has been made at the Second Congress of the European Society for Photobiology Padova, Italy, 6–10 September 1987  相似文献   

    9.
    Summary Diffusion potential of potassium ions was formed in unilamellar vesicles of phosphatidyl choline. The vesicles, which included potassium sulfate buffered with potassium phosphate, were diluted into an analogous salt solution made of sodium sulfate and sodium phosphate. The diffusion potential was created by the addition of the potassium-ionophore, valinomycin. The change in lipid microviscosity, ensuing the formation of membrane potential, was measured by the conventional method of fluorescence depolarization with 1,6-diphenyl-1,3,5-hexatriene as a probe. Lipid microviscosity was found to increase with membrane potential in a nonlinear manner, irrespective of the potential direction. Two tentative interpretations are proposed for this observation. The first assumes that the membrane potential imposes an energy barrier on the lipid flow which can be treated in terms of Boltzmann-distribution. The other interpretation assumes a decrease in lipid-free volume due to the pressure induced by the electrical potential. Since increase in lipid viscosity can reduce lateral and rotational motions, as well as increase exposure of functional membrane proteins, physiological effects induced by transmembrane potential could be associated with such dynamic changes.  相似文献   

    10.
    The rotational mobility of the phosphate translocator from the chloroplast envelope and of lipid molecules in the membrane of unilamellar azolectin liposomes has been investigated. The rotational dynamics of the liposome membrane were investigated by measuring the rotational diffusion of eosin-5-isothiocyanate(EITC)-labeled L-alpha-dipalmitoylglycerophosphoethanolamine (Pam2 GroPEtn) in the lipid phase of the vesicles, either in the presence or absence of the reconstituted phosphate translocator. The temperature dependence of the anisotropy decay showed that above 25 degrees C the main contribution to the anisotropy decay was caused by uniaxial anisotropic rotation of the labelled lipid molecules around the axis normal to the membrane plane. The rate of rotation of the labelled lipid molecules was strongly dependent on the viscosity of the medium (eta 1). Extrapolation to eta 1 = 0 Pa.s yielded a correlation time of phi = 20 +/- 5 ns, t = 30 degrees C, for lipid rotation with respect to the membrane normal. The rotational diffusion coefficient of the lipid molecules was calculated to be Dr = 2.0 x 10(9) rad2.s-1 and the apparent microviscosity in the vesicle membrane, as derived from the rotational correlation time, was eta 2 approximately 12 mPa.s. The rotational correlation time of the phosphate translocator in the membrane was only slightly dependent on the viscosity of the medium. The temperature dependence of the protein rotation also indicated that the rotation of the protein in the membrane was largely restricted and occurred mainly about the axis normal to the membrane plane. Measurements at a medium viscosity of eta 1 = 1 mPa.s yielded a value of phi r approximately 450 ns corresponding to Dr = 8.8 x 10(7) rad2.s-1 for protein rotation with respect to the membrane normal. From this value and the data of the lipid rotation, the cross-sectional area of the protein part embedded in the membrane was calculated to be approximately 9 nm2. This cross-sectional area is large enough to include at most 14 membrane-spanning helices. Our results also indicated that at lipid/protein molar ratios greater than or equal to 1.5 x 10(4): 1 aggregation occurred in the model membranes below 30 degrees C. However, above 30 degrees C and at a high dilution of the protein in the membrane it appeared that the membrane viscosity monitored by lipid and protein rotational diffusion were identical.  相似文献   

    11.
    The binding of partially-folded mitochondrial malate dehydrogenase (mMDH) to GroEL was assessed by steady and nanosecond emission spectroscopy. Partially-folded intermediates of mMDH show significant residual secondary structure when examined by CD spectroscopy in the far UV. They bind the extrinsic fluorescent probe ANS and the protein-ANS complexes display a rotational correlation time of 19 ns. Similar rotational correlation time (phi = 18.6 ns) was determined for partially-folded species tagged with anthraniloyl. GroEL recognizes partially-folded species with a K(D) approximately 60 nM. The rotational correlation time of the complex, i.e., GroEL-mMDH-ANT, approaches a value of 280 ns in the absence of ATP. Reactivation of mMDH-ANT by addition of GroEL and ATP brings about a significant decrease in the observed rotational correlation time. The results indicate that partially-folded malate dehydrogenase is rigidly trapped by GroEL in the absence of ATP, whereas addition of ATP facilitates reactivation and release of folded conformations endowed with catalytic activity.  相似文献   

    12.
    The effect of ethanol on the physical properties of neuronal membranes   总被引:1,自引:0,他引:1  
    Intramolecular excimer formation of 1,3-di(1-pyrenyl) propane(Py-3-Py) and fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) were used to evaluate the effect of ethanol on the rate and range of lateral and rotational mobilities of bulk bilayer structures of synaptosomal plasma membrane vesicles (SPMVs) from the bovine cerebral cortex. Ethanol increased the excimer to monomer fluorescence intensity ratio (I'/I) of Py-3-Py in the SPMVs. Selective quenching of both DPH and Py-3-Py by trinitrophenyl groups was used to examine the range of transbilayer asymmetric rotational mobility and the rate and range of transbilayer asymmetric lateral mobility of SPMVs. Ethanol increased the rotational and lateral mobility of the outer monolayer more than of the inner one. Thus ethanol has a selective fluidizing effect within the transbilayer domains of the SPMVs. Radiationless energy transfer from the tryptophans of membrane proteins to Py-3-Py was used to examine both the effect of ethanol on annular lipid fluidity and protein distribution in the SPMVs. Ethanol increased annular lipid fluidity and also caused membrane proteins to cluster. These effects on neuronal membranes may be responsible for some, though not all, of the general anesthetic actions of ethanol.  相似文献   

    13.
    The reactivity of a series of substituted vinyl ketone nitroxides with an integral membrane protein, the Na,K-ATPase, is described. Increasing the electrophilicity of the conjugated double bond enhances reactivity markedly, with some spin labels showing higher reactivity than the conventionally used maleimide derivatives. The spectroscopic characteristics of the spin-labeled protein are also better suited for motional analysis by the saturation transfer electron spin resonance (STESR) method than with previous labeling procedures. The rotational correlation time, deduced from STESR experiments, is in the same range (100-300 microseconds) irrespective of the vinyl ketone derivative used, and the rotational mobility corresponds to an (alpha beta)2 or higher oligomer of the membrane-bound Na,K-ATPase.  相似文献   

    14.
    The rotational diffusion of the acetylcholine (ACh) receptor in subsynaptic membrane fragments from Torpedo marmorata electric organ was investigated with a spin-labelled alpha-bungarotoxin. A toxin with two spin labels was first synthesized; the conventional electron spin resonance spectrum (e.s.r.) of this toxin bound to the receptor indicated: (1) a complete immobilization of the probes; and (2) a strong spin-spin interaction that was not, or barely, seen in solution. The modification of the degree of spin-spin interaction is taken as an indication of a toxin conformational change accompanying its binding to the ACh-receptor. To avoid spin-spin interaction a single-labelled toxin was made and used to follow the rotational diffusion of the receptor by saturation transfer e.s.r. (ST-e.s.r.). With native membranes a high immobilization of the ACh-receptor was noticed. Reduction of the membranes by dithiothreitol had little effect on this motion. Only extraction of the 43 000 protein(s) by pH 11 treatment was able to enhance the rotational diffusion of the ACh-receptor protein (rotational correlation time by ST-e.s.r. in the 0.5 - 1 X 10(-4) s range) and to allow its lateral diffusion in the plane of the membrane fragments (observed by electron microscopy after freeze-etching or negative staining).  相似文献   

    15.
    Polarized fluorescence recovery after photobleaching (PFRAP) is a technique for measuring the rate of rotational motion of biomolecules on living, nondeoxygenated cells with characteristic times previously ranging from milliseconds to many seconds. Although very broad, that time range excludes the possibility of quantitatively observing freely rotating membrane protein monomers that typically should have a characteristic decay time of only several microseconds. This report describes an extension of the PFRAP technique to a much shorter time scale. With this new system, PFRAP experiments can be conducted with sample time as short as 0.4 microseconds and detection of possible characteristic times of less than 2 microseconds. The system is tested on rhodamine-alpha-bungarotoxin-labeled acetylcholine receptors (AChRs) on myotubes grown in primary cultures of embryonic rat muscle, in both endogenously clustered and nonclustered regions of AChR distribution. It is found that approximately 40% of the AChRs in nonclustered regions undergoes rotational diffusion fast enough to possibly arise from unrestricted monomer Brownian motion. The AChRs in clusters, on the other hand, are almost immobile. The effects of rat embryonic brain extract (which contains AChR aggregating factors) on the myotube AChR were also examined by the fast PFRAP system. Brain extract is known to abolish the presence of endogenous clusters and to induce the formation of new clusters. It is found here that rotational diffusion of AChR in the extract-induced clusters is as slow as that in endogenous clusters on untreated cells but that rotational diffusion in the nonclustered regions of extract-treated myotubes remains rapid.  相似文献   

    16.
    The rotational flexibility of the cytoplasmic domain of band 3, in the region that is proximal to the inner membrane surface, has been investigated using a combination of time-resolved optical anisotropy (TOA) and saturation-transfer electron paramagnetic resonance (ST-EPR) spectroscopies. TOA studies of rotational diffusion of the transmembrane domain of band 3 show a dramatic decrease in residual anisotropy following cleavage of the link with the cytoplasmic domain by trypsin (E. A. Nigg and R. J. Cherry, 1980, Proc. Natl. Acad. Sci. U.S.A. 77:4702-4706). This result is compatible with two independent hypotheses: 1) trypsin cleavage leads to dissociation of large clusters of band 3 that are immobile on the millisecond time scale, or 2) trypsin cleavage leads to release of a constraint to uniaxial rotational diffusion of the transmembrane domain. ST-EPR studies at X- and Q-band microwave frequencies detect rotational diffusion of the transmembrane domain of band 3 about the membrane normal axis of reasonably large amplitude that does not change upon cleavage with trypsin. These ST-EPR results are not consistent with dissociation of clusters of band 3 as a result of cleavage with trypsin. Global analyses of the ST-EPR data using a newly developed algorithm indicate that any constraint to rotational diffusion of the transmembrane domain of band 3 via interactions of the cytoplasmic domain with the membrane skeleton must be sufficiently weak to allow rotational excursions in excess of 32 degrees full-width for a square-well potential. In support of this result, analyses of the TOA data in terms of restricted amplitude uniaxial rotational diffusion models suggest that the membrane-spanning domain of that population of band 3 that is linked to the membrane skeleton is constrained to diffuse in a square-well of approximately 73 degrees full-width. This degree of flexibility may be necessary for providing the unique mechanical properties of the erythrocyte membrane.  相似文献   

    17.
    J N Myers  D Holowka  B Baird 《Biochemistry》1992,31(2):567-575
    Erythrosin 5'-thiosemicarbazide labeled immunoglobulin E (IgE) was used to monitor the rotational dynamics of monomeric and dimeric Fc epsilon RI receptors for IgE on rat basophilic leukemia (RBL) basophilic leukemia (RBL) cells using time-resolved phosphorescence anisotropy. Receptors were studied both on living RBL cells and on membrane vesicles derived from RBL cell plasma membrane. The un-cross-linked IgE-receptor complexes on cells and vesicles exhibit rotational correlation times that are consistent with those expected for freely rotating monomers, but a small fraction of these complexes on cells may be rotationally immobile. A comparison of the initial phosphorescence anisotropy values for erythrosin-labeled IgE-receptor complexes on cells and vesicles reveals a fast component of rotational motion that is greater on the vesicles and may be due to a site of segmental flexibility in the receptor itself. Dimers of IgE-receptor complexes formed with anti-IgE monoclonal antibodies appear to be largely immobile on cells, but they are mobile on vesicles with a 2-fold larger rotational correlation time than the monomeric complexes. The results suggest that dimeric IgE-receptor complexes undergo interactions with other membrane components on intact cells that do not occur on the membrane vesicles. The possible significance of these interactions to receptor function is discussed.  相似文献   

    18.
    Fluorescence lifetimes, anisotropies and rotational correlation time values of 1,6-diphenyl-1,3,5-hexatriene (DPH) in membranes of normal, transformed, and revertant 3T3 cells were determined by nanosecond (nsec), photon counting spectrofluorimetry. No change in lifetime values with transformation or reversion is observed. Fluorescence anisotropy decay curves show at least two components; an initial relatively fast decay and a non-zero “plateau” level component. The observed changes in the average anisotropy values, which qualitatively follow steady-state fluorescence polarization values, is due primarily to changes in the non-zero “plateau” level component. The anisotropy decay curves suggest that the rotational motion of the probe is restricted to a limited angular range. The present results are compared with model membrane systems.  相似文献   

    19.
    The rotational diffusion of immunoglobulin E (IgE) bound to its specific Fc receptor on the surface of living rat basophilic leukemia cells was determined from time-resolved phosphorescence emission and anisotropy measurements. The IgE-receptor complexes are mobile throughout the range of temperatures of 5-38 degrees C. The residual anisotropy does not reach zero, indicating that the rotational diffusion is hindered. The values of rotational correlation times for each temperature are consistent with dispersed receptors rotating freely in the cell membrane and rule out any significant aggregation of occupied receptors before cross-linking by antigen or anti-IgE antibodies. The rotational correlation times decrease with increasing temperature from 65 microseconds at 5.5 degrees C to 23 microseconds at 38 degrees C. However, the degree of orientational constraint experienced by the probe is unchanged. Thus, the temperature dependence can be attributed primarily to a change in the effective viscosity of the cellular plasma membrane. The phosphorescence depolarization technique is very sensitive (our probe concentrations were 10-100 nM) and thus generally applicable to studies of surface receptors and antigens on living cells.  相似文献   

    20.
    A fluorescent dye, 1-dimethylaminonaphthalene-5-sulfonyl chloride, was used to label bovine serum albumin (BSA), intact and disulfide bridges-cleaved. The fluorescence lifetime and fluorescence anisotropy of the adducts in sodium dodecyl sulfate (SDS) solutions were studied by the nanosecond fluorescence depolarization method. The volume of equivalent sphere (V e) was calculated to be 2.1×10–19 cm3 for BSA with the intact disulfide bridges from the rotational correlation time. The value ofV e was 4.4×10–19 cm3 for the disulfide bridges-cleaved BSA. With an increase in SDS concentration, the rotational correlation time of the intact BSA became longer, while that of the disulfide bridges-cleaved BSA became shorter. This suggests that upon the binding of SDS, the total volume of the intact BSA increases while the expanded state of the protein, caused by the cleavage of the disulfide bridges, becomes compact.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号